mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
With the new ValueLifetimeAnalysis DOE did not handle case where a dead array is not released on a path at all (because it leads to an unreachable).
817 lines
28 KiB
C++
817 lines
28 KiB
C++
//===--- DeadObjectElimination.cpp - Remove unused objects ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates store only alloc_ref objects that have destructors
|
|
// without side effects.
|
|
//
|
|
// The high level overview of the algorithm is that first it visits the
|
|
// destructor and attempts to prove that the destructor is well behaved, i.e. it
|
|
// does not have any side effects outside of the destructor itself. If the
|
|
// destructor can be proven to be well behaved, it then goes through the use
|
|
// list of the alloc_ref and attempts to prove that the alloc_ref does not
|
|
// escape or is used in a way that could cause side effects. If both of those
|
|
// conditions apply, the alloc_ref and its entire use graph is eliminated.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dead-object-elim"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/AST/ResilienceExpansion.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(DeadAllocRefEliminated,
|
|
"number of AllocRef instructions removed");
|
|
|
|
STATISTIC(DeadAllocStackEliminated,
|
|
"number of AllocStack instructions removed");
|
|
|
|
STATISTIC(DeadAllocApplyEliminated,
|
|
"number of allocating Apply instructions removed");
|
|
|
|
using UserList = llvm::SmallSetVector<SILInstruction *, 16>;
|
|
|
|
// Analyzing the body of this class destructor is valid because the object is
|
|
// dead. This means that the object is never passed to objc_setAssociatedObject,
|
|
// so its destructor cannot be extended at runtime.
|
|
static SILFunction *getDestructor(AllocRefInst *ARI) {
|
|
// We only support classes.
|
|
ClassDecl *ClsDecl = ARI->getType().getClassOrBoundGenericClass();
|
|
if (!ClsDecl)
|
|
return nullptr;
|
|
|
|
// Look up the destructor of ClsDecl.
|
|
DestructorDecl *Destructor = ClsDecl->getDestructor();
|
|
assert(Destructor && "getDestructor() should never return a nullptr.");
|
|
|
|
// Find the destructor name via SILDeclRef.
|
|
// FIXME: When destructors get moved into vtables, update this to use the
|
|
// vtable for the class.
|
|
SILDeclRef Ref(Destructor);
|
|
SILFunction *Fn = ARI->getModule().lookUpFunction(Ref);
|
|
if (!Fn || Fn->empty()) {
|
|
DEBUG(llvm::dbgs() << " Could not find destructor.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " Found destructor!\n");
|
|
|
|
// If the destructor has an objc_method calling convention, we cannot
|
|
// analyze it since it could be swapped out from under us at runtime.
|
|
if (Fn->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) {
|
|
DEBUG(llvm::dbgs() << " Found objective-c destructor. Can't "
|
|
"analyze!\n");
|
|
return nullptr;
|
|
}
|
|
|
|
return Fn;
|
|
}
|
|
|
|
/// Analyze the destructor for the class of ARI to see if any instructions in it
|
|
/// could have side effects on the program outside the destructor. If it does
|
|
/// not, then we can eliminate the destructor.
|
|
static bool doesDestructorHaveSideEffects(AllocRefInst *ARI) {
|
|
SILFunction *Fn = getDestructor(ARI);
|
|
// If we can't find a constructor then assume it has side effects.
|
|
if (!Fn)
|
|
return true;
|
|
|
|
// A destructor only has one argument, self.
|
|
assert(Fn->begin()->getNumBBArg() == 1 &&
|
|
"Destructor should have only one argument, self.");
|
|
SILArgument *Self = Fn->begin()->getBBArg(0);
|
|
|
|
DEBUG(llvm::dbgs() << " Analyzing destructor.\n");
|
|
|
|
// For each BB in the destructor...
|
|
for (auto &BB : *Fn)
|
|
// For each instruction I in BB...
|
|
for (auto &I : BB) {
|
|
DEBUG(llvm::dbgs() << " Visiting: " << I);
|
|
|
|
// If I has no side effects, we can ignore it.
