Files
swift-mirror/lib/SILOptimizer/Transforms/CopyForwarding.cpp
John McCall e249fd680e Destructure result types in SIL function types.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.

The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results.  It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.

The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*.  The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list.  The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.

A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple.  It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.

Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction.  It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
2016-02-18 01:26:28 -08:00

1220 lines
43 KiB
C++

//===--- CopyForwarding.cpp - Forward local copies from caller to callee --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Eliminate local copies of either address-only or reference types.
//
// This opportunity frequently results from a calling convention that transfers
// object ownership from caller to callee. In this convention, the caller
// creates a local copy before passing it to the callee. If the original object
// is immediately destroyed after passing off the copy, then the copy was
// unnecessary. Removing the useless copy can be thought of as forwarding the
// original object directly to the call argument in place of the copy. Hence
// "copy forwarding".
//
// There are two classifications of types that copy forwarding applies to:
// address-only types and references.
//
// Useless copies of address-only types look like this:
//
// %copy = alloc_stack $T
// copy_addr %arg to [initialization] %copy : $*T
// %ret = apply %callee<T>(%copy) : $@convention(thin) <τ_0_0> (@in τ_0_0) -> ()
// dealloc_stack %copy : $*T
// destroy_addr %arg : $*T
//
// Eliminating the address-only copies eliminates a very expensive call to
// getGenericMetadata.
//
// Useless copies of references look like this:
//
// strong_retain %arg : $A
// %ret = apply %callee(%arg) : $@convention(thin) (@owned A) -> ()
// strong_release %arg : $A
//
// Eliminating the reference copies, avoids artificially bumping the refcount
// which could save a copy of all elements in a COW container.
//
// The actual analysis and optimization do not depend on the copy being linked
// to call arguments. Any obviously useless copy will be eliminated.
//
// TODO: Currently we only handle the address-only case, not the retain/release
// case.
//
// TODO: We should run this at -Onone even though it's not diagnostic.
//
// TODO: Currently we only handle cases in which one side of the copy is block
// local. Either:
// (1) Forward propagate: copy src -> dest; deinit(dest)
// (2) Backward propagate: init(src); copy src -> dest
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "copy-forwarding"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SIL/DebugUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
STATISTIC(NumCopyNRVO, "Number of copies removed via named return value opt.");
STATISTIC(NumCopyForward, "Number of copies removed via forward propagation.");
STATISTIC(NumCopyBackward,
"Number of copies removed via backward propagation.");
using namespace swift;
// Temporary debugging flag until this pass is better tested.
static llvm::cl::opt<bool> EnableCopyForwarding("enable-copyforwarding",
llvm::cl::init(true));
static llvm::cl::opt<bool> EnableDestroyHoisting("enable-destroyhoisting",
llvm::cl::init(true));
/// \return true if the given copy source value can only be accessed via the
/// given def (this def uniquely identifies the object).
///
/// (1) An "in" argument.
/// (inouts are also nonaliased, but won't be destroyed in scope)
///
/// (2) A local alloc_stack variable.
static bool isIdentifiedSourceValue(SILValue Def) {
if (SILArgument *Arg = dyn_cast<SILArgument>(Def)) {
if (!Arg->isFunctionArg())
return false;
// Check that the argument is passed as an in type. This means there are
// no aliases accessible within this function scope.
SILArgumentConvention Conv = Arg->getArgumentConvention();
switch (Conv) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
return true;
default:
DEBUG(llvm::dbgs() << " Skipping Def: Not an @in argument!\n");
return false;
}
}
else if (isa<AllocStackInst>(Def))
return true;
return false;
}
/// \return true if the given copy dest value can only be accessed via the given
/// def (this def uniquely identifies the object).
///
/// (1) An "out" or inout argument.
///
/// (2) A local alloc_stack variable.
static bool isIdentifiedDestValue(SILValue Def) {
if (SILArgument *Arg = dyn_cast<SILArgument>(Def)) {
if (!Arg->isFunctionArg())
return false;
// Check that the argument is passed as an out type. This means there are
// no aliases accessible within this function scope.
SILArgumentConvention Conv = Arg->getArgumentConvention();
switch (Conv) {
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_Out:
return true;
default:
DEBUG(llvm::dbgs() << " Skipping Def: Not an @in argument!\n");
return false;
}
}
else if (isa<AllocStackInst>(Def))
return true;
return false;
}
/// Return the parameter convention used by Apply to pass an argument
/// indirectly via Address.
///
/// Set Oper to the Apply operand that passes Address.
static SILArgumentConvention getAddressArgConvention(ApplyInst *Apply,
SILValue Address,
Operand *&Oper) {
Oper = nullptr;
SILArgumentConvention Conv;
auto Args = Apply->getArgumentOperands();
for (auto ArgIdx : indices(Args)) {
if (Args[ArgIdx].get() != Address)
continue;
Conv = Apply->getArgumentConvention(ArgIdx);
assert(!Oper && "Address can only be passed once as an indirection.");
Oper = &Args[ArgIdx];
#ifndef NDEBUG
break;
#endif
}
assert(Oper && "Address value not passed as an argument to this call.");
return Conv;
}
//===----------------------------------------------------------------------===//
// Forward and backward copy propagation
//===----------------------------------------------------------------------===//
namespace {
/// Analyze an instruction that operates on the Address of a forward propagated
/// value.
