mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
3384 lines
111 KiB
C++
3384 lines
111 KiB
C++
//===--- SimplifyCFG.cpp - Clean up the SIL CFG ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-simplify-cfg"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFG.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumBlocksDeleted, "Number of unreachable blocks removed");
|
|
STATISTIC(NumBlocksMerged, "Number of blocks merged together");
|
|
STATISTIC(NumJumpThreads, "Number of jumps threaded");
|
|
STATISTIC(NumTermBlockSimplified, "Number of programterm block simplified");
|
|
STATISTIC(NumConstantFolded, "Number of terminators constant folded");
|
|
STATISTIC(NumDeadArguments, "Number of unused arguments removed");
|
|
STATISTIC(NumSROAArguments, "Number of aggregate argument levels split by "
|
|
"SROA ");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// dominatorBasedSimplify iterates between dominator based simplification of
|
|
/// terminator branch condition values and cfg simplification. This is the
|
|
/// maximum number of iterations we run. The number is the maximum number of
|
|
/// iterations encountered when compiling the stdlib on April 2 2015.
|
|
///
|
|
static unsigned MaxIterationsOfDominatorBasedSimplify = 10;
|
|
|
|
namespace {
|
|
class SimplifyCFG {
|
|
SILFunction &Fn;
|
|
SILPassManager *PM;
|
|
|
|
// WorklistList is the actual list that we iterate over (for determinism).
|
|
// Slots may be null, which should be ignored.
|
|
SmallVector<SILBasicBlock*, 32> WorklistList;
|
|
// WorklistMap keeps track of which slot a BB is in, allowing efficient
|
|
// containment query, and allows efficient removal.
|
|
llvm::SmallDenseMap<SILBasicBlock*, unsigned, 32> WorklistMap;
|
|
// Keep track of loop headers - we don't want to jump-thread through them.
|
|
SmallPtrSet<SILBasicBlock *, 32> LoopHeaders;
|
|
|
|
// Dominance and post-dominance info for the current function
|
|
DominanceInfo *DT = nullptr;
|
|
|
|
bool ShouldVerify;
|
|
bool EnableJumpThread;
|
|
public:
|
|
SimplifyCFG(SILFunction &Fn, SILPassManager *PM, bool Verify,
|
|
bool EnableJumpThread)
|
|
: Fn(Fn), PM(PM), ShouldVerify(Verify),
|
|
EnableJumpThread(EnableJumpThread) {}
|
|
|
|
bool run();
|
|
|
|
bool simplifyBlockArgs() {
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
|
|
DT = DA->get(&Fn);
|
|
bool Changed = false;
|
|
for (SILBasicBlock &BB : Fn) {
|
|
Changed |= simplifyArgs(&BB);
|
|
}
|
|
DT = nullptr;
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
void clearWorklist() {
|
|
WorklistMap.clear();
|
|
WorklistList.clear();
|
|
}
|
|
|
|
/// popWorklist - Return the next basic block to look at, or null if the
|
|
/// worklist is empty. This handles skipping over null entries in the
|
|
/// worklist.
|
|
SILBasicBlock *popWorklist() {
|
|
while (!WorklistList.empty())
|
|
if (auto *BB = WorklistList.pop_back_val()) {
|
|
WorklistMap.erase(BB);
|
|
return BB;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// addToWorklist - Add the specified block to the work list if it isn't
|
|
/// already present.
|
|
void addToWorklist(SILBasicBlock *BB) {
|
|
unsigned &Entry = WorklistMap[BB];
|
|
if (Entry != 0) return;
|
|
WorklistList.push_back(BB);
|
|
Entry = WorklistList.size();
|
|
}
|
|
|
|
/// removeFromWorklist - Remove the specified block from the worklist if
|
|
/// present.
|
|
void removeFromWorklist(SILBasicBlock *BB) {
|
|
assert(BB && "Cannot add null pointer to the worklist");
|
|
auto It = WorklistMap.find(BB);
|
|
if (It == WorklistMap.end()) return;
|
|
|
|
// If the BB is in the worklist, null out its entry.
|
|
if (It->second) {
|
|
assert(WorklistList[It->second-1] == BB && "Consistency error");
|
|
WorklistList[It->second-1] = nullptr;
|
|
}
|
|
|
|
// Remove it from the map as well.
|
|
WorklistMap.erase(It);
|
|
|
|
if (LoopHeaders.count(BB))
|
|
LoopHeaders.erase(BB);
|
|
}
|
|
|
|
bool simplifyBlocks();
|
|
bool canonicalizeSwitchEnums();
|
|
bool simplifyThreadedTerminators();
|
|
bool dominatorBasedSimplifications(SILFunction &Fn,
|
|
DominanceInfo *DT);
|
|
bool dominatorBasedSimplify(DominanceAnalysis *DA);
|
|
|
|
/// \brief Remove the basic block if it has no predecessors. Returns true
|
|
/// If the block was removed.
|
|
bool removeIfDead(SILBasicBlock *BB);
|
|
|
|
bool tryJumpThreading(BranchInst *BI);
|
|
bool tailDuplicateObjCMethodCallSuccessorBlocks();
|
|
bool simplifyAfterDroppingPredecessor(SILBasicBlock *BB);
|
|
|
|
bool simplifyBranchOperands(OperandValueArrayRef Operands);
|
|
bool simplifyBranchBlock(BranchInst *BI);
|
|
bool simplifyCondBrBlock(CondBranchInst *BI);
|
|
bool simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI);
|
|
bool simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI);
|
|
bool simplifyTryApplyBlock(TryApplyInst *TAI);
|
|
bool simplifySwitchValueBlock(SwitchValueInst *SVI);
|
|
bool simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB);
|
|
bool simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI);
|
|
bool simplifySwitchEnumBlock(SwitchEnumInst *SEI);
|
|
bool simplifyUnreachableBlock(UnreachableInst *UI);
|
|
bool simplifyProgramTerminationBlock(SILBasicBlock *BB);
|
|
bool simplifyArgument(SILBasicBlock *BB, unsigned i);
|
|
bool simplifyArgs(SILBasicBlock *BB);
|
|
void findLoopHeaders();
|
|
};
|
|
|
|
class RemoveUnreachable {
|
|
SILFunction &Fn;
|
|
llvm::SmallSet<SILBasicBlock *, 8> Visited;
|
|
public:
|
|
RemoveUnreachable(SILFunction &Fn) : Fn(Fn) { }
|
|
void visit(SILBasicBlock *BB);
|
|
bool run();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Return true if there are any users of V outside the specified block.
|
|
static bool isUsedOutsideOfBlock(SILValue V, SILBasicBlock *BB) {
|
|
for (auto UI : V->getUses())
|
|
if (UI->getUser()->getParent() != BB)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Helper function to perform SSA updates in case of jump threading.
|
|
void swift::updateSSAAfterCloning(BaseThreadingCloner &Cloner,
|
|
SILBasicBlock *SrcBB, SILBasicBlock *DestBB,
|
|
bool NeedToSplitCriticalEdges) {
|
|
// We are updating SSA form. This means we need to be able to insert phi
|
|
// nodes. To make sure we can do this split all critical edges from
|
|
// instructions that don't support block arguments.
|
|
if (NeedToSplitCriticalEdges)
|
|
splitAllCriticalEdges(*DestBB->getParent(), true, nullptr, nullptr);
|
|
|
|
SILSSAUpdater SSAUp;
|
|
for (auto AvailValPair : Cloner.AvailVals) {
|
|
ValueBase *Inst = AvailValPair.first;
|
|
if (Inst->use_empty())
|
|
continue;
|
|
|
|
if (Inst->hasValue()) {
|
|
SILValue NewRes(AvailValPair.second);
|
|
|
|
SmallVector<UseWrapper, 16> UseList;
|
|
// Collect the uses of the value.
|
|
for (auto Use : Inst->getUses())
|
|
UseList.push_back(UseWrapper(Use));
|
|
|
|
SSAUp.Initialize(Inst->getType());
|
|
SSAUp.AddAvailableValue(DestBB, Inst);
|
|
SSAUp.AddAvailableValue(SrcBB, NewRes);
|
|
|
|
if (UseList.empty())
|
|
continue;
|
|
|
|
// Update all the uses.
|
|
for (auto U : UseList) {
|
|
Operand *Use = U;
|
|
SILInstruction *User = Use->getUser();
|
|
assert(User && "Missing user");
|
|
|
|
// Ignore uses in the same basic block.
|
|
if (User->getParent() == DestBB)
|
|
continue;
|
|
|
|
SSAUp.RewriteUse(*Use);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static SILValue getTerminatorCondition(TermInst *Term) {
|
|
if (auto *CondBr = dyn_cast<CondBranchInst>(Term))
|
|
return stripExpectIntrinsic(CondBr->getCondition());
|
|
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term))
|
|
return SEI->getOperand();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Is this basic block jump threadable.
|
|
static bool isThreadableBlock(SILBasicBlock *BB,
|
|
SmallPtrSet<SILBasicBlock *, 32> &LoopHeaders) {
|
|
if (isa<ReturnInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
// We know how to handle cond_br and switch_enum .
|
|
if (!isa<CondBranchInst>(BB->getTerminator()) &&
|
|
!isa<SwitchEnumInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
if (LoopHeaders.count(BB))
|
|
return false;
|
|
|
|
unsigned Cost = 0;
|
|
for (auto &Inst : *BB) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (isa<ApplyInst>(Inst))
|
|
return false;
|
|
|
|
// Only thread 'small blocks'.
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 4)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// A description of an edge leading to a conditionally branching (or switching)
|
|
/// block and the successor block to thread to.
|
|
///
|
|
/// Src:
|
|
/// br Dest
|
|
/// \
|
|
/// \ Edge
|
|
/// v
|
|
/// Dest:
|
|
/// ...
|
|
/// switch/cond_br
|
|
/// / \
|
|
/// ... v
|
|
/// EnumCase/ThreadedSuccessorIdx
|
|
class ThreadInfo {
|
|
SILBasicBlock *Src;
|
|
SILBasicBlock *Dest;
|
|
EnumElementDecl *EnumCase;
|
|
unsigned ThreadedSuccessorIdx;
|
|
|
|
public:
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest,
|
|
unsigned ThreadedBlockSuccessorIdx)
|
|
: Src(Src), Dest(Dest), EnumCase(nullptr),
|
|
ThreadedSuccessorIdx(ThreadedBlockSuccessorIdx) {}
|
|
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest, EnumElementDecl *EnumCase)
|
|
: Src(Src), Dest(Dest), EnumCase(EnumCase), ThreadedSuccessorIdx(0) {}
|
|
|
|
ThreadInfo() = default;
|
|
|
|
void threadEdge() {
|
|
auto *SrcTerm = cast<BranchInst>(Src->getTerminator());
|
|
|
|
EdgeThreadingCloner Cloner(SrcTerm);
|
|
for (auto &I : *Dest)
|
|
Cloner.process(&I);
|
|
|
|
// We have copied the threaded block into the edge.
|
|
Src = Cloner.getEdgeBB();
|
|
|
|
if (auto *CondTerm = dyn_cast<CondBranchInst>(Src->getTerminator())) {
|
|
// We know the direction this conditional branch is going to take thread
|
|
// it.
|
|
assert(Src->getSuccessors().size() > ThreadedSuccessorIdx &&
|
|
"Threaded terminator does not have enough successors");
|
|
|
|
auto *ThreadedSuccessorBlock =
|
|
Src->getSuccessors()[ThreadedSuccessorIdx].getBB();
|
|
auto Args = ThreadedSuccessorIdx == 0 ? CondTerm->getTrueArgs()
|
|
: CondTerm->getFalseArgs();
|
|
|
|
SILBuilderWithScope(CondTerm)
|
|
.createBranch(CondTerm->getLoc(), ThreadedSuccessorBlock, Args);
|
|
|
|
CondTerm->eraseFromParent();
|
|
} else {
|
|
// Get the enum element and the destination block of the block we jump
|
|
// thread.