|
|
if (!I.mayHaveSideEffects()) {
|
|
DEBUG(llvm::dbgs() << " SAFE! Instruction has no side "
|
|
"effects.\n");
|
|
continue;
|
|
}
|
|
|
|
// RefCounting operations on Self are ok since we are already in the
|
|
// destructor. RefCountingOperations on other instructions could have side
|
|
// effects though.
|
|
if (auto *RefInst = dyn_cast<RefCountingInst>(&I)) {
|
|
if (stripCasts(RefInst->getOperand(0)) == Self) {
|
|
// For now all ref counting insts have 1 operand. Put in an assert
|
|
// just in case.
|
|
assert(RefInst->getNumOperands() == 1 &&
|
|
"Make sure RefInst only has one argument.");
|
|
DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
|
|
"Self.\n");
|
|
continue;
|
|
} else {
|
|
DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation not on"
|
|
" self.\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// dealloc_stack can be ignored.
|
|
if (isa<DeallocStackInst>(I)) {
|
|
DEBUG(llvm::dbgs() << " SAFE! dealloc_stack can be "
|
|
"ignored.\n");
|
|
continue;
|
|
}
|
|
|
|
// dealloc_ref on self can be ignored, but dealloc_ref on anything else
|
|
// cannot be eliminated.
|
|
if (auto *DeallocRef = dyn_cast<DeallocRefInst>(&I)) {
|
|
if (stripCasts(DeallocRef->getOperand()) == Self) {
|
|
DEBUG(llvm::dbgs() << " SAFE! dealloc_ref on self.\n");
|
|
continue;
|
|
} else {
|
|
DEBUG(llvm::dbgs() << " UNSAFE! dealloc_ref on value "
|
|
"besides self.\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Storing into the object can be ignored.
|
|
if (auto *SI = dyn_cast<StoreInst>(&I))
|
|
if (stripAddressProjections(SI->getDest()) == Self) {
|
|
DEBUG(llvm::dbgs() << " SAFE! Instruction is a store into "
|
|
"self.\n");
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " UNSAFE! Unknown instruction.\n");
|
|
// Otherwise, we can't remove the deallocation completely.
|
|
return true;
|
|
}
|
|
|
|
// We didn't find any side effects.
|
|
return false;
|
|
}
|
|
|
|
void static
|
|
removeInstructions(ArrayRef<SILInstruction*> UsersToRemove) {
|
|
for (auto *I : UsersToRemove) {
|
|
if (!I->use_empty())
|
|
I->replaceAllUsesWith(SILUndef::get(I->getType(), I->getModule()));
|
|
// Now we know that I should not have any uses... erase it from its parent.
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Use Graph Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns false if Inst is an instruction that would require us to keep the
|
|
/// alloc_ref alive.
|
|
static bool canZapInstruction(SILInstruction *Inst) {
|
|
// It is ok to eliminate various retains/releases. We are either removing
|
|
// everything or nothing.
|
|
if (isa<RefCountingInst>(Inst))
|
|
return true;
|
|
|
|
// If we see a store here, we have already checked that we are storing into
|
|
// the pointer before we added it to the worklist, so we can skip it.
|
|
if (isa<StoreInst>(Inst))
|
|
return true;
|
|
|
|
// If Inst does not read or write to memory, have side effects, and is not a
|
|
// terminator, we can zap it.
|
|
if (!Inst->mayHaveSideEffects() && !Inst->mayReadFromMemory() &&
|
|
!isa<TermInst>(Inst))
|
|
return true;
|
|
|
|
// We know that the destructor has no side effects so we can remove the
|
|
// deallocation instruction too.
|
|
if (isa<DeallocationInst>(Inst))
|
|
return true;
|
|
|
|
// Much like deallocation, destroy addr is safe.
|
|
if (isa<DestroyAddrInst>(Inst))
|
|
return true;
|
|
|
|
// Otherwise we do not know how to handle this instruction. Be conservative
|
|
// and don't zap it.