///
/// Set Oper to the operand that may be safely replaced by an address
/// pointing to an equivalent value. If UserInst cannot be analyzed, Oper is set
/// to nullptr.
///
/// Return true if the instruction destroys the value at Address.
///
/// This checks for the following cases of deinit:
/// - 'in' argument
/// - copy_addr [take] src
/// - copy_addr [!init] dest
/// - destroy_addr
/// - unchecked_take_enum_data_addr
///
/// The copy_addr [!init] case is special because the operand cannot simply be
/// replaced with a new address without causing that location to be
/// reinitialized (after being deinitialized). The caller must check for and
/// handle this case.
///
/// This returns false and sets Oper to a valid operand if the instruction is a
/// projection of the value at the given address. The assumption is that we
/// cannot deinitialize memory via projections.
class AnalyzeForwardUse
: public SILInstructionVisitor<AnalyzeForwardUse, bool> {
public:
SILValue Address;
Operand *Oper;
AnalyzeForwardUse(SILValue Address): Address(Address), Oper(nullptr) {}
bool visitApplyInst(ApplyInst *Apply) {
switch (getAddressArgConvention(Apply, Address, Oper)) {
case SILArgumentConvention::Indirect_In:
return true;
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
return false;
default:
llvm_unreachable("unexpected calling convention for copy_addr user");
}
}
bool visitCopyAddrInst(CopyAddrInst *CopyInst) {
if (CopyInst->getSrc() == Address) {
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Src];
return CopyInst->isTakeOfSrc();
}
assert(!CopyInst->isInitializationOfDest() && "illegal reinitialization");
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Dest];
return true;
}
bool visitStoreInst(StoreInst *Store) {
llvm_unreachable("illegal reinitialization or store of an address");
}
bool visitDestroyAddrInst(DestroyAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return true;
}
bool visitUncheckedTakeEnumDataAddrInst(
UncheckedTakeEnumDataAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return true;
}
bool visitExistentialMetatypeInst(ExistentialMetatypeInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitLoadInst(LoadInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitOpenExistentialAddrInst(OpenExistentialAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitStructElementAddrInst(StructElementAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitDebugValueAddrInst(DebugValueAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitInitEnumDataAddrInst(InitEnumDataAddrInst *UserInst) {
llvm_unreachable("illegal reinitialization");
}
bool visitInjectEnumAddrInst(InjectEnumAddrInst *UserInst) {
llvm_unreachable("illegal reinitialization");
}
bool visitSILInstruction(SILInstruction *UserInst) {
return false;
}
};
/// Analyze an instruction that operates on the Address of a backward propagated
/// value.
///
/// Set Oper to the operand that my be safely replaced by an address
/// pointing to an equivalent value. If UserInst cannot be analyzed, Oper is set
/// to nullptr.
///
/// Return true if the instruction initializes the value at Address.
///
/// We currently check for the following cases of init:
/// - 'out' argument
/// - copy_addr [init] dest
/// - copy_addr [!init] dest
/// - store
///
/// The copy_addr [!init] case is special because the operand cannot simply be
/// replaced with a new address without causing that location to be
/// deinitialized (before being initialized). The caller must check for and
/// handle this case.
///
/// This returns false and sets Oper to nullptr for projections of the value at
/// the given address. For example, init_enum_data_addr and struct_element_addr
/// may be part of a decoupled initialization sequence.
class AnalyzeBackwardUse
: public SILInstructionVisitor<AnalyzeBackwardUse, bool> {
public:
SILValue Address;
Operand *Oper;
AnalyzeBackwardUse(SILValue Address): Address(Address), Oper(nullptr) {}
bool visitApplyInst(ApplyInst *Apply) {
switch (getAddressArgConvention(Apply, Address, Oper)) {
case SILArgumentConvention::Indirect_Out:
return true;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_In_Guaranteed:
return false;
case SILArgumentConvention::Indirect_In:
llvm_unreachable("copy_addr src destroyed without reinitialization");
default:
llvm_unreachable("unexpected calling convention for copy_addr user");
}
}
bool visitCopyAddrInst(CopyAddrInst *CopyInst) {
if (CopyInst->getDest() == Address) {
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Dest];
return true;
}
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Src];
assert(!CopyInst->isTakeOfSrc() && "illegal deinitialization");
return false;
}
bool visitStoreInst(StoreInst *Store) {
Oper = &Store->getAllOperands()[StoreInst::Dest];
assert(Oper->get() == Address && "illegal store of an address");
return true;
}
bool visitExistentialMetatypeInst(ExistentialMetatypeInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitInjectEnumAddrInst(InjectEnumAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitLoadInst(LoadInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitOpenExistentialAddrInst(OpenExistentialAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitDestroyAddrInst(DestroyAddrInst *UserInst) {
llvm_unreachable("illegal deinitialization");
}
bool visitUncheckedTakeEnumDataAddrInst(
UncheckedTakeEnumDataAddrInst *UserInst) {
llvm_unreachable("illegal deinitialization");
}
bool visitUncheckedRefCastAddrInst(
UncheckedRefCastAddrInst *UserInst) {
if (UserInst->getDest() == Address) {
Oper = &UserInst->getAllOperands()[UncheckedRefCastAddrInst::Dest];
}
return true;
}
bool visitDebugValueAddrInst(DebugValueAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitSILInstruction(SILInstruction *UserInst) {
return false;
}
};
class CopyForwarding {
// Per-function state.