|
|
auto *SEI = cast<SwitchEnumInst>(Src->getTerminator());
|
|
auto *ThreadedSuccessorBlock = SEI->getCaseDestination(EnumCase);
|
|
|
|
// Instantiate the payload if necessary.
|
|
SILBuilderWithScope Builder(SEI);
|
|
if (!ThreadedSuccessorBlock->bbarg_empty()) {
|
|
auto EnumVal = SEI->getOperand();
|
|
auto EnumTy = EnumVal->getType();
|
|
auto Loc = SEI->getLoc();
|
|
auto Ty = EnumTy.getEnumElementType(EnumCase, SEI->getModule());
|
|
SILValue UED(
|
|
Builder.createUncheckedEnumData(Loc, EnumVal, EnumCase, Ty));
|
|
assert(UED->getType() ==
|
|
(*ThreadedSuccessorBlock->bbarg_begin())->getType() &&
|
|
"Argument types must match");
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {UED});
|
|
} else
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {});
|
|
SEI->eraseFromParent();
|
|
|
|
// Split the edge from 'Dest' to 'ThreadedSuccessorBlock' it is now
|
|
// critical. Doing this here safes us from doing it over the whole
|
|
// function in updateSSAAfterCloning because we have split all other
|
|
// critical edges earlier.
|
|
splitEdgesFromTo(Dest, ThreadedSuccessorBlock, nullptr, nullptr);
|
|
}
|
|
updateSSAAfterCloning(Cloner, Src, Dest, false);
|
|
}
|
|
};
|
|
|
|
/// Give a cond_br or switch_enum instruction and one successor block return
|
|
/// true if we can infer the value of the condition/enum along the edge to this
|
|
/// successor blocks.
|
|
static bool isKnownEdgeValue(TermInst *Term, SILBasicBlock *SuccBB,
|
|
EnumElementDecl *&EnumCase) {
|
|
assert((isa<CondBranchInst>(Term) || isa<SwitchEnumInst>(Term)) &&
|
|
"Expect a cond_br or switch_enum");
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto Case = SEI->getUniqueCaseForDestination(SuccBB)) {
|
|
EnumCase = Case.get();
|
|
return SuccBB->getSinglePredecessor() != nullptr;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return SuccBB->getSinglePredecessor() != nullptr;
|
|
}
|
|
|
|
/// Create an enum element by extracting the operand of a switch_enum.
|
|
static SILInstruction *createEnumElement(SILBuilder &Builder,
|
|
SwitchEnumInst *SEI,
|
|
EnumElementDecl *EnumElement) {
|
|
auto EnumVal = SEI->getOperand();
|
|
// Do we have a payload.
|
|
auto EnumTy = EnumVal->getType();
|
|
if (EnumElement->hasArgumentType()) {
|
|
auto Ty = EnumTy.getEnumElementType(EnumElement, SEI->getModule());
|
|
SILValue UED(Builder.createUncheckedEnumData(SEI->getLoc(), EnumVal,
|
|
EnumElement, Ty));
|
|
return Builder.createEnum(SEI->getLoc(), UED, EnumElement, EnumTy);
|
|
}
|
|
return Builder.createEnum(SEI->getLoc(), SILValue(), EnumElement, EnumTy);
|
|
}
|
|
|
|
/// Create a value for the condition of the terminator that flows along the edge
|
|
/// with 'EdgeIdx'. Insert it before the 'UserInst'.
|
|
static SILInstruction *createValueForEdge(SILInstruction *UserInst,
|
|
SILInstruction *DominatingTerminator,
|
|
unsigned EdgeIdx) {
|
|
SILBuilderWithScope Builder(UserInst);
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(DominatingTerminator))
|
|
return Builder.createIntegerLiteral(
|
|
CBI->getLoc(), CBI->getCondition()->getType(), EdgeIdx == 0 ? -1 : 0);
|
|
|
|
auto *SEI = cast<SwitchEnumInst>(DominatingTerminator);
|
|
auto *DstBlock = SEI->getSuccessors()[EdgeIdx].getBB();
|
|
auto Case = SEI->getUniqueCaseForDestination(DstBlock);
|
|
assert(Case && "No unique case found for destination block");
|
|
return createEnumElement(Builder, SEI, Case.get());
|
|
}
|
|
|
|
/// Perform dominator based value simplifications and jump threading on all users
|
|
/// of the operand of 'DominatingBB's terminator.
|
|
static bool tryDominatorBasedSimplifications(
|
|
SILBasicBlock *DominatingBB, DominanceInfo *DT,
|
|
SmallPtrSet<SILBasicBlock *, 32> &LoopHeaders,
|
|
SmallVectorImpl<ThreadInfo> &JumpThreadableEdges,
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>>
|
|
&ThreadedEdgeSet,
|
|
bool TryJumpThreading,
|
|
llvm::DenseMap<SILBasicBlock *, bool> &CachedThreadable) {
|
|
auto *DominatingTerminator = DominatingBB->getTerminator();
|
|
|
|
// We handle value propagation from cond_br and switch_enum terminators.
|
|
bool IsEnumValue = isa<SwitchEnumInst>(DominatingTerminator);
|
|
if (!isa<CondBranchInst>(DominatingTerminator) && !IsEnumValue)
|
|
return false;
|
|
|
|
auto DominatingCondition = getTerminatorCondition(DominatingTerminator);
|
|
if (!DominatingCondition)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
// We will look at all the outgoing edges from the conditional branch to see
|
|
// whether any other uses of the condition or uses of the condition along an
|
|
// edge are dominated by said outgoing edges. The outgoing edge carries the
|
|
// value on which we switch/cond_branch.
|
|
auto Succs = DominatingBB->getSuccessors();
|
|
for (unsigned Idx = 0; Idx < Succs.size(); ++Idx) {
|
|
auto *DominatingSuccBB = Succs[Idx].getBB();
|
|
|
|
EnumElementDecl *EnumCase = nullptr;
|
|
if (!isKnownEdgeValue(DominatingTerminator, DominatingSuccBB, EnumCase))
|
|
continue;
|
|
|
|
// Look for other uses of DominatingCondition that are either:
|
|
// * dominated by the DominatingSuccBB
|
|
//
|
|
// cond_br %dominating_cond / switch_enum
|
|
// /
|
|
// /
|
|
// /
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// use %dominating_cond
|
|
//
|
|
// * are a conditional branch that has an incoming edge that is
|
|
// dominated by DominatingSuccBB.
|
|
//
|
|
// cond_br %dominating_cond
|
|
// /
|
|
// /
|
|
// /
|
|
//
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// br DestBB
|
|
//
|
|
// \
|
|
// \ E -> %dominating_cond = true
|
|
// \
|
|
// v
|
|
// DestBB
|
|
// cond_br %dominating_cond
|
|
SmallVector<SILInstruction *, 16> UsersToReplace;
|
|
for (auto *Op : ignore_expect_uses(DominatingCondition)) {
|
|
auto *CondUserInst = Op->getUser();
|
|
|
|
// Ignore the DominatingTerminator itself.
|
|
if (CondUserInst->getParent() == DominatingBB)
|
|
continue;
|
|
|
|
// For enum values we are only interested in switch_enum and select_enum
|
|
// users.
|
|
if (IsEnumValue && !isa<SwitchEnumInst>(CondUserInst) &&
|
|
!isa<SelectEnumInst>(CondUserInst))
|
|
continue;
|
|
|
|
// If the use is dominated we can replace this use by the value
|
|
// flowing to DominatingSuccBB.
|
|
if (DT->dominates(DominatingSuccBB, CondUserInst->getParent())) {
|
|
UsersToReplace.push_back(CondUserInst);
|
|
continue;
|
|
}
|
|
|
|
// Jump threading is expensive so we don't always do it.
|
|
if (!TryJumpThreading)
|
|
continue;
|
|
|
|
auto *DestBB = CondUserInst->getParent();
|
|
|
|
// The user must be the terminator we are trying to jump thread.
|
|
if (CondUserInst != DestBB->getTerminator())
|
|
continue;
|
|
|
|
// Check whether we have seen this destination block already.
|
|
auto CacheEntryIt = CachedThreadable.find(DestBB);
|
|
bool IsThreadable = CacheEntryIt != CachedThreadable.end()
|
|
? CacheEntryIt->second
|
|
: (CachedThreadable[DestBB] =
|
|
isThreadableBlock(DestBB, LoopHeaders));
|
|
|
|
// If the use is a conditional branch/switch then look for an incoming
|
|
// edge that is dominated by DominatingSuccBB.
|
|
if (IsThreadable) {
|
|
auto Preds = DestBB->getPreds();
|
|
|
|
for (SILBasicBlock *PredBB : Preds) {
|
|
if (!isa<BranchInst>(PredBB->getTerminator()))
|
|
continue;
|
|
if (!DT->dominates(DominatingSuccBB, PredBB))
|
|
continue;
|
|
|
|
// Don't jumpthread the same edge twice.
|
|
if (!ThreadedEdgeSet.insert(std::make_pair(PredBB, DestBB)).second)
|
|
continue;
|
|
|
|
if (isa<CondBranchInst>(DestBB->getTerminator()))
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, Idx));
|
|
else
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, EnumCase));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace dominated user instructions.
|
|
for (auto *UserInst : UsersToReplace) {
|
|
SILInstruction *EdgeValue = nullptr;
|
|
for (auto &Op : UserInst->getAllOperands()) {
|
|
if (stripExpectIntrinsic(Op.get()) == DominatingCondition) {
|
|
if (!EdgeValue)
|
|
EdgeValue = createValueForEdge(UserInst, DominatingTerminator, Idx);
|
|
Op.set(EdgeValue);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Propagate values of branched upon values along the outgoing edges down the
|
|
/// dominator tree.
|
|
bool SimplifyCFG::dominatorBasedSimplifications(SILFunction &Fn,
|
|
DominanceInfo *DT) {
|
|
bool Changed = false;
|
|
// Collect jump threadable edges and propagate outgoing edge values of
|
|
// conditional branches/switches.
|
|
SmallVector<ThreadInfo, 8> JumpThreadableEdges;
|
|
llvm::DenseMap<SILBasicBlock *, bool> CachedThreadable;
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>> ThreadedEdgeSet;
|
|
for (auto &BB : Fn)
|
|
if (DT->getNode(&BB)) // Only handle reachable blocks.
|
|
Changed |= tryDominatorBasedSimplifications(
|
|
&BB, DT, LoopHeaders, JumpThreadableEdges, ThreadedEdgeSet,
|
|
EnableJumpThread, CachedThreadable);
|
|
|
|
// Nothing to jump thread?
|
|
if (JumpThreadableEdges.empty())
|
|
return Changed;
|
|
|
|
for (auto &ThreadInfo : JumpThreadableEdges) {
|
|
ThreadInfo.threadEdge();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Simplify terminators that could have been simplified by threading.
|
|
bool SimplifyCFG::simplifyThreadedTerminators() {
|
|
bool HaveChangedCFG = false;
|
|
for (auto &BB : Fn) {
|
|
auto *Term = BB.getTerminator();
|
|
// Simplify a switch_enum.