|
|
return false;
|
|
}
|
|
|
|
/// Analyze the use graph of AllocRef for any uses that would prevent us from
|
|
/// zapping it completely.
|
|
static bool
|
|
hasUnremovableUsers(SILInstruction *AllocRef, UserList &Users) {
|
|
SmallVector<SILInstruction *, 16> Worklist;
|
|
Worklist.push_back(AllocRef);
|
|
|
|
DEBUG(llvm::dbgs() << " Analyzing Use Graph.");
|
|
|
|
while (!Worklist.empty()) {
|
|
SILInstruction *I = Worklist.pop_back_val();
|
|
|
|
DEBUG(llvm::dbgs() << " Visiting: " << *I);
|
|
|
|
// Insert the instruction into our InvolvedInstructions set. If we have
|
|
// already seen it, then don't reprocess all of the uses.
|
|
if (!Users.insert(I)) {
|
|
DEBUG(llvm::dbgs() << " Already seen skipping...\n");
|
|
continue;
|
|
}
|
|
|
|
// If we can't zap this instruction... bail...
|
|
if (!canZapInstruction(I)) {
|
|
DEBUG(llvm::dbgs() << " Found instruction we can't zap...\n");
|
|
return true;
|
|
}
|
|
|
|
// At this point, we can remove the instruction as long as all of its users
|
|
// can be removed as well. Scan its users and add them to the worklist for
|
|
// recursive processing.
|
|
for (auto *Op : I->getUses()) {
|
|
auto *User = Op->getUser();
|
|
|
|
// Make sure that we are only storing into our users, not storing our
|
|
// users which would be an escape.
|
|
if (auto *SI = dyn_cast<StoreInst>(User))
|
|
if (Op->get() == SI->getSrc()) {
|
|
DEBUG(llvm::dbgs() << " Found store of pointer. Failure: " <<
|
|
*SI);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, add normal instructions to the worklist for processing.
|
|
Worklist.push_back(User);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NonTrivial DeadObject Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
// Trie node representing a sequence of unsigned integer indices.
|
|
class IndexTrieNode {
|
|
static const unsigned RootIdx = ~0U;
|
|
unsigned Index;
|
|
llvm::SmallVector<IndexTrieNode*, 8> Children;
|
|
|
|
public:
|
|
IndexTrieNode(): Index(RootIdx) {}
|
|
|
|
explicit IndexTrieNode(unsigned V): Index(V) {}
|
|
|
|
IndexTrieNode(IndexTrieNode &) =delete;
|
|
IndexTrieNode &operator=(const IndexTrieNode&) =delete;
|
|
|
|
~IndexTrieNode() {
|
|
for (auto *N : Children)
|
|
delete N;
|
|
}
|
|
|
|
bool isRoot() const { return Index == RootIdx; }
|
|
|
|
bool isLeaf() const { return Children.empty(); }
|
|
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
IndexTrieNode *getChild(unsigned Idx) {
|
|
assert(Idx != RootIdx);
|
|
|
|
auto I = std::lower_bound(Children.begin(), Children.end(), Idx,
|
|
[](IndexTrieNode *a, unsigned i) {
|
|
return a->Index < i;
|
|
});
|
|
if (I != Children.end() && (*I)->Index == Idx)
|
|
return *I;
|
|
auto *N = new IndexTrieNode(Idx);
|
|
Children.insert(I, N);
|
|
return N;
|
|
}
|
|
|
|
ArrayRef<IndexTrieNode*> getChildren() const { return Children; }
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
/// Determine if an object is dead. Compute its original lifetime. Find the
|
|
/// lifetime endpoints reached by each store of a refcounted object into the
|
|
/// object.
|
|
///
|
|
/// TODO: Use this to remove nontrivial dead alloc_ref/alloc_stack, not just
|
|
/// dead arrays. We just need a slightly better destructor analysis to prove
|
|
/// that it only releases elements.
|
|
class DeadObjectAnalysis {
|
|
// Map each address projection of this object to a list of stores.
|
|
// Do not iterate over this map's entries.