PostOrderAnalysis *PostOrder;
DominanceAnalysis *DomAnalysis;
bool DoGlobalHoisting;
bool HasChanged;
bool HasChangedCFG;
// Transient state for the current Def valid during forwardCopiesOf.
SILValue CurrentDef;
// Is the addressed defined by CurrentDef ever loaded from?
// This indicates that lifetime of any transitively referenced objects lives
// beyond the value's immediate uses.
bool IsLoadedFrom;
bool HasForwardedToCopy;
SmallPtrSet<SILInstruction*, 16> SrcUserInsts;
SmallPtrSet<DebugValueAddrInst*, 4> SrcDebugValueInsts;
SmallVector<CopyAddrInst*, 4> TakePoints;
SmallVector<DestroyAddrInst*, 4> DestroyPoints;
SmallPtrSet<SILBasicBlock*, 32> DeadInBlocks;
public:
CopyForwarding(PostOrderAnalysis *PO, DominanceAnalysis *DA)
: PostOrder(PO), DomAnalysis(DA), DoGlobalHoisting(false),
HasChanged(false), HasChangedCFG(false), IsLoadedFrom(false),
HasForwardedToCopy(false) {}
void reset(SILFunction *F) {
// Don't hoist destroy_addr globally in transparent functions. Avoid cloning
// destroy_addr instructions and splitting critical edges before mandatory
// diagnostic passes. For example, PredictableMemOps can no longer remove
// some alloc_stack cases after global destroy hoisting. CopyForwarding will
// be reapplied after the transparent function is inlined at which point
// global hoisting will be done.
DoGlobalHoisting = !F->isTransparent();
if (HasChangedCFG) {
// We are only invalidating the analysis that we use internally.
// We'll invalidate the analysis that are used by other passes at the end.
DomAnalysis->invalidate(F, SILAnalysis::InvalidationKind::Everything);
PostOrder->invalidate(F, SILAnalysis::InvalidationKind::Everything);
}
CurrentDef = SILValue();
IsLoadedFrom = false;
HasForwardedToCopy = false;
SrcUserInsts.clear();
SrcDebugValueInsts.clear();
TakePoints.clear();
DestroyPoints.clear();
DeadInBlocks.clear();
}
bool hasChanged() const { return HasChanged; }
bool hasChangedCFG() const { return HasChangedCFG; }
/// Return true if CurrentDef has been forwarded through one copy into
/// another. This means we should iterate.
bool hasForwardedToCopy() const { return HasForwardedToCopy; }
void forwardCopiesOf(SILValue Def, SILFunction *F);
protected:
bool collectUsers();
bool propagateCopy(CopyAddrInst *CopyInst);
bool forwardPropagateCopy(CopyAddrInst *CopyInst,
SmallPtrSetImpl<SILInstruction*> &DestUserInsts);
bool backwardPropagateCopy(CopyAddrInst *CopyInst,
SmallPtrSetImpl<SILInstruction*> &DestUserInsts);
bool hoistDestroy(SILInstruction *DestroyPoint, SILLocation DestroyLoc);
bool isSourceDeadAtCopy(CopyAddrInst *);
bool areCopyDestUsersDominatedBy(CopyAddrInst *,
SmallVectorImpl<Operand *> &);
};
} // namespace
/// Gather all instructions that use CurrentDef:
/// - DestroyPoints records 'destroy'
/// - TakePoints records 'copy_addr [take] src'
/// - SrcUserInsts records other users.
///
/// If we are unable to find all uses, for example, because we don't look
/// through struct_element_addr, then return false.
///
/// The collected use points will be consulted during forward and backward
/// copy propagation.
bool CopyForwarding::collectUsers() {
for (auto UI : CurrentDef->getUses()) {
SILInstruction *UserInst = UI->getUser();
if (auto *Apply = dyn_cast<ApplyInst>(UserInst)) {
/// A call to materializeForSet exposes an address within the parent
/// object. However, we can rely on a subsequent mark_dependent
/// instruction to take that object as an operand, causing it to escape
/// for the purpose of this analysis.
assert(isIndirectConvention(
Apply->getSubstCalleeType()->getSILArgumentConvention(
UI->getOperandNumber() - Apply->getArgumentOperandNumber()))
&& "copy_addr location should be passed indirect");
SrcUserInsts.insert(Apply);
continue;
}
if (auto *CopyInst = dyn_cast<CopyAddrInst>(UserInst)) {
if (CopyInst->getSrc() == UI->get() && CopyInst->isTakeOfSrc())
TakePoints.push_back(CopyInst);
else
SrcUserInsts.insert(CopyInst);
continue;
}
if (auto *Destroy = dyn_cast<DestroyAddrInst>(UserInst)) {
DestroyPoints.push_back(Destroy);
continue;
}
switch (UserInst->getKind()) {
case ValueKind::LoadInst:
IsLoadedFrom = true;
SrcUserInsts.insert(UserInst);
break;
case ValueKind::ExistentialMetatypeInst:
case ValueKind::InjectEnumAddrInst:
case ValueKind::StoreInst:
SrcUserInsts.insert(UserInst);
break;
case ValueKind::DebugValueAddrInst:
SrcDebugValueInsts.insert(cast<DebugValueAddrInst>(UserInst));
break;
case ValueKind::DeallocStackInst:
break;
default:
// Most likely one of:
// init_enum_data_addr
// open_existential_addr
// partial_apply
// struct_element_addr
// unchecked_take_enum_data_addr
//
// TODO: Peek through struct element users like COWArrayOpts.