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto *EI = dyn_cast<EnumInst>(SEI->getOperand())) {
|
|
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
|
|
if (EI->hasOperand() && !LiveBlock->bbarg_empty())
|
|
SILBuilderWithScope(SEI)
|
|
.createBranch(SEI->getLoc(), LiveBlock, EI->getOperand());
|
|
else
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock);
|
|
SEI->eraseFromParent();
|
|
if (EI->use_empty())
|
|
EI->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
continue;
|
|
} else if (auto *CondBr = dyn_cast<CondBranchInst>(Term)) {
|
|
// If the condition is an integer literal, we can constant fold the
|
|
// branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(CondBr->getCondition())) {
|
|
SILBasicBlock *TrueSide = CondBr->getTrueBB();
|
|
SILBasicBlock *FalseSide = CondBr->getFalseBB();
|
|
auto TrueArgs = CondBr->getTrueArgs();
|
|
auto FalseArgs = CondBr->getFalseArgs();
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
SILBuilderWithScope(CondBr)
|
|
.createBranch(CondBr->getLoc(), LiveBlock, LiveArgs);
|
|
CondBr->eraseFromParent();
|
|
if (IL->use_empty())
|
|
IL->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
}
|
|
}
|
|
return HaveChangedCFG;
|
|
}
|
|
|
|
// Simplifications that walk the dominator tree to prove redundancy in
|
|
// conditional branching.
|
|
bool SimplifyCFG::dominatorBasedSimplify(DominanceAnalysis *DA) {
|
|
// Get the dominator tree.
|
|
DT = DA->get(&Fn);
|
|
|
|
// Split all critical edges such that we can move code onto edges. This is
|
|
// also required for SSA construction in dominatorBasedSimplifications' jump
|
|
// threading. It only splits new critical edges it creates by jump threading.
|
|
bool Changed =
|
|
EnableJumpThread ? splitAllCriticalEdges(Fn, false, DT, nullptr) : false;
|
|
|
|
unsigned MaxIter = MaxIterationsOfDominatorBasedSimplify;
|
|
SmallVector<SILBasicBlock *, 16> BlocksForWorklist;
|
|
|
|
bool HasChangedInCurrentIter;
|
|
do {
|
|
HasChangedInCurrentIter = false;
|
|
|
|
// Do dominator based simplification of terminator condition. This does not
|
|
// and MUST NOT change the CFG without updating the dominator tree to
|
|
// reflect such change.
|
|
if (tryCheckedCastBrJumpThreading(&Fn, DT, BlocksForWorklist)) {
|
|
for (auto BB: BlocksForWorklist)
|
|
addToWorklist(BB);
|
|
|
|
HasChangedInCurrentIter = true;
|
|
DT->recalculate(Fn);
|
|
}
|
|
BlocksForWorklist.clear();
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Simplify the block argument list. This is extremely subtle: simplifyArgs
|
|
// will not change the CFG iff the DT is null. Really we should move that
|
|
// one optimization out of simplifyArgs ... I am squinting at you
|
|
// simplifySwitchEnumToSelectEnum.
|
|
// simplifyArgs does use the dominator tree, though.
|
|
for (auto &BB : Fn)
|
|
HasChangedInCurrentIter |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Jump thread.
|
|
if (dominatorBasedSimplifications(Fn, DT)) {
|
|
DominanceInfo *InvalidDT = DT;
|
|
DT = nullptr;
|
|
HasChangedInCurrentIter = true;
|
|
// Simplify terminators.
|
|
simplifyThreadedTerminators();
|
|
DT = InvalidDT;
|
|
DT->recalculate(Fn);
|
|
}
|
|
|
|
Changed |= HasChangedInCurrentIter;
|
|
} while (HasChangedInCurrentIter && --MaxIter);
|
|
|
|
// Do the simplification that requires both the dom and postdom tree.
|
|
for (auto &BB : Fn)
|
|
Changed |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// The functions we used to simplify the CFG put things in the worklist. Clear
|
|
// it here.
|
|
clearWorklist();
|
|
return Changed;
|
|
}
|
|
|
|
// If BB is trivially unreachable, remove it from the worklist, add its
|
|
// successors to the worklist, and then remove the block.
|
|
bool SimplifyCFG::removeIfDead(SILBasicBlock *BB) {
|
|
if (!BB->pred_empty() || BB == &*Fn.begin())
|
|
return false;
|
|
|
|
removeFromWorklist(BB);
|
|
|
|
// Add successor blocks to the worklist since their predecessor list is about
|
|
// to change.
|
|
for (auto &S : BB->getSuccessors())
|
|
addToWorklist(S);
|
|
|
|
removeDeadBlock(BB);
|
|
++NumBlocksDeleted;
|
|
return true;
|
|
}
|
|
|
|
/// This is called when a predecessor of a block is dropped, to simplify the
|
|
/// block and add it to the worklist.
|
|
bool SimplifyCFG::simplifyAfterDroppingPredecessor(SILBasicBlock *BB) {
|
|
// TODO: If BB has only one predecessor and has bb args, fold them away, then
|
|
// use instsimplify on all the users of those values - even ones outside that
|
|
// block.
|
|
|
|
|
|
// Make sure that DestBB is in the worklist, as well as its remaining
|
|
// predecessors, since they may not be able to be simplified.
|
|
addToWorklist(BB);
|
|
for (auto *P : BB->getPreds())
|
|
addToWorklist(P);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// couldSimplifyUsers - Check to see if any simplifications are possible if
|
|
/// "Val" is substituted for BBArg. If so, return true, if nothing obvious
|
|
/// is possible, return false.
|
|
static bool couldSimplifyUsers(SILArgument *BBArg, SILValue Val) {
|
|
// If the value being substituted is an enum, check to see if there are any
|
|
// switches on it.
|
|
auto *EI = dyn_cast<EnumInst>(Val);
|
|
if (!EI)
|
|
return false;
|
|
|
|
for (auto UI : BBArg->getUses()) {
|
|
auto *User = UI->getUser();
|
|
// We only know we can simplify if the switch_enum user is in the block we
|
|
// are trying to jump thread.
|
|
// The value must not be define in the same basic block as the switch enum
|
|
// user. If this is the case we have a single block switch_enum loop.
|
|
if (isa<SwitchEnumInst>(User) || isa<SelectEnumInst>(User))
|
|
if (BBArg->getParent() == User->getParent() &&
|
|
EI->getParent() != BBArg->getParent())
|
|
return true;
|
|
|
|
// Also allow enum of enum, which usually can be combined to a single
|
|
// instruction. This helps to simplify the creation of an enum from an
|
|
// integer raw value.
|
|
if (isa<EnumInst>(User))
|
|
if (BBArg->getParent() == User->getParent() &&
|
|
EI->getParent() != BBArg->getParent())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SimplifyCFG::findLoopHeaders() {
|
|
/// Find back edges in the CFG. This performs a dfs search and identifies
|
|
/// back edges as edges going to an ancestor in the dfs search. If a basic
|
|
/// block is the target of such a back edge we will identify it as a header.
|
|
LoopHeaders.clear();
|
|
|
|
SmallPtrSet<SILBasicBlock *, 16> Visited;
|
|
SmallPtrSet<SILBasicBlock *, 16> InDFSStack;
|
|
SmallVector<std::pair<SILBasicBlock *, SILBasicBlock::succ_iterator>, 16>
|
|
DFSStack;
|
|
|
|
auto EntryBB = &Fn.front();
|
|
DFSStack.push_back(std::make_pair(EntryBB, EntryBB->succ_begin()));
|
|
Visited.insert(EntryBB);
|
|
InDFSStack.insert(EntryBB);
|
|
|
|
while (!DFSStack.empty()) {
|
|
auto &D = DFSStack.back();
|
|
// No successors.
|
|
if (D.second == D.first->succ_end()) {
|
|
// Retreat the dfs search.
|
|
DFSStack.pop_back();
|
|
InDFSStack.erase(D.first);
|
|
} else {
|
|
// Visit the next successor.
|
|
SILBasicBlock *NextSucc = *(D.second);
|
|
++D.second;
|
|
if (Visited.insert(NextSucc).second) {
|
|
InDFSStack.insert(NextSucc);
|
|
DFSStack.push_back(std::make_pair(NextSucc, NextSucc->succ_begin()));
|
|
} else if (InDFSStack.count(NextSucc)) {
|
|
// We have already visited this node and it is in our dfs search. This
|
|
// is a back-edge.
|
|
LoopHeaders.insert(NextSucc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// tryJumpThreading - Check to see if it looks profitable to duplicate the
|
|
/// destination of an unconditional jump into the bottom of this block.
|
|
bool SimplifyCFG::tryJumpThreading(BranchInst *BI) {
|
|
auto *DestBB = BI->getDestBB();
|
|
auto *SrcBB = BI->getParent();
|
|
// If the destination block ends with a return, we don't want to duplicate it.
|
|
// We want to maintain the canonical form of a single return where possible.
|
|
if (isa<ReturnInst>(DestBB->getTerminator()))
|
|
return false;
|
|
|
|
// We need to update SSA if a value duplicated is used outside of the
|
|
// duplicated block.
|
|
bool NeedToUpdateSSA = false;
|
|
|
|
// Are the arguments to this block used outside of the block.
|
|
for (auto Arg : DestBB->getBBArgs())
|
|
if ((NeedToUpdateSSA |= isUsedOutsideOfBlock(Arg, DestBB))) {
|
|
break;
|
|
}
|
|
|
|
// We don't have a great cost model at the SIL level, so we don't want to
|
|
// blissly duplicate tons of code with a goal of improved performance (we'll
|
|
// leave that to LLVM). However, doing limited code duplication can lead to
|
|
// major second order simplifications. Here we only do it if there are
|
|
// "constant" arguments to the branch or if we know how to fold something
|
|
// given the duplication.
|
|
bool WantToThread = false;
|
|
|
|
if (isa<CondBranchInst>(DestBB->getTerminator()))
|
|
for (auto V : BI->getArgs()) {
|
|
if (isa<IntegerLiteralInst>(V) || isa<FloatLiteralInst>(V)) {
|
|
WantToThread = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!WantToThread) {
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
|
|
if (couldSimplifyUsers(DestBB->getBBArg(i), BI->getArg(i))) {
|
|
WantToThread = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we don't have anything that we can simplify, don't do it.
|
|
if (!WantToThread) return false;
|
|
|
|
// If it looks potentially interesting, decide whether we *can* do the
|
|
// operation and whether the block is small enough to be worth duplicating.
|
|
unsigned Cost = 0;
|
|
|
|
for (auto &Inst : *DestBB) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (isa<ApplyInst>(Inst))
|
|
return false;
|
|
|
|
// This is a really trivial cost model, which is only intended as a starting
|
|
// point.
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 4) return false;
|
|
|
|
// We need to update ssa if a value is used outside the duplicated block.
|
|
if (!NeedToUpdateSSA)
|
|
NeedToUpdateSSA |= isUsedOutsideOfBlock(&Inst, DestBB);
|
|
}
|
|
|
|
// Don't jump thread through a potential header - this can produce irreducible
|
|
// control flow.
|
|
if (!isa<SwitchEnumInst>(DestBB->getTerminator()) &&
|
|
LoopHeaders.count(DestBB))
|
|
return false;
|
|
|
|
// Okay, it looks like we want to do this and we can. Duplicate the
|
|
// destination block into this one, rewriting uses of the BBArgs to use the
|
|
// branch arguments as we go.
|
|
EdgeThreadingCloner Cloner(BI);
|
|
|
|
for (auto &I : *DestBB)
|
|
Cloner.process(&I);
|
|
|
|
// Once all the instructions are copied, we can nuke BI itself. We also add
|
|
// the threaded and edge block to the worklist now that they (likely) can be
|
|
// simplified.
|
|
addToWorklist(SrcBB);
|
|
addToWorklist(Cloner.getEdgeBB());
|
|
|
|
if (NeedToUpdateSSA)
|
|
updateSSAAfterCloning(Cloner, Cloner.getEdgeBB(), DestBB);
|
|
|
|
// We may be able to simplify DestBB now that it has one fewer predecessor.
|
|
simplifyAfterDroppingPredecessor(DestBB);
|
|
|
|
++NumJumpThreads;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// simplifyBranchOperands - Simplify operands of branches, since it can
|
|
/// result in exposing opportunities for CFG simplification.
|
|
bool SimplifyCFG::simplifyBranchOperands(OperandValueArrayRef Operands) {
|
|
bool Simplified = false;
|
|
for (auto O = Operands.begin(), E = Operands.end(); O != E; ++O)
|
|
if (auto *I = dyn_cast<SILInstruction>(*O))
|
|
if (SILValue Result = simplifyInstruction(I)) {
|
|
I->replaceAllUsesWith(Result);
|
|
if (isInstructionTriviallyDead(I)) {
|
|
eraseFromParentWithDebugInsts(I);
|
|
Simplified = true;
|
|
}
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
static bool onlyHasTerminatorAndDebugInsts(SILBasicBlock *BB) {
|
|
TermInst *Terminator = BB->getTerminator();
|
|
SILBasicBlock::iterator Iter = BB->begin();
|
|
while (&*Iter != Terminator) {
|
|
if (!isDebugInst(&*Iter))
|
|
return false;
|
|
Iter++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \return If this basic blocks has a single br instruction passing all of the
|
|
/// arguments in the original order, then returns the destination of that br.