|
|
using AddressToStoreMap =
|
|
llvm::DenseMap<IndexTrieNode*, llvm::SmallVector<StoreInst*, 4> >;
|
|
|
|
// The value of the object's address at the point of allocation.
|
|
SILValue NewAddrValue;
|
|
|
|
// Track all users that extend the lifetime of the object.
|
|
UserList AllUsers;
|
|
|
|
// Trie of stored locations.
|
|
IndexTrieNode *AddressProjectionTrie;
|
|
|
|
// Track all stores of refcounted elements per address projection.
|
|
AddressToStoreMap StoredLocations;
|
|
|
|
// Are any uses behind a PointerToAddressInst?
|
|
bool SeenPtrToAddr;
|
|
|
|
public:
|
|
explicit DeadObjectAnalysis(SILValue V):
|
|
NewAddrValue(V), AddressProjectionTrie(nullptr), SeenPtrToAddr(false) {}
|
|
|
|
~DeadObjectAnalysis() {
|
|
delete AddressProjectionTrie;
|
|
}
|
|
|
|
bool analyze();
|
|
|
|
ArrayRef<SILInstruction*> getAllUsers() const {
|
|
return ArrayRef<SILInstruction*>(AllUsers.begin(), AllUsers.end());
|
|
}
|
|
|
|
template<typename Visitor>
|
|
void visitStoreLocations(Visitor visitor) {
|
|
visitStoreLocations(visitor, AddressProjectionTrie);
|
|
}
|
|
|
|
private:
|
|
void addStore(StoreInst *Store, IndexTrieNode *AddressNode);
|
|
bool recursivelyCollectInteriorUses(ValueBase *DefInst,
|
|
IndexTrieNode *AddressNode,
|
|
bool IsInteriorAddress);
|
|
|
|
template<typename Visitor>
|
|
void visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode);
|
|
};
|
|
}
|
|
|
|
// Record a store into this object.
|
|
void DeadObjectAnalysis::
|
|
addStore(StoreInst *Store, IndexTrieNode *AddressNode) {
|
|
if (Store->getSrc()->getType().isTrivial(Store->getModule()))
|
|
return;
|
|
|
|
// SSAUpdater cannot handle multiple defs in the same blocks. Therefore, we
|
|
// ensure that only one store per block is present in the StoredLocations.
|
|
auto &StoredLocs = StoredLocations[AddressNode];
|
|
for (auto &OtherSt : StoredLocs) {
|
|
// In case the object's address is stored in itself.
|
|
if (OtherSt == Store)
|
|
return;
|
|
|
|
if (OtherSt->getParent() == Store->getParent()) {
|
|
for (auto II = std::next(Store->getIterator()),
|
|
IE = Store->getParent()->end();
|
|
II != IE; ++II) {
|
|
if (&*II == OtherSt)
|
|
return; // Keep the other store.
|
|
}
|
|
// Replace OtherSt with this store.
|
|
OtherSt = Store;
|
|
return;
|
|
}
|
|
}
|
|
StoredLocations[AddressNode].push_back(Store);
|
|
}
|
|
|
|
// Collect instructions that either initialize or release any values at the
|
|
// object defined by defInst.
|
|
//
|
|
// Populates AllUsers, AddressProjectionTrie, and StoredLocations.
|
|
//
|
|
// If a use is visited that potentially causes defInst's address to
|
|
// escape, then return false without fully populating the data structures.
|
|
//
|
|
// `InteriorAddress` is true if the current address projection already includes
|
|
// a struct/ref/tuple element address. index_addr is only expected at the top
|
|
// level. The first non-index element address encountered pushes an "zero index"
|
|
// address node to represent the implicit index_addr #0. We do not support
|
|
// nested indexed data types in native SIL.
|
|
bool DeadObjectAnalysis::
|
|
recursivelyCollectInteriorUses(ValueBase *DefInst,
|
|
IndexTrieNode* AddressNode,
|
|
bool IsInteriorAddress) {
|
|
for (auto Op : DefInst->getUses()) {
|
|
auto User = Op->getUser();
|
|
|
|
// Lifetime endpoints that don't allow the address to escape.