//
// TODO: Attempt to analyze partial applies or run closure propagation
// first.
//
// TODO: assert that this list is consistent with
// isTransitiveEscapeInst().
DEBUG(llvm::dbgs() << " Skipping copy: use exposes def" << *UserInst);
return false;
}
}
return true;
}
/// Attempt to forward, then backward propagate this copy.
///
/// The caller has already proven that lifetime of the value being copied ends
/// at the copy. (Either it is a [take] or is immediately destroyed).
///
/// If the forwarded copy is not an [init], then insert a destroy of the copy's
/// dest.
bool CopyForwarding::propagateCopy(CopyAddrInst *CopyInst) {
if (!EnableCopyForwarding)
return false;
SILValue CopyDest = CopyInst->getDest();
SILBasicBlock *BB = CopyInst->getParent();
// Gather a list of CopyDest users in this block.
SmallPtrSet<SILInstruction*, 16> DestUserInsts;
for (auto UI : CopyDest->getUses()) {
SILInstruction *UserInst = UI->getUser();
if (UserInst != CopyInst && UI->getUser()->getParent() == BB)
DestUserInsts.insert(UI->getUser());
}
// Note that DestUserInsts is likely empty when the dest is an 'out' argument,
// allowing us to go straight to backward propagation.
if (forwardPropagateCopy(CopyInst, DestUserInsts)) {
DEBUG(llvm::dbgs() << " Forwarding Copy:" << *CopyInst);
if (!CopyInst->isInitializationOfDest()) {
// Replace the original copy with a destroy. We may be able to hoist it
// more in another pass but don't currently iterate.
SILBuilderWithScope(CopyInst)
.createDestroyAddr(CopyInst->getLoc(), CopyInst->getDest());
}
CopyInst->eraseFromParent();
HasChanged = true;
++NumCopyForward;
return true;
}
// Forward propagation failed. Attempt to backward propagate.
if (CopyInst->isInitializationOfDest()
&& backwardPropagateCopy(CopyInst, DestUserInsts)) {
DEBUG(llvm::dbgs() << " Reversing Copy:" << *CopyInst);
CopyInst->eraseFromParent();
HasChanged = true;
++NumCopyBackward;
return true;
}
return false;
}
/// Check that the lifetime of %src ends at the copy and is not reinitialized
/// thereafter with a new value.
bool CopyForwarding::isSourceDeadAtCopy(CopyAddrInst *Copy) {
// A single copy_addr [take] %Src.
if (TakePoints.size() == 1 && DestroyPoints.empty() && SrcUserInsts.empty())
return true;
if (TakePoints.empty() && DestroyPoints.size() == 1 &&
SrcUserInsts.size() == 1) {
assert(*SrcUserInsts.begin() == Copy);
return true;
}
// For now just check for a single copy_addr that destroys its source.
return false;
}
/// Check that all users of the destination address of the copy are dominated by
/// the copy. There is no path around copy that could initialize %dest with a
/// different value.
bool CopyForwarding::areCopyDestUsersDominatedBy(
CopyAddrInst *Copy, SmallVectorImpl<Operand *> &DestUses) {
SILValue CopyDest = Copy->getDest();
DominanceInfo *DT = nullptr;
for (auto *Use : CopyDest->getUses()) {
auto *UserInst = Use->getUser();
if (UserInst == Copy)
continue;
if (isa<DeallocStackInst>(UserInst))
continue;
// Initialize the dominator tree info.
if (!DT)
DT = DomAnalysis->get(Copy->getFunction());
// Check dominance of the parent blocks.
if (!DT->dominates(Copy->getParent(), UserInst->getParent()))
return false;
bool CheckDominanceInBlock = Copy->getParent() == UserInst->getParent();
// Check whether Copy is before UserInst.
if (CheckDominanceInBlock) {
auto SI = Copy->getIterator(), SE = Copy->getParent()->end();
for (++SI; SI != SE; ++SI)
if (&*SI == UserInst)
break;
if (SI == SE)
return false;
}
// We can forward to this use.
DestUses.push_back(Use);
}
return true;
}
/// Returns the associated dealloc_stack if \p ASI has a single dealloc_stack.
/// Usually this is the case, but the optimizations may generate something like:
/// %1 = alloc_stack
/// if (...) {
/// dealloc_stack %1
/// } else {
/// dealloc_stack %1
/// }
static DeallocStackInst *getSingleDealloc(AllocStackInst *ASI) {
DeallocStackInst *SingleDSI = nullptr;
for (Operand *Use : ASI->getUses()) {
if (auto *DSI = dyn_cast<DeallocStackInst>(Use->getUser())) {
if (SingleDSI)
return nullptr;
SingleDSI = DSI;
}
}
return SingleDSI;
}
/// Replace all uses of \p ASI by \p RHS, except the dealloc_stack.
static void replaceAllUsesExceptDealloc(AllocStackInst *ASI, ValueBase *RHS) {
llvm::SmallVector<Operand *, 8> Uses;
for (Operand *Use : ASI->getUses()) {
if (!isa<DeallocStackInst>(Use->getUser()))
Uses.push_back(Use);
}
for (Operand *Use : Uses) {
Use->set(RHS);
}
}
/// Perform forward copy-propagation. Find a set of uses that the given copy can
/// forward to and replace them with the copy's source.