|
|
static SILBasicBlock *getTrampolineDest(SILBasicBlock *SBB) {
|
|
// Ignore blocks with more than one instruction.
|
|
if (!onlyHasTerminatorAndDebugInsts(SBB))
|
|
return nullptr;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(SBB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
// Disallow infinite loops.
|
|
if (BI->getDestBB() == SBB)
|
|
return nullptr;
|
|
|
|
auto BrArgs = BI->getArgs();
|
|
if (BrArgs.size() != SBB->getNumBBArg())
|
|
return nullptr;
|
|
|
|
// Check that the arguments are the same and in the right order.
|
|
for (int i = 0, e = SBB->getNumBBArg(); i < e; ++i) {
|
|
SILArgument *BBArg = SBB->getBBArg(i);
|
|
if (BrArgs[i] != BBArg)
|
|
return nullptr;
|
|
|
|
// The arguments may not be used in another block, because when the
|
|
// predecessor of SBB directly jumps to the successor, the SBB block does
|
|
// not dominate the other use anymore.
|
|
if (!BBArg->hasOneUse())
|
|
return nullptr;
|
|
}
|
|
|
|
return BI->getDestBB();
|
|
}
|
|
|
|
/// \return If this is a basic block without any arguments and it has
|
|
/// a single br instruction, return this br.
|
|
static BranchInst *getTrampolineWithoutBBArgsTerminator(SILBasicBlock *SBB) {
|
|
if (!SBB->bbarg_empty())
|
|
return nullptr;
|
|
|
|
// Ignore blocks with more than one instruction.
|
|
if (!onlyHasTerminatorAndDebugInsts(SBB))
|
|
return nullptr;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(SBB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
// Disallow infinite loops.
|
|
if (BI->getDestBB() == SBB)
|
|
return nullptr;
|
|
|
|
return BI;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Is the block reachable from the entry.
|
|
static bool isReachable(SILBasicBlock *Block) {
|
|
SmallPtrSet<SILBasicBlock *, 16> Visited;
|
|
llvm::SmallVector<SILBasicBlock *, 16> Worklist;
|
|
SILBasicBlock *EntryBB = &*Block->getParent()->begin();
|
|
Worklist.push_back(EntryBB);
|
|
Visited.insert(EntryBB);
|
|
|
|
while (!Worklist.empty()) {
|
|
auto *CurBB = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (CurBB == Block)
|
|
return true;
|
|
|
|
for (auto &Succ : CurBB->getSuccessors())
|
|
// Second is true if the insertion took place.
|
|
if (Visited.insert(Succ).second)
|
|
Worklist.push_back(Succ);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/// simplifyBranchBlock - Simplify a basic block that ends with an unconditional
|
|
/// branch.
|
|
bool SimplifyCFG::simplifyBranchBlock(BranchInst *BI) {
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
bool Simplified = simplifyBranchOperands(BI->getArgs());
|
|
|
|
auto *BB = BI->getParent(), *DestBB = BI->getDestBB();
|
|
|
|
// If this block branches to a block with a single predecessor, then
|
|
// merge the DestBB into this BB.
|
|
if (BB != DestBB && DestBB->getSinglePredecessor()) {
|
|
// If there are any BB arguments in the destination, replace them with the
|
|
// branch operands, since they must dominate the dest block.
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
|
|
if (DestBB->getBBArg(i) != BI->getArg(i))
|
|
DestBB->getBBArg(i)->replaceAllUsesWith(BI->getArg(i));
|
|
else {
|
|
// We must be processing an unreachable part of the cfg with a cycle.
|
|
// bb1(arg1): // preds: bb3
|
|
// br bb2
|
|
//
|
|
// bb2: // preds: bb1
|
|
// br bb3
|
|
//
|
|
// bb3: // preds: bb2
|
|
// br bb1(arg1)
|
|
assert(!isReachable(BB) && "Should only occur in unreachable block");
|
|
}
|
|
}
|
|
|
|
// Zap BI and move all of the instructions from DestBB into this one.
|
|
BI->eraseFromParent();
|
|
BB->spliceAtEnd(DestBB);
|
|
|
|
// Revisit this block now that we've changed it and remove the DestBB.
|
|
addToWorklist(BB);
|
|
|
|
// This can also expose opportunities in the successors of
|
|
// the merged block.
|
|
for (auto &Succ : BB->getSuccessors())
|
|
addToWorklist(Succ);
|
|
|
|
if (LoopHeaders.count(DestBB))
|
|
LoopHeaders.insert(BB);
|
|
|
|
removeFromWorklist(DestBB);
|
|
DestBB->eraseFromParent();
|
|
++NumBlocksMerged;
|
|
return true;
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
if (SILBasicBlock *TrampolineDest = getTrampolineDest(DestBB)) {
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), TrampolineDest,
|
|
BI->getArgs());
|
|
// Eliminating the trampoline can expose opportunities to improve the
|
|
// new block we branch to.
|
|
if (LoopHeaders.count(DestBB))
|
|
LoopHeaders.insert(BB);
|
|
|
|
addToWorklist(TrampolineDest);
|
|
BI->eraseFromParent();
|
|
removeIfDead(DestBB);
|
|
addToWorklist(BB);
|
|
return true;
|
|
}
|
|
|
|
// If this unconditional branch has BBArgs, check to see if duplicating the
|
|
// destination would allow it to be simplified. This is a simple form of jump
|
|
// threading.
|
|
if (!BI->getArgs().empty() &&
|
|
tryJumpThreading(BI))
|
|
return true;
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
/// \brief Check if replacing an existing edge of the terminator by another
|
|
/// one which has a DestBB as its destination would create a critical edge.
|
|
static bool wouldIntroduceCriticalEdge(TermInst *T, SILBasicBlock *DestBB) {
|
|
auto SrcSuccs = T->getSuccessors();
|
|
if (SrcSuccs.size() <= 1)
|
|
return false;
|
|
|
|
assert(!DestBB->pred_empty() && "There should be a predecessor");
|
|
if (DestBB->getSinglePredecessor())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns the original boolean value, looking through possible invert
|
|
/// builtins. The parameter \p Inverted is inverted if the returned original
|
|
/// value is the inverted value of the passed \p Cond.
|
|
/// If \p onlyAcceptSingleUse is true and the operand of an invert builtin has
|
|
/// more than one use, an invalid SILValue() is returned.
|
|
static SILValue skipInvert(SILValue Cond, bool &Inverted,
|
|
bool onlyAcceptSingleUse) {
|
|
while (auto *BI = dyn_cast<BuiltinInst>(Cond)) {
|
|
|
|
if (onlyAcceptSingleUse && !BI->hasOneUse())
|
|
return SILValue();
|
|
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
|
|
if (BI->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean inversion of the condition.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
Cond = Args[0];
|
|
Inverted = !Inverted;
|
|
continue;
|
|
}
|
|
} else if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[0])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
Cond = Args[1];
|
|
Inverted = !Inverted;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return Cond;
|
|
}
|
|
|
|
/// \brief Returns the first cond_fail if it is the first side-effect
|
|
/// instruction in this block.
|
|
static CondFailInst *getFirstCondFail(SILBasicBlock *BB) {
|
|
auto It = BB->begin();
|
|
CondFailInst *CondFail = nullptr;
|
|
// Skip instructions that don't have side-effects.
|
|
while (It != BB->end() && !(CondFail = dyn_cast<CondFailInst>(It))) {
|
|
if (It->mayHaveSideEffects())
|
|
return nullptr;
|
|
++It;
|
|
}
|
|
return CondFail;
|
|
}
|
|
|
|
/// If the first side-effect instruction in this block is a cond_fail that
|
|
/// is guaranteed to fail, it is returned.
|
|
/// The \p Cond is the condition from a cond_br in the predecessor block. The
|
|
/// cond_fail must only fail if \p BB is entered through this predecessor block.
|
|
/// If \p Inverted is true, \p BB is on the false-edge of the cond_br.
|
|
static CondFailInst *getUnConditionalFail(SILBasicBlock *BB, SILValue Cond,
|
|
bool Inverted) {
|
|
CondFailInst *CondFail = getFirstCondFail(BB);
|
|
if (!CondFail)
|
|
return nullptr;
|
|
|
|
// The simple case: check if it is a "cond_fail 1".
|
|
auto *IL = dyn_cast<IntegerLiteralInst>(CondFail->getOperand());
|
|
if (IL && IL->getValue() != 0)
|
|
return CondFail;
|
|
|
|
// Check if the cond_fail has the same condition as the cond_br in the
|
|
// predecessor block.
|
|
Cond = skipInvert(Cond, Inverted, false);
|
|
SILValue CondFailCond = skipInvert(CondFail->getOperand(), Inverted, false);
|
|
if (Cond == CondFailCond && !Inverted)
|
|
return CondFail;
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Creates a new cond_fail instruction, optionally with an xor inverted
|
|
/// condition.
|
|
static void createCondFail(CondFailInst *Orig, SILValue Cond, bool inverted,
|
|
SILBuilder &Builder) {
|
|
if (inverted) {
|
|
auto *True = Builder.createIntegerLiteral(Orig->getLoc(), Cond->getType(), 1);
|
|
Cond = Builder.createBuiltinBinaryFunction(Orig->getLoc(), "xor",
|
|
Cond->getType(), Cond->getType(),
|
|
{Cond, True});
|
|
}
|
|
Builder.createCondFail(Orig->getLoc(), Cond);
|
|
}
|
|
|
|
/// Inverts the expected value of 'PotentialExpect' (if it is an expect
|
|
/// intrinsic) and returns this expected value apply to 'V'.
|
|
static SILValue invertExpectAndApplyTo(SILBuilder &Builder,
|
|
SILValue PotentialExpect, SILValue V) {
|
|
auto *BI = dyn_cast<BuiltinInst>(PotentialExpect);
|
|
if (!BI)
|
|
return V;
|
|
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
|
|
return V;
|
|
auto Args = BI->getArguments();
|
|
IntegerLiteralInst *IL = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (!IL)
|
|
return V;
|
|
SILValue NegatedExpectedValue = Builder.createIntegerLiteral(
|
|
IL->getLoc(), Args[1]->getType(), IL->getValue() == 0 ? -1 : 0);
|
|
return Builder.createBuiltin(BI->getLoc(), BI->getName(), BI->getType(), {},
|
|
{V, NegatedExpectedValue});
|
|
}
|
|
|
|
/// simplifyCondBrBlock - Simplify a basic block that ends with a conditional
|
|
/// branch.
|
|
bool SimplifyCFG::simplifyCondBrBlock(CondBranchInst *BI) {
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
simplifyBranchOperands(OperandValueArrayRef(BI->getAllOperands()));
|
|
auto *ThisBB = BI->getParent();
|
|
SILBasicBlock *TrueSide = BI->getTrueBB();
|
|
SILBasicBlock *FalseSide = BI->getFalseBB();
|
|
auto TrueArgs = BI->getTrueArgs();
|
|
auto FalseArgs = BI->getFalseArgs();
|
|
|
|
// If the condition is an integer literal, we can constant fold the branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(BI->getCondition())) {
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
auto *DeadBlock = !isFalse ? FalseSide : TrueSide;
|
|
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
|
|
BI->eraseFromParent();
|
|
if (IL->use_empty()) IL->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(DeadBlock);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
// Canonicalize "cond_br (not %cond), BB1, BB2" to "cond_br %cond, BB2, BB1".
|
|
// This looks through expect intrinsic calls and applies the ultimate expect
|
|
// call inverted to the condition.
|
|
if (auto *Xor =
|
|
dyn_cast<BuiltinInst>(stripExpectIntrinsic(BI->getCondition()))) {
|
|
if (Xor->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean inversion of the condition.