|
|
if (isa<RefCountingInst>(User) || isa<DebugValueInst>(User)) {
|
|
AllUsers.insert(User);
|
|
continue;
|
|
}
|
|
// Initialization points.
|
|
if (auto *Store = dyn_cast<StoreInst>(User)) {
|
|
// Bail if this address is stored to another object.
|
|
if (Store->getDest() != DefInst) {
|
|
DEBUG(llvm::dbgs() << " Found an escaping store: " << *User);
|
|
return false;
|
|
}
|
|
IndexTrieNode *StoreAddrNode = AddressNode;
|
|
// Push an extra zero index node for a store to noninterior address.
|
|
if (!IsInteriorAddress)
|
|
StoreAddrNode = AddressNode->getChild(0);
|
|
|
|
addStore(Store, StoreAddrNode);
|
|
|
|
AllUsers.insert(User);
|
|
continue;
|
|
}
|
|
if (isa<PointerToAddressInst>(User)) {
|
|
// Only one pointer-to-address is allowed for safety.
|
|
if (SeenPtrToAddr)
|
|
return false;
|
|
|
|
SeenPtrToAddr = true;
|
|
if (!recursivelyCollectInteriorUses(User, AddressNode, IsInteriorAddress))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
// Recursively follow projections.
|
|
ProjectionIndex PI(User);
|
|
if (PI.isValid()) {
|
|
IndexTrieNode *ProjAddrNode = AddressNode;
|
|
bool ProjInteriorAddr = IsInteriorAddress;
|
|
if (Projection::isAddressProjection(User)) {
|
|
if (User->getKind() == ValueKind::IndexAddrInst) {
|
|
// Don't support indexing within an interior address.
|
|
if (IsInteriorAddress)
|
|
return false;
|
|
}
|
|
else if (!IsInteriorAddress) {
|
|
// Push an extra zero index node for the first interior address.
|
|
ProjAddrNode = AddressNode->getChild(0);
|
|
ProjInteriorAddr = true;
|
|
}
|
|
}
|
|
else if (IsInteriorAddress) {
|
|
// Don't expect to extract values once we've taken an address.
|
|
return false;
|
|
}
|
|
if (!recursivelyCollectInteriorUses(User,
|
|
ProjAddrNode->getChild(PI.Index),
|
|
ProjInteriorAddr)) {
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
// Otherwise bail.
|
|
DEBUG(llvm::dbgs() << " Found an escaping use: " << *User);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Track the lifetime, release points, and released values referenced by a
|
|
// newly allocated object.
|
|
bool DeadObjectAnalysis::analyze() {
|
|
DEBUG(llvm::dbgs() << " Analyzing nontrivial dead object: "
|
|
<< NewAddrValue);
|
|
|
|
// Populate AllValues, AddressProjectionTrie, and StoredLocations.
|
|
AddressProjectionTrie = new IndexTrieNode();
|
|
if (!recursivelyCollectInteriorUses(NewAddrValue,
|
|
AddressProjectionTrie, false)) {
|
|
return false;
|
|
}
|
|
// If all stores are leaves in the AddressProjectionTrie, then we can analyze
|
|
// the stores that reach the end of the object lifetime. Otherwise bail.
|
|
// This iteration order is nondeterministic but has no impact.
|
|
for (auto &AddressToStoresPair : StoredLocations) {
|
|
IndexTrieNode *Location = AddressToStoresPair.first;
|
|
if (!Location->isLeaf())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename Visitor>
|
|
void DeadObjectAnalysis::
|
|
visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode) {
|
|
if (AddressNode->isLeaf()) {
|
|
auto LocI = StoredLocations.find(AddressNode);
|
|
if (LocI != StoredLocations.end())
|
|
visitor(LocI->second);
|
|
return;
|
|
}
|
|
for (auto *SubAddressNode : AddressNode->getChildren())
|
|
visitStoreLocations(visitor, SubAddressNode);
|
|
}
|
|
|
|
// At each release point, release the reaching values that have been stored to
|
|
// this address.