///
/// We must only replace uses of this copy's value. To do this, we search
/// forward in the current block from the copy that initializes the value to the
/// point of deinitialization. Typically, this will be a point at which the
/// value is passed as an 'in' argument:
/// \code
/// %copy = alloc_stack $T
/// ...
/// CurrentBlock:
/// copy_addr %arg to [initialization] %copy : $*T
/// ...
/// %ret = apply %callee<T>(%copy) : $@convention(thin) <τ_0_0> (@in τ_0_0) -> ()
/// \endcode
///
/// If the last use (deinit) is a copy, replace it with a destroy+copy[init].
///
/// The caller has already guaranteed that the lifetime of the copy's source
/// ends at this copy. Either the copy is a [take] or a destroy can be hoisted
/// to the copy.
bool CopyForwarding::forwardPropagateCopy(
CopyAddrInst *CopyInst,
SmallPtrSetImpl<SILInstruction*> &DestUserInsts) {
SILValue CopyDest = CopyInst->getDest();
// Require the copy dest to be a simple alloc_stack. This ensures that all
// instructions that may read from the destination address depend on CopyDest.
if (!isa<AllocStackInst>(CopyDest))
return false;
// Looking at
//
// copy_addr %Src, [init] %Dst
//
// We can reuse %Src if it is dead after the copy and not reinitialized. To
// know that we can safely replace all uses of %Dst with source we must know
// that it is uniquely named and cannot be accessed outside of the function
// (an alloc_stack instruction qualifies for this, an inout parameter does
// not). Additionally, we must know that all accesses to %Dst further on must
// have had this copy on their path (there might be reinitialization of %Dst
// later, but there must not be a path around this copy that reads from %Dst).
SmallVector<Operand *, 16> DestUses;
if (isSourceDeadAtCopy(CopyInst) &&
areCopyDestUsersDominatedBy(CopyInst, DestUses)) {
// Replace all uses of Dest with a use of Src.
for (auto *Oper : DestUses) {
Oper->set(CopyInst->getSrc());
if (isa<CopyAddrInst>(Oper->getUser()))
HasForwardedToCopy = true;
}
// The caller will Remove the destroy_addr of %src.
assert((DestroyPoints.empty() ||
(!CopyInst->isTakeOfSrc() && DestroyPoints.size() == 1)) &&
"Must only have one destroy");
// The caller will remove the copy_addr.
return true;
}
SILInstruction *DefDealloc = nullptr;
if (auto *ASI = dyn_cast<AllocStackInst>(CurrentDef)) {
DefDealloc = getSingleDealloc(ASI);
if (!DefDealloc) {
DEBUG(llvm::dbgs() << " Skipping copy" << *CopyInst
<< " stack address has multiple uses.\n");
return false;
}
}
// Scan forward recording all operands that use CopyDest until we see the
// next deinit of CopyDest.
SmallVector<Operand*, 16> ValueUses;
auto SI = CopyInst->getIterator(), SE = CopyInst->getParent()->end();
for (++SI; SI != SE; ++SI) {
SILInstruction *UserInst = &*SI;
// If we see another use of Src, then the source location is reinitialized
// before the Dest location is deinitialized. So we really need the copy.
if (SrcUserInsts.count(UserInst)) {
DEBUG(llvm::dbgs() << " Skipping copy" << *CopyInst
<< " source used by" << *UserInst);
return false;
}
if (UserInst == DefDealloc) {
DEBUG(llvm::dbgs() << " Skipping copy" << *CopyInst
<< " dealloc_stack before dest use.\n");
return false;
}
// Early check to avoid scanning unrelated instructions.
if (!DestUserInsts.count(UserInst))
continue;
AnalyzeForwardUse AnalyzeUse(CopyDest);
bool seenDeinit = AnalyzeUse.visit(UserInst);
// If this use cannot be analyzed, then abort.
if (!AnalyzeUse.Oper)
return false;
// Otherwise record the operand.
ValueUses.push_back(AnalyzeUse.Oper);
// If this is a deinit, we're done searching.
if (seenDeinit)
break;
}
if (SI == SE)
return false;
// Convert a reinitialization of this address into a destroy, followed by an
// initialization. Replacing a copy with a destroy+init is not by itself
// profitable. However, it does allow eliminating the earlier copy, and we may
// later be able to eliminate this initialization copy.
if (auto Copy = dyn_cast<CopyAddrInst>(&*SI)) {
if (Copy->getDest() == CopyDest) {
assert(!Copy->isInitializationOfDest() && "expected a deinit");
DestroyAddrInst *Destroy =
SILBuilderWithScope(Copy).createDestroyAddr(Copy->getLoc(), CopyDest);
Copy->setIsInitializationOfDest(IsInitialization);
assert(ValueUses.back()->getUser() == Copy && "bad value use");
ValueUses.back() = &Destroy->getOperandRef();
}
}
// Now that a deinit was found, it is safe to substitute all recorded uses
// with the copy's source.