|
|
OperandValueArrayRef Args = Xor->getArguments();
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
auto Cond = Args[0];
|
|
SILBuilderWithScope Builder(BI);
|
|
Builder.createCondBranch(
|
|
BI->getLoc(),
|
|
invertExpectAndApplyTo(Builder, BI->getCondition(), Cond),
|
|
FalseSide, FalseArgs, TrueSide, TrueArgs);
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
SILBasicBlock *TrueTrampolineDest = getTrampolineDest(TrueSide);
|
|
if (TrueTrampolineDest && TrueTrampolineDest != FalseSide) {
|
|
SILBuilderWithScope(BI)
|
|
.createCondBranch(BI->getLoc(), BI->getCondition(),
|
|
TrueTrampolineDest, TrueArgs,
|
|
FalseSide, FalseArgs);
|
|
BI->eraseFromParent();
|
|
|
|
if (LoopHeaders.count(TrueSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(TrueSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
SILBasicBlock *FalseTrampolineDest = getTrampolineDest(FalseSide);
|
|
if (FalseTrampolineDest && FalseTrampolineDest != TrueSide) {
|
|
SILBuilderWithScope(BI)
|
|
.createCondBranch(BI->getLoc(), BI->getCondition(),
|
|
TrueSide, TrueArgs,
|
|
FalseTrampolineDest, FalseArgs);
|
|
BI->eraseFromParent();
|
|
if (LoopHeaders.count(FalseSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(FalseSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
// Simplify cond_br where both sides jump to the same blocks with the same
|
|
// args.
|
|
if (TrueArgs == FalseArgs && (TrueSide == FalseTrampolineDest ||
|
|
FalseSide == TrueTrampolineDest)) {
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(),
|
|
TrueTrampolineDest ? FalseSide : TrueSide, TrueArgs);
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
addToWorklist(TrueSide);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
auto *TrueTrampolineBr = getTrampolineWithoutBBArgsTerminator(TrueSide);
|
|
if (TrueTrampolineBr &&
|
|
!wouldIntroduceCriticalEdge(BI, TrueTrampolineBr->getDestBB())) {
|
|
SILBuilderWithScope(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(),
|
|
TrueTrampolineBr->getDestBB(), TrueTrampolineBr->getArgs(),
|
|
FalseSide, FalseArgs);
|
|
BI->eraseFromParent();
|
|
|
|
if (LoopHeaders.count(TrueSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(TrueSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
auto *FalseTrampolineBr = getTrampolineWithoutBBArgsTerminator(FalseSide);
|
|
if (FalseTrampolineBr &&
|
|
!wouldIntroduceCriticalEdge(BI, FalseTrampolineBr->getDestBB())) {
|
|
SILBuilderWithScope(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(),
|
|
TrueSide, TrueArgs,
|
|
FalseTrampolineBr->getDestBB(), FalseTrampolineBr->getArgs());
|
|
BI->eraseFromParent();
|
|
if (LoopHeaders.count(FalseSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(FalseSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
// If we have a (cond (select_enum)) on a two element enum, always have the
|
|
// first case as our checked tag. If we have the second, create a new
|
|
// select_enum with the first case and swap our operands. This simplifies
|
|
// later dominance based processing.
|
|
if (auto *SEI = dyn_cast<SelectEnumInst>(BI->getCondition())) {
|
|
EnumDecl *E = SEI->getEnumOperand()->getType().getEnumOrBoundGenericEnum();
|
|
|
|
auto AllElts = E->getAllElements();
|
|
auto Iter = AllElts.begin();
|
|
EnumElementDecl *FirstElt = *Iter;
|
|
|
|
if (SEI->getNumCases() >= 1
|
|
&& SEI->getCase(0).first != FirstElt) {
|
|
++Iter;
|
|
|
|
if (Iter != AllElts.end() &&
|
|
std::next(Iter) == AllElts.end() &&
|
|
*Iter == SEI->getCase(0).first) {
|
|
EnumElementDecl *SecondElt = *Iter;
|
|
|
|
SILValue FirstValue;
|
|
// SelectEnum must be exhaustive, so the second case must be handled
|
|
// either by a case or the default.
|
|
if (SEI->getNumCases() >= 2) {
|
|
assert(FirstElt == SEI->getCase(1).first
|
|
&& "select_enum missing a case?!");
|
|
FirstValue = SEI->getCase(1).second;
|
|
} else {
|
|
FirstValue = SEI->getDefaultResult();
|
|
}
|
|
|
|
|
|
std::pair<EnumElementDecl*, SILValue> SwappedCases[2] = {
|
|
{FirstElt, SEI->getCase(0).second},
|
|
{SecondElt, FirstValue},
|
|
};
|
|
|
|
auto *NewSEI = SILBuilderWithScope(SEI)
|
|
.createSelectEnum(SEI->getLoc(),
|
|
SEI->getEnumOperand(),
|
|
SEI->getType(),
|
|
SILValue(),
|
|
SwappedCases);
|
|
|
|
// We only change the condition to be NewEITI instead of all uses since
|
|
// EITI may have other uses besides this one that need to be updated.
|
|
BI->setCondition(NewSEI);
|
|
BI->swapSuccessors();
|
|
addToWorklist(BI->getParent());
|
|
addToWorklist(TrueSide);
|
|
addToWorklist(FalseSide);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplify a condition branch to a block starting with "cond_fail 1".
|
|
//
|
|
// cond_br %cond, TrueSide, FalseSide
|
|
// TrueSide:
|
|
// cond_fail 1
|
|
//
|
|
auto CFCondition = BI->getCondition();
|
|
if (auto *TrueCFI = getUnConditionalFail(TrueSide, CFCondition, false)) {
|
|
SILBuilderWithScope Builder(BI);
|
|
createCondFail(TrueCFI, CFCondition, false, Builder);
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), FalseSide, FalseArgs);
|
|
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(TrueSide);
|
|
addToWorklist(FalseSide);
|
|
return true;
|
|
}
|
|
if (auto *FalseCFI = getUnConditionalFail(FalseSide, CFCondition, true)) {
|
|
SILBuilderWithScope Builder(BI);
|
|
createCondFail(FalseCFI, CFCondition, true, Builder);
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), TrueSide, TrueArgs);
|
|
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(FalseSide);
|
|
addToWorklist(TrueSide);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Does this basic block consist of only an "unreachable" instruction?
|
|
static bool isOnlyUnreachable(SILBasicBlock *BB) {
|
|
auto *Term = BB->getTerminator();
|
|
if (!isa<UnreachableInst>(Term))
|
|
return false;
|
|
|
|
return (&*BB->begin() == BB->getTerminator());
|
|
}
|
|
|
|
|
|
/// simplifySwitchEnumUnreachableBlocks - Attempt to replace a
|
|
/// switch_enum_inst where all but one block consists of just an
|
|
/// "unreachable" with an unchecked_enum_data and branch.
|
|
bool SimplifyCFG::simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI) {
|
|
auto Count = SEI->getNumCases();
|
|
|
|
SILBasicBlock *Dest = nullptr;
|
|
EnumElementDecl *Element = nullptr;
|
|
|
|
if (SEI->hasDefault())
|
|
if (!isOnlyUnreachable(SEI->getDefaultBB()))
|
|
Dest = SEI->getDefaultBB();
|
|
|
|
for (unsigned i = 0; i < Count; ++i) {
|
|
auto EnumCase = SEI->getCase(i);
|
|
|
|
if (isOnlyUnreachable(EnumCase.second))
|
|
continue;
|
|
|
|
if (Dest)
|
|
return false;
|
|
|
|
assert(!Element && "Did not expect to have an element without a block!");
|
|
Element = EnumCase.first;
|
|
Dest = EnumCase.second;
|
|
}
|
|
|
|
if (!Dest) {
|
|
addToWorklist(SEI->getParent());
|
|
SILBuilderWithScope(SEI).createUnreachable(SEI->getLoc());
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (!Element || !Element->hasArgumentType() || Dest->bbarg_empty()) {
|
|
assert(Dest->bbarg_empty() && "Unexpected argument at destination!");
|
|
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
auto &Mod = SEI->getModule();
|
|
auto OpndTy = SEI->getOperand()->getType();
|
|
auto Ty = OpndTy.getEnumElementType(Element, Mod);
|
|
auto *UED = SILBuilderWithScope(SEI)
|
|
.createUncheckedEnumData(SEI->getLoc(), SEI->getOperand(), Element, Ty);
|
|
|
|
assert(Dest->bbarg_size() == 1 && "Expected only one argument!");
|
|
ArrayRef<SILValue> Args = { UED };
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest, Args);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchEnumBlock - Simplify a basic block that ends with a
|
|
/// switch_enum instruction that gets its operand from an enum
|
|
/// instruction.
|
|
bool SimplifyCFG::simplifySwitchEnumBlock(SwitchEnumInst *SEI) {
|
|
auto *EI = dyn_cast<EnumInst>(SEI->getOperand());
|
|
|
|
// If the operand is not from an enum, see if this is a case where
|
|
// only one destination of the branch has code that does not end
|
|
// with unreachable.
|
|
if (!EI)
|
|
return simplifySwitchEnumUnreachableBlocks(SEI);
|
|
|
|
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
|
|
auto *ThisBB = SEI->getParent();
|
|
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the liveblock.
|
|
SmallVector<SILBasicBlock*, 4> Dests;
|
|
for (auto &S : SEI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
if (EI->hasOperand() && !LiveBlock->bbarg_empty())
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock,
|
|
EI->getOperand());
|
|
else
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock);
|
|
SEI->eraseFromParent();
|
|
if (EI->use_empty()) EI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchValueBlock - Simplify a basic block that ends with a
|
|
/// switch_value instruction that gets its operand from an integer
|
|
/// literal instruction.
|
|
bool SimplifyCFG::simplifySwitchValueBlock(SwitchValueInst *SVI) {
|
|
auto *ThisBB = SVI->getParent();
|
|
if (auto *ILI = dyn_cast<IntegerLiteralInst>(SVI->getOperand())) {
|
|
SILBasicBlock *LiveBlock = nullptr;
|
|
|
|
auto Value = ILI->getValue();
|
|
// Find a case corresponding to this value
|
|
int i, e;
|
|
for (i = 0, e = SVI->getNumCases(); i < e; ++i) {
|
|
auto Pair = SVI->getCase(i);
|
|
auto *CaseIL = dyn_cast<IntegerLiteralInst>(Pair.first);
|
|
if (!CaseIL)
|
|
break;
|
|
auto CaseValue = CaseIL->getValue();
|
|
if (Value == CaseValue) {
|
|
LiveBlock = Pair.second;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == e && !LiveBlock) {
|
|
if (SVI->hasDefault()) {
|
|
LiveBlock = SVI->getDefaultBB();
|
|
}
|
|
}
|
|
|
|
if (LiveBlock) {
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the
|
|
// liveblock.
|
|
SmallVector<SILBasicBlock *, 4> Dests;
|
|
for (auto &S : SVI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
SILBuilderWithScope(SVI).createBranch(SVI->getLoc(), LiveBlock);
|
|
SVI->eraseFromParent();
|
|
if (ILI->use_empty())
|
|
ILI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return simplifyTermWithIdenticalDestBlocks(ThisBB);
|
|
}
|
|
|
|
/// simplifyUnreachableBlock - Simplify blocks ending with unreachable by
|
|
/// removing instructions that are safe to delete backwards until we
|
|
/// hit an instruction we cannot delete.
|
|
bool SimplifyCFG::simplifyUnreachableBlock(UnreachableInst *UI) {
|
|
bool Changed = false;
|
|
auto BB = UI->getParent();
|
|
auto I = std::next(BB->rbegin());
|
|
auto End = BB->rend();
|
|
SmallVector<SILInstruction *, 8> DeadInstrs;
|
|
|
|
// Walk backwards deleting instructions that should be safe to delete
|
|
// in a block that ends with unreachable.
|
|
while (I != End) {
|
|
auto MaybeDead = I++;
|
|
|
|
switch (MaybeDead->getKind()) {
|
|
// These technically have side effects, but not ones that matter
|
|
// in a block that we shouldn't really reach...