|
|
//
|
|
// The caller has already determined that all Stores are to the same element
|
|
// within an otherwise dead object.
|
|
static void insertReleases(ArrayRef<StoreInst*> Stores,
|
|
ArrayRef<SILInstruction*> ReleasePoints,
|
|
SILSSAUpdater &SSAUp) {
|
|
assert(!Stores.empty());
|
|
SILValue StVal = Stores.front()->getSrc();
|
|
|
|
SSAUp.Initialize(StVal->getType());
|
|
|
|
for (auto *Store : Stores)
|
|
SSAUp.AddAvailableValue(Store->getParent(), Store->getSrc());
|
|
|
|
for (auto *RelPoint : ReleasePoints) {
|
|
SILBuilder B(RelPoint);
|
|
// This does not use the SSAUpdater::RewriteUse API because it does not do
|
|
// the right thing for local uses. We have already ensured a single store
|
|
// per block, and all release points occur after all stores. Therefore we
|
|
// can simply ask SSAUpdater for the reaching store.
|
|
SILValue RelVal = SSAUp.GetValueAtEndOfBlock(RelPoint->getParent());
|
|
if (StVal->getType().isReferenceCounted(RelPoint->getModule()))
|
|
B.createStrongRelease(RelPoint->getLoc(), RelVal)->getOperandRef();
|
|
else
|
|
B.createReleaseValue(RelPoint->getLoc(), RelVal)->getOperandRef();
|
|
}
|
|
}
|
|
|
|
// Attempt to remove the array allocated at NewAddrValue and release its
|
|
// refcounted elements.
|
|
//
|
|
// This is tightly coupled with the implementation of array.uninitialized.
|
|
// The call to allocate an uninitialized array returns two values:
|
|
// (Array<E> ArrayBase, UnsafeMutable<E> ArrayElementStorage)
|
|
//
|
|
// TODO: This relies on the lowest level array.uninitialized not being
|
|
// inlined. To do better we could either run this pass before semantic inlining,
|
|
// or we could also handle calls to array.init.
|
|
static bool removeAndReleaseArray(SILValue NewArrayValue, bool &CFGChanged) {
|
|
TupleExtractInst *ArrayDef = nullptr;
|
|
TupleExtractInst *StorageAddress = nullptr;
|
|
for (auto *Op : NewArrayValue->getUses()) {
|
|
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
|
|
if (!TupleElt)
|
|
return false;
|
|
switch (TupleElt->getFieldNo()) {
|
|
default:
|
|
return false;
|
|
case 0:
|
|
ArrayDef = TupleElt;
|
|
break;
|
|
case 1:
|
|
StorageAddress = TupleElt;
|
|
break;
|
|
}
|
|
}
|
|
if (!ArrayDef)
|
|
return false; // No Array object to delete.
|
|
|
|
assert(!ArrayDef->getType().isTrivial(ArrayDef->getModule()) &&
|
|
"Array initialization should produce the proper tuple type.");
|
|
|
|
// Analyze the array object uses.
|
|
DeadObjectAnalysis DeadArray(ArrayDef);
|
|
if (!DeadArray.analyze())
|
|
return false;
|
|
|
|
// Require all stores to be into the array storage not the array object,
|
|
// otherwise bail.
|
|
bool HasStores = false;
|
|
DeadArray.visitStoreLocations([&](ArrayRef<StoreInst*>){ HasStores = true; });
|
|
if (HasStores)
|
|
return false;
|
|
|
|
// Remove references to empty arrays.
|
|
if (!StorageAddress) {
|
|
removeInstructions(DeadArray.getAllUsers());
|
|
return true;
|
|
}
|
|
assert(StorageAddress->getType().isTrivial(ArrayDef->getModule()) &&
|
|
"Array initialization should produce the proper tuple type.");
|
|
|
|
// Analyze the array storage uses.