for (auto *Oper : ValueUses) {
Oper->set(CopyInst->getSrc());
if (isa<CopyAddrInst>(Oper->getUser()))
HasForwardedToCopy = true;
}
return true;
}
/// Given an address defined by 'Def', find the object root and all direct uses,
/// not including:
/// - 'Def' itself
/// - Transitive uses of 'Def' (listed elsewhere in DestUserInsts)
///
/// If the returned root is not 'Def' itself, then 'Def' must be an address
/// projection that can be trivially rematerialized with the root as its
/// operand.
static ValueBase *
findAddressRootAndUsers(ValueBase *Def,
SmallPtrSetImpl<SILInstruction*> &RootUserInsts) {
if (isa<InitEnumDataAddrInst>(Def) || isa<InitExistentialAddrInst>(Def)) {
SILValue InitRoot = cast<SILInstruction>(Def)->getOperand(0);
for (auto *Use : InitRoot->getUses()) {
auto *UserInst = Use->getUser();
if (UserInst == Def)
continue;
RootUserInsts.insert(UserInst);
}
return InitRoot;
}
return Def;
}
/// Perform backward copy-propagation. Find the initialization point of the
/// copy's source and replace the initializer's address with the copy's dest.
bool CopyForwarding::backwardPropagateCopy(
CopyAddrInst *CopyInst,
SmallPtrSetImpl<SILInstruction*> &DestUserInsts) {
SILValue CopySrc = CopyInst->getSrc();
ValueBase *CopyDestDef = CopyInst->getDest();
SmallPtrSet<SILInstruction*, 8> RootUserInsts;
ValueBase *CopyDestRoot = findAddressRootAndUsers(CopyDestDef, RootUserInsts);
// Require the copy dest value to be identified by this address. This ensures
// that all instructions that may write to destination address depend on
// CopyDestRoot.
if (!isIdentifiedDestValue(CopyDestRoot))
return false;
// Scan backward recording all operands that use CopySrc until we see the
// most recent init of CopySrc.
bool seenInit = false;
bool seenCopyDestDef = false;
// ValueUses records the uses of CopySrc in reverse order.
SmallVector<Operand*, 16> ValueUses;
SmallVector<DebugValueAddrInst*, 4> DebugValueInstsToDelete;
auto SI = CopyInst->getIterator(), SE = CopyInst->getParent()->begin();
while (SI != SE) {
--SI;
SILInstruction *UserInst = &*SI;
if (UserInst == CopyDestDef)
seenCopyDestDef = true;
// If we see another use of Dest, then Dest is live after the Src location
// is initialized, so we really need the copy.
if (UserInst == CopyDestRoot || DestUserInsts.count(UserInst)
|| RootUserInsts.count(UserInst)) {
if (auto *DVAI = dyn_cast<DebugValueAddrInst>(UserInst)) {
DebugValueInstsToDelete.push_back(DVAI);
continue;
}
DEBUG(llvm::dbgs() << " Skipping copy" << *CopyInst
<< " dest used by " << *UserInst);
return false;
}
// Early check to avoid scanning unrelated instructions.
if (!SrcUserInsts.count(UserInst)
&& !(isa<DebugValueAddrInst>(UserInst)
&& SrcDebugValueInsts.count(cast<DebugValueAddrInst>(UserInst))))
continue;
AnalyzeBackwardUse AnalyzeUse(CopySrc);
seenInit = AnalyzeUse.visit(UserInst);
// If this use cannot be analyzed, then abort.
if (!AnalyzeUse.Oper)
return false;
// Otherwise record the operand with the earliest use last in the list.
ValueUses.push_back(AnalyzeUse.Oper);
// If this is an init, we're done searching.
if (seenInit)
break;
}
if (!seenInit)
return false;
for (auto *DVAI : DebugValueInstsToDelete)
DVAI->eraseFromParent();
// Convert a reinitialization of this address into a destroy, followed by an
// initialization. Replacing a copy with a destroy+init is not by itself
// profitable. However, it does allow us to eliminate the later copy, and the
// init copy may be eliminated later.
if (auto Copy = dyn_cast<CopyAddrInst>(&*SI)) {
if (Copy->getDest() == CopySrc && !Copy->isInitializationOfDest()) {
SILBuilderWithScope(Copy).createDestroyAddr(Copy->getLoc(), CopySrc);
Copy->setIsInitializationOfDest(IsInitialization);
}
}
// Rematerialize the projection if needed by simply moving it.
if (seenCopyDestDef) {
cast<SILInstruction>(CopyDestDef)->moveBefore(&*SI);
}
// Now that an init was found, it is safe to substitute all recorded uses
// with the copy's dest.
for (auto *Oper : ValueUses) {
Oper->set(CopyInst->getDest());
if (isa<CopyAddrInst>(Oper->getUser()))
HasForwardedToCopy = true;
}
return true;
}
/// Attempt to hoist a destroy point up to the last use. If the last use is a
/// copy, eliminate both the copy and the destroy.
///
/// The copy will be eliminated if the original is not accessed between the
/// point of copy and the original's destruction.
///
/// Def = <uniquely identified> // no aliases
/// ...