|
|
case ValueKind::StrongRetainInst:
|
|
case ValueKind::StrongReleaseInst:
|
|
case ValueKind::RetainValueInst:
|
|
case ValueKind::ReleaseValueInst:
|
|
break;
|
|
|
|
default:
|
|
if (MaybeDead->mayHaveSideEffects()) {
|
|
if (Changed)
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
if (!MaybeDead->use_empty()) {
|
|
auto Undef = SILUndef::get(MaybeDead->getType(), BB->getModule());
|
|
MaybeDead->replaceAllUsesWith(Undef);
|
|
}
|
|
|
|
DeadInstrs.push_back(&*MaybeDead);
|
|
Changed = true;
|
|
}
|
|
|
|
// If this block was changed and it now consists of only the unreachable,
|
|
// make sure we process its predecessors.
|
|
if (Changed) {
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
|
|
if (isOnlyUnreachable(BB))
|
|
for (auto *P : BB->getPreds())
|
|
addToWorklist(P);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI) {
|
|
auto SuccessBB = CCBI->getSuccessBB();
|
|
auto FailureBB = CCBI->getFailureBB();
|
|
auto ThisBB = CCBI->getParent();
|
|
|
|
bool MadeChange = false;
|
|
CastOptimizer CastOpt([&MadeChange](SILInstruction *I,
|
|
ValueBase *V) { /* ReplaceInstUsesAction */
|
|
MadeChange = true;
|
|
},
|
|
[&MadeChange](SILInstruction *I) { /* EraseInstAction */
|
|
MadeChange = true;
|
|
I->eraseFromParent();
|
|
},
|
|
[&]() { /* WillSucceedAction */
|
|
MadeChange |= removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
[&]() { /* WillFailAction */
|
|
MadeChange |= removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
MadeChange |= bool(CastOpt.simplifyCheckedCastBranchInst(CCBI));
|
|
return MadeChange;
|
|
}
|
|
|
|
bool
|
|
SimplifyCFG::
|
|
simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI) {
|
|
auto SuccessBB = CCABI->getSuccessBB();
|
|
auto FailureBB = CCABI->getFailureBB();
|
|
auto ThisBB = CCABI->getParent();
|
|
|
|
bool MadeChange = false;
|
|
CastOptimizer CastOpt([&MadeChange](SILInstruction *I, ValueBase *V) {
|
|
MadeChange = true;
|
|
}, /* ReplaceInstUsesAction */
|
|
[&MadeChange](SILInstruction *I) { /* EraseInstAction */
|
|
MadeChange = true;
|
|
I->eraseFromParent();
|
|
},
|
|
[&]() { /* WillSucceedAction */
|
|
MadeChange |= removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
[&]() { /* WillFailAction */
|
|
MadeChange |= removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
MadeChange |= bool(CastOpt.simplifyCheckedCastAddrBranchInst(CCABI));
|
|
return MadeChange;
|
|
}
|
|
|
|
static SILValue getActualCallee(SILValue Callee) {
|
|
while (!isa<FunctionRefInst>(Callee)) {
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Callee)) {
|
|
Callee = CFI->getConverted();
|
|
continue;
|
|
}
|
|
if (auto *TTI = dyn_cast<ThinToThickFunctionInst>(Callee)) {
|
|
Callee = TTI->getConverted();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return Callee;
|
|
}
|
|
|
|
/// Checks if the callee of \p TAI is a convert from a function without
|
|
/// error result.
|
|
static bool isTryApplyOfConvertFunction(TryApplyInst *TAI,
|
|
SILValue &Callee,
|
|
SILType &CalleeType) {
|
|
auto *CFI = dyn_cast<ConvertFunctionInst>(TAI->getCallee());
|
|
if (!CFI)
|
|
return false;
|
|
|
|
// Check if it is a conversion of a non-throwing function into
|
|
// a throwing function. If this is the case, replace by a
|
|
// simple apply.
|
|
auto OrigFnTy = dyn_cast<SILFunctionType>(CFI->getConverted()->getType().
|
|
getSwiftRValueType());
|
|
if (!OrigFnTy || OrigFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
auto TargetFnTy = dyn_cast<SILFunctionType>(CFI->getType().
|
|
getSwiftRValueType());
|
|
if (!TargetFnTy || !TargetFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
// Check if the converted function type has the same number of arguments.
|
|
// Currently this is always the case, but who knows what convert_function can
|
|
// do in the future?
|
|
unsigned numParams = OrigFnTy->getParameters().size();
|
|
if (TargetFnTy->getParameters().size() != numParams)
|
|
return false;
|
|
|
|
// Check that the argument types are matching.
|
|
for (unsigned Idx = 0; Idx < numParams; Idx++) {
|
|
if (!canCastValueToABICompatibleType(
|
|
TAI->getModule(),
|
|
OrigFnTy->getParameters()[Idx].getSILType(),
|
|
TargetFnTy->getParameters()[Idx].getSILType()))
|
|
return false;
|
|
}
|
|
|
|
// Look through the conversions and find the real callee.
|
|
Callee = getActualCallee(CFI->getConverted());
|
|
CalleeType = Callee->getType();
|
|
|
|
// If it a call of a throwing callee, bail.
|
|
auto CalleeFnTy = dyn_cast<SILFunctionType>(CalleeType.getSwiftRValueType());
|
|
if (!CalleeFnTy || CalleeFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the error block of \p TAI has just an unreachable instruction.
|
|
/// In this case we know that the callee cannot throw.
|
|
static bool isTryApplyWithUnreachableError(TryApplyInst *TAI,
|
|
SILValue &Callee,
|
|
SILType &CalleeType) {
|
|
SILBasicBlock *ErrorBlock = TAI->getErrorBB();
|
|
TermInst *Term = ErrorBlock->getTerminator();
|
|
if (!isa<UnreachableInst>(Term))
|
|
return false;
|
|
|
|
if (&*ErrorBlock->begin() != Term)
|
|
return false;
|
|
|
|
Callee = TAI->getCallee();
|
|
CalleeType = TAI->getSubstCalleeSILType();
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyTryApplyBlock(TryApplyInst *TAI) {
|
|
|
|
SILValue Callee;
|
|
SILType CalleeType;
|
|
|
|
// Two reasons for converting a try_apply to an apply.
|
|
if (isTryApplyOfConvertFunction(TAI, Callee, CalleeType) ||
|
|
isTryApplyWithUnreachableError(TAI, Callee, CalleeType)) {
|
|
|
|
auto CalleeFnTy = cast<SILFunctionType>(CalleeType.getSwiftRValueType());
|
|
|
|
auto ResultTy = CalleeFnTy->getSILResult();
|
|
auto OrigResultTy = TAI->getNormalBB()->getBBArg(0)->getType();
|
|
|
|
// Bail if the cast between the actual and expected return types cannot
|
|
// be handled.
|
|
if (!canCastValueToABICompatibleType(TAI->getModule(),
|
|
ResultTy, OrigResultTy))
|
|
return false;
|
|
|
|
SILBuilderWithScope Builder(TAI);
|
|
|
|
auto TargetFnTy = dyn_cast<SILFunctionType>(
|
|
CalleeType.getSwiftRValueType());
|
|
if (TargetFnTy->isPolymorphic()) {
|
|
TargetFnTy = TargetFnTy->substGenericArgs(TAI->getModule(),
|
|
TAI->getModule().getSwiftModule(), TAI->getSubstitutions());
|
|
}
|
|
|
|
auto OrigFnTy = dyn_cast<SILFunctionType>(
|
|
TAI->getCallee()->getType().getSwiftRValueType());
|
|
if (OrigFnTy->isPolymorphic()) {
|
|
OrigFnTy = OrigFnTy->substGenericArgs(TAI->getModule(),
|
|
TAI->getModule().getSwiftModule(), TAI->getSubstitutions());
|
|
}
|
|
|
|
unsigned numArgs = TAI->getNumArguments();
|
|
|
|
// First check if it is possible to convert all arguments.
|
|
// Currently we believe that castValueToABICompatibleType can handle all
|
|
// cases, so this check should never fail. We just do it to be absolutely
|
|
// sure that we don't crash.
|
|
for (unsigned i = 0; i < numArgs; ++i) {
|
|
if (!canCastValueToABICompatibleType(TAI->getModule(),
|
|
OrigFnTy->getSILArgumentType(i),
|
|
TargetFnTy->getSILArgumentType(i))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SmallVector<SILValue, 8> Args;
|
|
for (unsigned i = 0; i < numArgs; ++i) {
|
|
auto Arg = TAI->getArgument(i);
|
|
// Cast argument if required.
|
|
Arg = castValueToABICompatibleType(&Builder, TAI->getLoc(), Arg,
|
|
OrigFnTy->getSILArgumentType(i),
|
|
TargetFnTy->getSILArgumentType(i))
|
|
.getValue();
|
|
Args.push_back(Arg);
|
|
}
|
|
|
|
assert (CalleeFnTy->getNumSILArguments() == Args.size() &&
|
|
"The number of arguments should match");
|
|
|
|
ApplyInst *NewAI = Builder.createApply(TAI->getLoc(), Callee,
|
|
CalleeType,
|
|
ResultTy,
|
|
TAI->getSubstitutions(),
|
|
Args, CalleeFnTy->hasErrorResult());
|
|
|
|
auto Loc = TAI->getLoc();
|
|
auto *NormalBB = TAI->getNormalBB();
|
|
|
|
auto CastedResult = castValueToABICompatibleType(&Builder, Loc, NewAI,
|
|
ResultTy, OrigResultTy)
|
|
.getValue();
|
|
|
|
Builder.createBranch(Loc, NormalBB, { CastedResult });
|
|
TAI->eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Replace the terminator of BB with a simple branch if all successors go
|
|
// to trampoline jumps to the same destination block. The successor blocks
|
|
// and the destination blocks may have no arguments.
|
|
bool SimplifyCFG::simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB) {
|
|
SILBasicBlock *commonDest = nullptr;
|
|
for (auto *SuccBlock : BB->getSuccessorBlocks()) {
|
|
if (SuccBlock->getNumBBArg() != 0)
|
|
return false;
|
|
SILBasicBlock *DestBlock = getTrampolineDest(SuccBlock);
|
|
if (!DestBlock)
|
|
return false;
|
|
if (!commonDest) {
|
|
commonDest = DestBlock;
|
|
} else if (DestBlock != commonDest) {
|
|
return false;
|
|
}
|
|
}
|
|
if (!commonDest)
|
|
return false;
|
|
|
|
assert(commonDest->getNumBBArg() == 0 &&
|
|
"getTrampolineDest should have checked that commonDest has no args");
|
|
|
|
TermInst *Term = BB->getTerminator();
|
|
SILBuilderWithScope(Term).createBranch(Term->getLoc(), commonDest, {});
|
|
Term->eraseFromParent();
|
|
addToWorklist(BB);
|
|
addToWorklist(commonDest);
|
|
return true;
|
|
}
|
|
|
|
void RemoveUnreachable::visit(SILBasicBlock *BB) {
|
|
if (!Visited.insert(BB).second)
|
|
return;
|
|
|
|
for (auto &Succ : BB->getSuccessors())
|
|
visit(Succ);
|
|
}
|
|
|
|
bool RemoveUnreachable::run() {
|
|
bool Changed = false;
|
|
|
|
// Clear each time we run so that we can run multiple times.
|
|
Visited.clear();
|
|
|
|
// Visit all blocks reachable from the entry block of the function.
|
|
visit(&*Fn.begin());
|
|
|
|
// Remove the blocks we never reached.
|
|
for (auto It = Fn.begin(), End = Fn.end(); It != End; ) {
|
|
auto *BB = &*It++;
|
|
if (!Visited.count(BB)) {
|
|
removeDeadBlock(BB);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Checks if the block contains a cond_fail as first side-effect instruction
|
|
/// and tries to move it to the predecessors (if beneficial). A sequence
|
|
///
|
|
/// bb1:
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// br bb3(%i) // at least one input argument must be constant
|
|
/// bb3(%a) // = BB
|
|
/// cond_fail %a // %a must not have other uses
|
|
///
|
|
/// is replaced with
|
|
///
|
|
/// bb1:
|
|
/// cond_fail %c
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// cond_fail %i
|
|
/// br bb3(%i)
|
|
/// bb3(%a) // %a is dead
|
|
///
|
|
static bool tryMoveCondFailToPreds(SILBasicBlock *BB) {
|
|
|
|
CondFailInst *CFI = getFirstCondFail(BB);
|
|
if (!CFI)
|
|
return false;
|
|
|
|
// Find the underlying condition value of the cond_fail.