|
|
DeadObjectAnalysis DeadStorage(StorageAddress);
|
|
if (!DeadStorage.analyze())
|
|
return false;
|
|
|
|
// Find array object lifetime.
|
|
ValueLifetimeAnalysis VLA(ArrayDef, DeadArray.getAllUsers());
|
|
|
|
// Check that all storage users are in the Array's live blocks.
|
|
for (auto *User : DeadStorage.getAllUsers()) {
|
|
if (!VLA.isWithinLifetime(User))
|
|
return false;
|
|
}
|
|
// For each store location, insert releases.
|
|
// This makes a strong assumption that the allocated object is released on all
|
|
// paths in which some object initialization occurs.
|
|
SILSSAUpdater SSAUp;
|
|
ValueLifetimeAnalysis::Frontier ArrayFrontier;
|
|
CFGChanged |= !VLA.computeFrontier(ArrayFrontier,
|
|
ValueLifetimeAnalysis::IgnoreExitEdges);
|
|
|
|
DeadStorage.visitStoreLocations([&] (ArrayRef<StoreInst*> Stores) {
|
|
insertReleases(Stores, ArrayFrontier, SSAUp);
|
|
});
|
|
|
|
// Delete all uses of the dead array and its storage address.
|
|
removeInstructions(DeadArray.getAllUsers());
|
|
removeInstructions(DeadStorage.getAllUsers());
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function Processing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Does this instruction perform object allocation with no other observable
|
|
/// side effect?
|
|
static bool isAllocatingApply(SILInstruction *Inst) {
|
|
ArraySemanticsCall ArrayAlloc(Inst);
|
|
return ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitialized;
|
|
}
|
|
|
|
namespace {
|
|
class DeadObjectElimination : public SILFunctionTransform {
|
|
llvm::DenseMap<SILType, bool> DestructorAnalysisCache;
|
|
llvm::SmallVector<SILInstruction*, 16> Allocations;
|
|
bool CFGChanged = false;
|
|
|
|
void collectAllocations(SILFunction &Fn) {
|
|
for (auto &BB : Fn)
|
|
for (auto &II : BB) {
|
|
if (isa<AllocationInst>(&II))
|
|
Allocations.push_back(&II);
|
|
else if (isAllocatingApply(&II))
|
|
Allocations.push_back(&II);
|
|
}
|
|
}
|
|
|
|
bool processAllocRef(AllocRefInst *ARI);
|
|
bool processAllocStack(AllocStackInst *ASI);
|
|
bool processAllocBox(AllocBoxInst *ABI){ return false;}
|
|
bool processAllocApply(ApplyInst *AI);
|
|
|
|
bool processFunction(SILFunction &Fn) {
|
|
Allocations.clear();
|
|
DestructorAnalysisCache.clear();
|
|
bool Changed = false;
|
|
collectAllocations(Fn);
|
|
for (auto *II : Allocations) {
|
|
if (auto *A = dyn_cast<AllocRefInst>(II))
|
|
Changed |= processAllocRef(A);
|
|
else if (auto *A = dyn_cast<AllocStackInst>(II))
|
|
Changed |= processAllocStack(A);
|
|
else if (auto *A = dyn_cast<AllocBoxInst>(II))
|
|
Changed |= processAllocBox(A);
|
|
else if (auto *A = dyn_cast<ApplyInst>(II))
|
|
Changed |= processAllocApply(A);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void run() override {
|
|
CFGChanged = false;
|
|
if (processFunction(*getFunction())) {
|
|
invalidateAnalysis(CFGChanged ?
|
|
SILAnalysis::InvalidationKind::FunctionBody :
|
|
SILAnalysis::InvalidationKind::CallsAndInstructions);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Dead Object Elimination"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool DeadObjectElimination::processAllocRef(AllocRefInst *ARI) {
|
|
// Ok, we have an alloc_ref. Check the cache to see if we have already
|
|
// computed the destructor behavior for its SILType.