/// Copy = copy_addr [init] Def
/// ... // no access to Def
/// destroy_addr Def
///
/// Return true if a destroy was inserted, forwarded from a copy, or the
/// block was marked dead-in.
bool CopyForwarding::hoistDestroy(SILInstruction *DestroyPoint,
SILLocation DestroyLoc) {
if (!EnableDestroyHoisting)
return false;
assert(!SrcUserInsts.count(DestroyPoint) && "caller should check terminator");
SILBasicBlock *BB = DestroyPoint->getParent();
// If DestroyPoint is a block terminator, we must hoist.
bool MustHoist = (DestroyPoint == BB->getTerminator());
bool IsWorthHoisting = MustHoist;
auto SI = DestroyPoint->getIterator(), SE = BB->begin();
while (SI != SE) {
--SI;
SILInstruction *Inst = &*SI;
if (!SrcUserInsts.count(Inst)) {
if (!IsWorthHoisting && isa<ApplyInst>(Inst))
IsWorthHoisting = true;
continue;
}
if (auto *CopyInst = dyn_cast<CopyAddrInst>(Inst)) {
if (!CopyInst->isTakeOfSrc() && CopyInst->getSrc() == CurrentDef) {
// This use is a copy of CurrentDef. Attempt to forward CurrentDef to
// all uses of the copy's value.
if (propagateCopy(CopyInst))
return true;
}
}
// We reached a user of CurrentDef. If we haven't seen anything significant,
// avoid useless hoisting.
if (!IsWorthHoisting)
return false;
DEBUG(llvm::dbgs() << " Hoisting to Use:" << *Inst);
SILBuilderWithScope(std::next(SI), Inst)
.createDestroyAddr(DestroyLoc, CurrentDef);
HasChanged = true;
return true;
}
if (!DoGlobalHoisting)
return false;
DeadInBlocks.insert(BB);
return true;
}
/// Perform CopyForwarding on the current Def.
void CopyForwarding::forwardCopiesOf(SILValue Def, SILFunction *F) {
reset(F);
CurrentDef = Def;
DEBUG(llvm::dbgs() << "Analyzing copies of Def: " << Def);
if (!collectUsers())
return;
// First forward any copies that implicitly destroy CurrentDef. There is no
// need to hoist Destroy for these.
for (auto *CopyInst : TakePoints)
propagateCopy(CopyInst);
// If the copied address is also loaded from, then destroy hoisting is unsafe.
//
// TODO: Record all loads during collectUsers. Implement findRetainPoints to
// peek though projections of the load, like unchecked_enum_data to find the
// true extent of the lifetime including transitively referenced objects.
if (IsLoadedFrom)
return;
bool HoistedDestroyFound = false;
SILLocation HoistedDestroyLoc = F->getLocation();
const SILDebugScope *HoistedDebugScope = nullptr;
for (auto *Destroy : DestroyPoints) {
// If hoistDestroy returns false, it was not worth hoisting.
if (hoistDestroy(Destroy, Destroy->getLoc())) {
// Propagate DestroyLoc for any destroy hoisted above a block.
if (DeadInBlocks.count(Destroy->getParent())) {
HoistedDestroyLoc = Destroy->getLoc();
HoistedDebugScope = Destroy->getDebugScope();
HoistedDestroyFound = true;
}
// We either just created a new destroy, forwarded a copy, or will
// continue propagating from this dead-in block. In any case, erase the
// original Destroy.
Destroy->eraseFromParent();
assert(HasChanged || !DeadInBlocks.empty() && "HasChanged should be set");
}
}
// Any blocks containing a DestroyPoints where hoistDestroy did not find a use
// are now marked in DeadInBlocks.
if (DeadInBlocks.empty())
return;
assert(HoistedDestroyFound && "Hoisted destroy should have been found");
DestroyPoints.clear();
// Propagate dead-in blocks upward via PostOrder traversal.
// TODO: We could easily handle hoisting above loops if LoopInfo is available.
//
for (auto *BB : PostOrder->get(F)->getPostOrder()) {
SmallVector<unsigned, 4> DeadInSuccs;
ArrayRef<SILSuccessor> Succs = BB->getSuccessors();
if (Succs.size() == 0)
continue;
for (unsigned EdgeIdx = 0, End = Succs.size(); EdgeIdx != End; ++EdgeIdx) {
if (DeadInBlocks.count(Succs[EdgeIdx].getBB()))
DeadInSuccs.push_back(EdgeIdx);
}
if (DeadInSuccs.size() == Succs.size() &&
!SrcUserInsts.count(BB->getTerminator())) {
// All successors are dead, so continue hoisting.
bool WasHoisted = hoistDestroy(BB->getTerminator(), HoistedDestroyLoc);
(void)WasHoisted;
assert(WasHoisted && "should always hoist above a terminator");
continue;
}
// Emit a destroy on each CFG edge leading to a dead-in block. This requires
// splitting critical edges and will naturally handle redundant branch
// targets.
for (unsigned EdgeIdx : DeadInSuccs) {
SILBasicBlock *SuccBB = splitCriticalEdge(BB->getTerminator(), EdgeIdx);
if (SuccBB)
HasChangedCFG = true;
else
SuccBB = BB->getSuccessors()[EdgeIdx];
// We make no attempt to use the best DebugLoc, because in all known
// cases, we only have one.
SILBuilder B(SuccBB->begin());
B.setCurrentDebugScope(HoistedDebugScope);
B.createDestroyAddr(HoistedDestroyLoc, CurrentDef);
HasChanged = true;
}
}
}
//===----------------------------------------------------------------------===//
// Named Return Value Optimization
//===----------------------------------------------------------------------===//
/// Return true if this copy can be eliminated through Named Return Value
/// Optimization (NRVO).