|
|
// We only accept single uses. This is not a correctness check, but we only
|
|
// want to the optimization if the condition gets dead after moving the
|
|
// cond_fail.
|
|
bool inverted = false;
|
|
SILValue cond = skipInvert(CFI->getOperand(), inverted, true);
|
|
if (!cond)
|
|
return false;
|
|
|
|
// Check if the condition is a single-used argument in the current block.
|
|
SILArgument *condArg = dyn_cast<SILArgument>(cond);
|
|
if (!condArg || !condArg->hasOneUse())
|
|
return false;
|
|
|
|
if (condArg->getParent() != BB)
|
|
return false;
|
|
|
|
// Check if some of the predecessor blocks provide a constant for the
|
|
// cond_fail condition. So that the optimization has a positive effect.
|
|
bool somePredsAreConst = false;
|
|
for (auto *Pred : BB->getPreds()) {
|
|
|
|
// The cond_fail must post-dominate the predecessor block. We may not
|
|
// execute the cond_fail speculatively.
|
|
if (!Pred->getSingleSuccessor())
|
|
return false;
|
|
|
|
SILValue incoming = condArg->getIncomingValue(Pred);
|
|
if (isa<IntegerLiteralInst>(incoming)) {
|
|
somePredsAreConst = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!somePredsAreConst)
|
|
return false;
|
|
|
|
DEBUG(llvm::dbgs() << "### move to predecessors: " << *CFI);
|
|
|
|
// Move the cond_fail to the predecessor blocks.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
SILValue incoming = condArg->getIncomingValue(Pred);
|
|
SILBuilderWithScope Builder(Pred->getTerminator());
|
|
|
|
createCondFail(CFI, incoming, inverted, Builder);
|
|
}
|
|
CFI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyBlocks() {
|
|
bool Changed = false;
|
|
|
|
// Add all of the blocks to the function.
|
|
for (auto &BB : Fn)
|
|
addToWorklist(&BB);
|
|
|
|
// Iteratively simplify while there is still work to do.
|
|
while (SILBasicBlock *BB = popWorklist()) {
|
|
// If the block is dead, remove it.
|
|
if (removeIfDead(BB)) {
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, try to simplify the terminator.
|
|
TermInst *TI = BB->getTerminator();
|
|
|
|
switch (TI->getTermKind()) {
|
|
case TermKind::BranchInst:
|
|
Changed |= simplifyBranchBlock(cast<BranchInst>(TI));
|
|
break;
|
|
case TermKind::CondBranchInst:
|
|
Changed |= simplifyCondBrBlock(cast<CondBranchInst>(TI));
|
|
break;
|
|
case TermKind::SwitchValueInst:
|
|
// FIXME: Optimize for known switch values.
|
|
Changed |= simplifySwitchValueBlock(cast<SwitchValueInst>(TI));
|
|
break;
|
|
case TermKind::SwitchEnumInst:
|
|
Changed |= simplifySwitchEnumBlock(cast<SwitchEnumInst>(TI));
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
case TermKind::UnreachableInst:
|
|
Changed |= simplifyUnreachableBlock(cast<UnreachableInst>(TI));
|
|
break;
|
|
case TermKind::CheckedCastBranchInst:
|
|
Changed |= simplifyCheckedCastBranchBlock(cast<CheckedCastBranchInst>(TI));
|
|
break;
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
Changed |= simplifyCheckedCastAddrBranchBlock(cast<CheckedCastAddrBranchInst>(TI));
|
|
break;
|
|
case TermKind::TryApplyInst:
|
|
Changed |= simplifyTryApplyBlock(cast<TryApplyInst>(TI));
|
|
break;
|
|
case TermKind::SwitchEnumAddrInst:
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
case TermKind::ThrowInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::ReturnInst:
|
|
break;
|
|
}
|
|
// If the block has a cond_fail, try to move it to the predecessors.
|
|
Changed |= tryMoveCondFailToPreds(BB);
|
|
|
|
// Simplify the block argument list.
|
|
Changed |= simplifyArgs(BB);
|
|
|
|
// Simplify the program termination block.
|
|
Changed |= simplifyProgramTerminationBlock(BB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Canonicalize all switch_enum and switch_enum_addr instructions.
|
|
/// If possible, replace the default with the corresponding unique case.
|
|
bool SimplifyCFG::canonicalizeSwitchEnums() {
|
|
bool Changed = false;
|
|
for (auto &BB : Fn) {
|
|
TermInst *TI = BB.getTerminator();
|
|
|
|
SwitchEnumInstBase *SWI = dyn_cast<SwitchEnumInstBase>(TI);
|
|
if (!SWI)
|
|
continue;
|
|
|
|
if (!SWI->hasDefault())
|
|
continue;
|
|
|
|
NullablePtr<EnumElementDecl> elementDecl = SWI->getUniqueCaseForDefault();
|
|
if (!elementDecl)
|
|
continue;
|
|
|
|
// Construct a new instruction by copying all the case entries.
|
|
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
|
|
for (int idx = 0, numIdcs = SWI->getNumCases(); idx < numIdcs; idx++) {
|
|
CaseBBs.push_back(SWI->getCase(idx));
|
|
}
|
|
// Add the default-entry of the original instruction as case-entry.
|
|
CaseBBs.push_back(std::make_pair(elementDecl.get(), SWI->getDefaultBB()));
|
|
|
|
if (SWI->getKind() == ValueKind::SwitchEnumInst) {
|
|
SILBuilderWithScope(SWI)
|
|
.createSwitchEnum(SWI->getLoc(), SWI->getOperand(), nullptr, CaseBBs);
|
|
} else {
|
|
assert(SWI->getKind() == ValueKind::SwitchEnumAddrInst &&
|
|
"unknown switch_enum instruction");
|
|
SILBuilderWithScope(SWI).createSwitchEnumAddr(
|
|
SWI->getLoc(), SWI->getOperand(), nullptr, CaseBBs);
|
|
}
|
|
SWI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static SILBasicBlock *isObjCMethodCallBlock(SILBasicBlock &Block) {
|
|
auto *Branch = dyn_cast<BranchInst>(Block.getTerminator());
|
|
if (!Branch)
|
|
return nullptr;
|
|
|
|
for (auto &Inst : Block) {
|
|
// Look for an objc method call.
|
|
auto *Apply = dyn_cast<ApplyInst>(&Inst);
|
|
if (!Apply)
|
|
continue;
|
|
auto *Callee = dyn_cast<WitnessMethodInst>(Apply->getCallee());
|
|
if (!Callee || !Callee->getMember().isForeign)
|
|
continue;
|
|
|
|
return Branch->getDestBB();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to duplicate small blocks that contain a least on release and have
|
|
/// multiple predecessor.
|
|
static bool shouldTailDuplicate(SILBasicBlock &Block) {
|
|
unsigned Cost = 0;
|
|
bool SawRelease = false;
|
|
|
|
if (isa<ReturnInst>(Block.getTerminator()))
|
|
return false;
|
|
|
|
if (Block.getSinglePredecessor())
|
|
return false;
|
|
|
|
for (auto &Inst : Block) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
if (isa<ApplyInst>(&Inst))
|
|
return false;
|
|
|
|
if (isa<ReleaseValueInst>(&Inst) ||
|
|
isa<StrongReleaseInst>(&Inst))
|
|
SawRelease = true;
|
|
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 12)
|
|
return false;
|
|
}
|
|
|
|
return SawRelease;
|
|
}
|
|
|
|
|
|
/// Tail duplicate successor blocks of blocks that perform an objc method call
|
|
/// and who contain releases. Cloning such blocks can allow ARC to sink retain
|
|
/// releases onto the ObjC path.
|
|
bool SimplifyCFG::tailDuplicateObjCMethodCallSuccessorBlocks() {
|
|
SmallVector<SILBasicBlock *, 16> ObjCBlocks;
|
|
|
|
// Collect blocks to tail duplicate.
|
|
for (auto &BB : Fn) {
|
|
SILBasicBlock *DestBB;
|
|
if ((DestBB = isObjCMethodCallBlock(BB)) && !LoopHeaders.count(DestBB) &&
|
|
shouldTailDuplicate(*DestBB))
|
|
ObjCBlocks.push_back(&BB);
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (auto *BB : ObjCBlocks) {
|
|
auto *Branch = cast<BranchInst>(BB->getTerminator());
|
|
auto *DestBB = Branch->getDestBB();
|
|
Changed = true;
|
|
|
|
// Okay, it looks like we want to do this and we can. Duplicate the
|
|
// destination block into this one, rewriting uses of the BBArgs to use the
|
|
// branch arguments as we go.
|
|
EdgeThreadingCloner Cloner(Branch);
|
|
|
|
for (auto &I : *DestBB)
|
|
Cloner.process(&I);
|
|
|
|
updateSSAAfterCloning(Cloner, Cloner.getEdgeBB(), DestBB);
|
|
addToWorklist(Cloner.getEdgeBB());
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static void
|
|
deleteTriviallyDeadOperandsOfDeadArgument(MutableArrayRef<Operand> TermOperands,
|
|
unsigned DeadArgIndex, SILModule &M) {
|
|
Operand &Op = TermOperands[DeadArgIndex];
|
|
auto *I = dyn_cast<SILInstruction>(Op.get());
|
|
if (!I)
|
|
return;
|
|
Op.set(SILUndef::get(Op.get()->getType(), M));
|
|
recursivelyDeleteTriviallyDeadInstructions(I);
|
|
}
|
|
|
|
static void removeArgumentFromTerminator(SILBasicBlock *BB, SILBasicBlock *Dest,
|
|
int idx) {
|
|
TermInst *Branch = BB->getTerminator();
|
|
SILBuilderWithScope Builder(Branch);
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(Branch)) {
|
|
DEBUG(llvm::dbgs() << "*** Fixing CondBranchInst.\n");
|
|
|
|
SmallVector<SILValue, 8> TrueArgs;
|
|
SmallVector<SILValue, 8> FalseArgs;
|
|
|
|
for (auto A : CBI->getTrueArgs())
|
|
TrueArgs.push_back(A);
|
|
|
|
for (auto A : CBI->getFalseArgs())
|
|
FalseArgs.push_back(A);
|
|
|
|
if (Dest == CBI->getTrueBB()) {
|
|
deleteTriviallyDeadOperandsOfDeadArgument(CBI->getTrueOperands(), idx,
|
|
BB->getModule());
|
|
TrueArgs.erase(TrueArgs.begin() + idx);
|
|
}
|
|
|
|
if (Dest == CBI->getFalseBB()) {
|
|
deleteTriviallyDeadOperandsOfDeadArgument(CBI->getFalseOperands(), idx,
|
|
BB->getModule());
|
|
FalseArgs.erase(FalseArgs.begin() + idx);
|
|
}
|
|
|
|
Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
|
|
CBI->getTrueBB(), TrueArgs, CBI->getFalseBB(),
|
|
FalseArgs);
|
|
Branch->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
if (auto *BI = dyn_cast<BranchInst>(Branch)) {
|
|
DEBUG(llvm::dbgs() << "*** Fixing BranchInst.\n");
|
|
SmallVector<SILValue, 8> Args;
|
|
|
|
for (auto A : BI->getArgs())
|
|
Args.push_back(A);
|
|
|
|
deleteTriviallyDeadOperandsOfDeadArgument(BI->getAllOperands(), idx,
|
|
BB->getModule());
|
|
Args.erase(Args.begin() + idx);
|
|
Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
|
|
Branch->eraseFromParent();
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported terminator");
|
|
}
|
|
|
|
static void removeArgument(SILBasicBlock *BB, unsigned i) {
|
|
DEBUG(llvm::dbgs() << "*** Erasing " << i << "th BB argument.\n");
|
|
NumDeadArguments++;
|
|
BB->eraseBBArg(i);
|
|
|
|
// Determine the set of predecessors in case any predecessor has
|
|
// two edges to this block (e.g. a conditional branch where both
|
|
// sides reach this block).