|
|
bool HasSideEffects;
|
|
SILType Type = ARI->getType();
|
|
auto CacheSearchResult = DestructorAnalysisCache.find(Type);
|
|
if (CacheSearchResult != DestructorAnalysisCache.end()) {
|
|
// Ok we found a value in the cache.
|
|
HasSideEffects = CacheSearchResult->second;
|
|
} else {
|
|
// We did not find a value in the cache for our destructor. Analyze the
|
|
// destructor to make sure it has no side effects. For now this only
|
|
// supports alloc_ref of classes so any alloc_ref with a reference type
|
|
// that is not a class this will return false for. Once we have analyzed
|
|
// it, set Behavior to that value and insert the value into the Cache.
|
|
//
|
|
// TODO: We should be able to handle destructors that do nothing but release
|
|
// members of the object.
|
|
HasSideEffects = doesDestructorHaveSideEffects(ARI);
|
|
DestructorAnalysisCache[Type] = HasSideEffects;
|
|
}
|
|
|
|
if (HasSideEffects) {
|
|
DEBUG(llvm::dbgs() << " Destructor had side effects. \n");
|
|
return false;
|
|
}
|
|
|
|
// Our destructor has no side effects, so if we can prove that no loads
|
|
// escape, then we can completely remove the use graph of this alloc_ref.
|
|
UserList UsersToRemove;
|
|
if (hasUnremovableUsers(ARI, UsersToRemove)) {
|
|
DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
|
|
return false;
|
|
}
|
|
|
|
// Remove the AllocRef and all of its users.
|
|
removeInstructions(
|
|
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
|
|
DEBUG(llvm::dbgs() << " Success! Eliminating alloc_ref.\n");
|
|
|
|
++DeadAllocRefEliminated;
|
|
return true;
|
|
}
|
|
|
|
bool DeadObjectElimination::processAllocStack(AllocStackInst *ASI) {
|
|
// Trivial types don't have destructors. Let's try to zap this AllocStackInst.
|
|
if (!ASI->getElementType().isTrivial(ASI->getModule()))
|
|
return false;
|
|
|
|
UserList UsersToRemove;
|
|
if (hasUnremovableUsers(ASI, UsersToRemove)) {
|
|
DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
|
|
return false;
|
|
}
|
|
|
|
// Remove the AllocRef and all of its users.
|
|
removeInstructions(
|
|
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
|
|
DEBUG(llvm::dbgs() << " Success! Eliminating alloc_stack.\n");
|
|
|
|
++DeadAllocStackEliminated;
|
|
return true;
|
|
}
|
|
|
|
bool DeadObjectElimination::processAllocApply(ApplyInst *AI) {
|
|
// Currently only handle array.uninitialized
|
|
if (ArraySemanticsCall(AI).getKind() != ArrayCallKind::kArrayUninitialized)
|
|
return false;
|
|
|
|
ApplyInst *AllocBufferAI = nullptr;
|
|
SILValue Arg0 = AI->getArgument(0);
|
|
if (Arg0->getType().isExistentialType()) {
|
|
// This is a version of the initializer which receives a pre-allocated
|
|
// buffer as first argument. If we want to delete the initializer we also
|
|
// have to delete the allocation.
|
|
AllocBufferAI = dyn_cast<ApplyInst>(Arg0);
|
|
if (!AllocBufferAI)
|
|
return false;
|
|
}
|
|
|
|
if (!removeAndReleaseArray(AI, CFGChanged))
|
|
return false;
|
|
|
|
DEBUG(llvm::dbgs() << " Success! Eliminating apply allocate(...).\n");
|
|
|
|
eraseUsesOfInstruction(AI);
|
|
assert(AI->use_empty() && "All users should have been removed.");
|
|
recursivelyDeleteTriviallyDeadInstructions(AI, true);
|
|
if (AllocBufferAI) {
|
|
recursivelyDeleteTriviallyDeadInstructions(AllocBufferAI, true);
|
|
}
|
|
++DeadAllocApplyEliminated;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Driver
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SILTransform *swift::createDeadObjectElimination() {
|
|
return new DeadObjectElimination();
|
|
}
|