///
/// Simple NRVO cases are handled naturally via backwardPropagateCopy. However,
/// general NRVO is not handled via local propagation without global data
/// flow. Nonetheless, NRVO is a simple pattern that can be detected using a
/// different technique from propagation.
///
/// Example:
/// func nrvo<T : P>(z : Bool) -> T {
/// var rvo : T
/// if (z) {
/// rvo = T(10)
/// }
/// else {
/// rvo = T(1)
/// }
/// return rvo
/// }
///
/// Because of the control flow, backward propagation with a block will fail to
/// find the initializer for the copy at "return rvo". Instead, we directly
/// check for an NRVO pattern by observing a copy in a return block that is the
/// only use of the copy's dest, which must be an @out arg. If there are no
/// instructions between the copy and the return that may write to the copy's
/// source, we simply replace the source's local stack address with the @out
/// address.
///
/// The following SIL pattern will be detected:
///
/// sil @foo : $@convention(thin) <T> (@out T) -> () {
/// bb0(%0 : $*T):
/// %2 = alloc_stack $T
/// ... // arbitrary control flow, but no other uses of %0
/// bbN:
/// copy_addr [take] %2 to [initialization] %0 : $*T
/// ... // no writes
/// return
static bool canNRVO(CopyAddrInst *CopyInst) {
if (!isa<AllocStackInst>(CopyInst->getSrc()))
return false;
// The copy's dest must be an indirect SIL argument. Otherwise, it may not
// dominate all uses of the source. Worse, it may be aliased. This
// optimization will early-initialize the copy dest, so we can't allow aliases
// to be accessed between the initialization and the return.
auto OutArg = dyn_cast<SILArgument>(CopyInst->getDest());
if (!OutArg)
return false;
if (!OutArg->isFunctionArg() || !OutArg->isIndirectResult())
return false;
SILBasicBlock *BB = CopyInst->getParent();
if (!isa<ReturnInst>(BB->getTerminator()))
return false;
SILValue CopyDest = CopyInst->getDest();
if (!hasOneNonDebugUse(CopyDest))
return false;
auto SI = CopyInst->getIterator(), SE = BB->end();
for (++SI; SI != SE; ++SI) {
if (SI->mayWriteToMemory() && !isa<DeallocationInst>(SI))
return false;
}
return true;
}
/// Remove a copy for which canNRVO returned true.
static void performNRVO(CopyAddrInst *CopyInst) {
DEBUG(llvm::dbgs() << "NRVO eliminates copy" << *CopyInst);
++NumCopyNRVO;
replaceAllUsesExceptDealloc(cast<AllocStackInst>(CopyInst->getSrc()),
CopyInst->getDest());
assert(CopyInst->getSrc() == CopyInst->getDest() && "bad NRVO");
CopyInst->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// CopyForwardingPass
//===----------------------------------------------------------------------===//
namespace {
#ifndef NDEBUG
static llvm::cl::opt<int> ForwardStart("copy-forward-start",
llvm::cl::init(0), llvm::cl::Hidden);
static llvm::cl::opt<int> ForwardStop("copy-forward-stop",
llvm::cl::init(-1), llvm::cl::Hidden);
#endif
class CopyForwardingPass : public SILFunctionTransform
{
void run() override {
if (!EnableCopyForwarding && !EnableDestroyHoisting)
return;
DEBUG(llvm::dbgs() << "Copy Forwarding in Func " << getFunction()->getName()
<< "\n");
// Collect a set of identified objects (@in arg or alloc_stack) that are
// copied in this function.
// Collect a separate set of copies that can be removed via NRVO.
llvm::SmallSetVector<SILValue, 16> CopiedDefs;
llvm::SmallVector<CopyAddrInst*, 4> NRVOCopies;
for (auto &BB : *getFunction())
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
if (auto *CopyInst = dyn_cast<CopyAddrInst>(&*II)) {
if (EnableDestroyHoisting && canNRVO(CopyInst)) {
NRVOCopies.push_back(CopyInst);
continue;
}
SILValue Def = CopyInst->getSrc();
if (isIdentifiedSourceValue(Def))
CopiedDefs.insert(Def);
else {
DEBUG(llvm::dbgs() << " Skipping Def: " << Def
<< " not an argument or local var!\n");
}
}
}
// Perform NRVO
for (auto Copy : NRVOCopies) {
performNRVO(Copy);
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
// Perform Copy Forwarding.
if (CopiedDefs.empty())
return;
auto *PO = getAnalysis<PostOrderAnalysis>();
auto *DA = getAnalysis<DominanceAnalysis>();
auto Forwarding = CopyForwarding(PO, DA);
for (SILValue Def : CopiedDefs) {
#ifndef NDEBUG
static unsigned NumDefs = 0;
++NumDefs;
if ((int)NumDefs < ForwardStart || NumDefs >= (unsigned)ForwardStop)
continue;
#endif
// Iterate to forward through chains of copies.
do {
Forwarding.forwardCopiesOf(Def, getFunction());
} while (Forwarding.hasForwardedToCopy());
}
if (Forwarding.hasChangedCFG()) {
// We've split critical edges so we can't preserve CFG.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
} else {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
StringRef getName() override { return "Copy Forwarding"; }
};
} // anonymous
SILTransform *swift::createCopyForwarding() {
return new CopyForwardingPass();
}