|
|
llvm::SmallPtrSet<SILBasicBlock *, 4> PredBBs;
|
|
for (auto *Pred : BB->getPreds())
|
|
PredBBs.insert(Pred);
|
|
|
|
for (auto *Pred : PredBBs)
|
|
removeArgumentFromTerminator(Pred, BB, i);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ArgumentSplitter {
|
|
/// The argument we are splitting.
|
|
SILArgument *Arg;
|
|
|
|
/// The worklist of arguments that we still ned to visit. We simplify each
|
|
/// argument recursively one step at a time.
|
|
std::vector<SILArgument *> &Worklist;
|
|
|
|
/// The values incoming into Arg.
|
|
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingValues;
|
|
|
|
/// The list of first level projections that Arg can be split into.
|
|
llvm::SmallVector<Projection, 4> Projections;
|
|
|
|
llvm::Optional<int> FirstNewArgIndex;
|
|
|
|
public:
|
|
ArgumentSplitter(SILArgument *A, std::vector<SILArgument *> &W)
|
|
: Arg(A), Worklist(W), IncomingValues() {}
|
|
bool split();
|
|
|
|
private:
|
|
bool createNewArguments();
|
|
void replaceIncomingArgs(SILBuilder &B, BranchInst *BI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
|
|
void replaceIncomingArgs(SILBuilder &B, CondBranchInst *CBI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
|
|
};
|
|
}
|
|
|
|
void ArgumentSplitter::replaceIncomingArgs(
|
|
SILBuilder &B, BranchInst *BI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
|
|
for (unsigned i : reversed(indices(BI->getAllOperands()))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(BI->getArg(i));
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
B.createBranch(BI->getLoc(), BI->getDestBB(), NewIncomingValues);
|
|
}
|
|
|
|
void ArgumentSplitter::replaceIncomingArgs(
|
|
SILBuilder &B, CondBranchInst *CBI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
|
|
llvm::SmallVector<SILValue, 4> OldIncomingValues;
|
|
ArrayRef<SILValue> NewTrueValues, NewFalseValues;
|
|
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
if (Arg->getParent() == CBI->getTrueBB()) {
|
|
ArrayRef<Operand> TrueArgs = CBI->getTrueOperands();
|
|
for (unsigned i : reversed(indices(TrueArgs))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(TrueArgs[i].get());
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
for (SILValue V : CBI->getFalseArgs())
|
|
OldIncomingValues.push_back(V);
|
|
NewTrueValues = NewIncomingValues;
|
|
NewFalseValues = OldIncomingValues;
|
|
} else {
|
|
ArrayRef<Operand> FalseArgs = CBI->getFalseOperands();
|
|
for (unsigned i : reversed(indices(FalseArgs))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(FalseArgs[i].get());
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
for (SILValue V : CBI->getTrueArgs())
|
|
OldIncomingValues.push_back(V);
|
|
NewTrueValues = OldIncomingValues;
|
|
NewFalseValues = NewIncomingValues;
|
|
}
|
|
|
|
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(),
|
|
NewTrueValues, CBI->getFalseBB(), NewFalseValues);
|
|
}
|
|
|
|
bool ArgumentSplitter::createNewArguments() {
|
|
SILModule &Mod = Arg->getModule();
|
|
SILBasicBlock *ParentBB = Arg->getParent();
|
|
|
|
// Grab the incoming values. Return false if we can't find them.
|
|
if (!Arg->getIncomingValues(IncomingValues))
|
|
return false;
|
|
|
|
// Only handle struct and tuple type.
|
|
SILType Ty = Arg->getType();
|
|
if (!Ty.getStructOrBoundGenericStruct() && !Ty.getAs<TupleType>())
|
|
return false;
|
|
|
|
// Get the first level projection for the struct or tuple type.
|
|
Projection::getFirstLevelProjections(Arg->getType(), Mod, Projections);
|
|
|
|
// We do not want to split arguments with less than 2 projections.
|
|
if (Projections.size() < 2)
|
|
return false;
|
|
|
|
// We do not want to split arguments that have less than 2 non-trivial
|
|
// projections.
|
|
if (count_if(Projections, [&](const Projection &P) {
|
|
return !P.getType(Ty, Mod).isTrivial(Mod);
|
|
}) < 2)
|
|
return false;
|
|
|
|
// We subtract one since this will be the number of the first new argument
|
|
// *AFTER* we remove the old argument.
|
|
FirstNewArgIndex = ParentBB->getNumBBArg() - 1;
|
|
|
|
// For now for simplicity, we put all new arguments on the end and delete the
|
|
// old one.
|
|
llvm::SmallVector<SILValue, 4> NewArgumentValues;
|
|
for (auto &P : Projections) {
|
|
auto *NewArg = ParentBB->createBBArg(P.getType(Ty, Mod), nullptr);
|
|
// This is unfortunate, but it feels wrong to put in an API into SILBuilder
|
|
// that only takes in arguments.
|
|
//
|
|
// TODO: We really need some sort of entry point that is more flexible in
|
|
// these apis than a ArrayRef<SILValue>.
|
|
NewArgumentValues.push_back(NewArg);
|
|
}
|
|
|
|
SILInstruction *Agg = nullptr;
|
|
|
|
{
|
|
SILBuilder B(ParentBB->begin());
|
|
B.setCurrentDebugScope(ParentBB->getParent()->getDebugScope());
|
|
|
|
// Reform the original structure
|
|
//
|
|
// TODO: What is the right location to use here.
|
|
auto Loc = RegularLocation::getAutoGeneratedLocation();
|
|
Agg = Projection::createAggFromFirstLevelProjections(
|
|
B, Loc, Arg->getType(), NewArgumentValues).get();
|
|
assert(Agg->hasValue() && "Expected a result");
|
|
}
|
|
|
|
Arg->replaceAllUsesWith(Agg);
|
|
|
|
// Replace any references to Arg in IncomingValues with Agg. These
|
|
// references are used in generating new instructions that extract
|
|
// from the aggregate.
|
|
for (auto &P : IncomingValues)
|
|
if (P.second == Arg)
|
|
P.second = Agg;
|
|
|
|
// Look at all users of agg and see if we can simplify any of them. This will
|
|
// eliminate struct_extracts/tuple_extracts from the newly created aggregate
|
|
// and have them point directly at the argument.
|
|
simplifyUsers(Agg);
|
|
|
|
// If we only had such users of Agg and Agg is dead now (ignoring debug
|
|
// instructions), remove it.
|
|
if (onlyHaveDebugUses(Agg))
|
|
eraseFromParentWithDebugInsts(Agg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static llvm::cl::opt<bool>
|
|
RemoveDeadArgsWhenSplitting("sroa-args-remove-dead-args-after",
|
|
llvm::cl::init(true));
|
|
|
|
bool ArgumentSplitter::split() {
|
|
SILBasicBlock *ParentBB = Arg->getParent();
|
|
|
|
if (!createNewArguments())
|
|
return false;
|
|
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
llvm::SmallVector<SILValue, 4> NewIncomingValues;
|
|
// Then for each incoming value, fixup the branch, cond_branch instructions.
|
|
for (auto P : IncomingValues) {
|
|
SILBasicBlock *Pred = P.first;
|
|
SILValue Base = P.second;
|
|
auto *OldTerm = Pred->getTerminator();
|
|
SILBuilderWithScope B(OldTerm->getParent(), OldTerm);
|
|
|
|
auto Loc = RegularLocation::getAutoGeneratedLocation();
|
|
assert(NewIncomingValues.empty() && "NewIncomingValues was not cleared?");
|
|
for (auto &P : reversed(Projections)) {
|
|
auto *ProjInst = P.createProjection(B, Loc, Base).get();
|
|
NewIncomingValues.push_back(ProjInst);
|
|
}
|
|
|
|
if (auto *Br = dyn_cast<BranchInst>(OldTerm)) {
|
|
replaceIncomingArgs(B, Br, NewIncomingValues);
|
|
} else {
|
|
auto *CondBr = cast<CondBranchInst>(OldTerm);
|
|
replaceIncomingArgs(B, CondBr, NewIncomingValues);
|
|
}
|
|
|
|
OldTerm->eraseFromParent();
|
|
NewIncomingValues.clear();
|
|
}
|
|
|
|
// Delete the old argument. We need to do this before trying to remove any
|
|
// dead arguments that we added since otherwise the number of incoming values
|
|
// to the phi nodes will differ from the number of values coming
|
|
ParentBB->eraseBBArg(ArgIndex);
|
|
++NumSROAArguments;
|
|
|
|
// This is here for testing purposes via sil-opt
|
|
if (!RemoveDeadArgsWhenSplitting)
|
|
return true;
|
|
|
|
// Perform some cleanups such as:
|
|
//
|
|
// 1. Removing any newly inserted arguments that are actually dead.
|
|
// 2. As a result of removing these arguments, remove any newly dead object
|
|
// projections.
|
|
|
|
// Do a quick pass over the new arguments to see if any of them are dead. We
|
|
// can do this unconditionally in a safe way since we are only dealing with
|
|
// cond_br, br.
|
|
for (int i = ParentBB->getNumBBArg() - 1, e = *FirstNewArgIndex; i >= e;
|
|
--i) {
|
|
SILArgument *A = ParentBB->getBBArg(i);
|
|
if (!A->use_empty()) {
|
|
// We know that the argument is not dead, so add it to the worklist for
|
|
// recursive processing.
|
|
Worklist.push_back(A);
|
|
continue;
|
|
}
|
|
removeArgument(ParentBB, i);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// This currently invalidates the CFG since parts of PHI nodes are stored in
|
|
/// branch instructions and we replace the branch instructions as part of this
|
|
/// operation. If/when PHI nodes can be updated without invalidating the CFG,
|
|
/// this should be moved to the SROA pass.
|
|
static bool splitBBArguments(SILFunction &Fn) {
|
|
bool Changed = false;
|
|
std::vector<SILArgument *> Worklist;
|
|
|
|
// We know that we have at least one BB, so this is safe since in such a case
|
|
// std::next(Fn->begin()) == Fn->end(), the exit case of iteration on a range.
|
|
for (auto &BB : make_range(std::next(Fn.begin()), Fn.end())) {
|
|
for (auto *Arg : BB.getBBArgs()) {
|
|
SILType ArgTy = Arg->getType();
|
|
|
|
if (!ArgTy.isObject() ||
|
|
(!ArgTy.is<TupleType>() && !ArgTy.getStructOrBoundGenericStruct())) {
|
|
continue;
|
|
}
|
|
|
|
// Make sure that all predecessors of our BB have either a br or cond_br
|
|
// terminator. We only handle those cases.
|
|
if (std::any_of(BB.pred_begin(), BB.pred_end(),
|
|
[](SILBasicBlock *Pred) -> bool {
|
|
auto *TI = Pred->getTerminator();
|
|
return !isa<BranchInst>(TI) && !isa<CondBranchInst>(TI);
|
|
})) {
|
|
continue;
|
|
}
|
|
|
|
Worklist.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
SILArgument *Arg = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
Changed |= ArgumentSplitter(Arg, Worklist).split();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::run() {
|
|
RemoveUnreachable RU(Fn);
|
|
|
|
// First remove any block not reachable from the entry.
|
|
bool Changed = RU.run();
|
|
|
|
// Find the set of loop headers. We don't want to jump-thread through headers.
|
|
findLoopHeaders();
|
|
|
|
DT = nullptr;
|
|
|
|
// Perform SROA on BB arguments.
|
|
Changed |= splitBBArguments(Fn);
|
|
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
RU.run();
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
// Do simplifications that require the dominator tree to be accurate.
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
|
|
if (Changed) {
|
|
// Force dominator recomputation since we modified the cfg.
|
|
DA->invalidate(&Fn, SILAnalysis::InvalidationKind::Everything);
|
|
}
|
|
|
|
Changed |= dominatorBasedSimplify(DA);
|
|
|
|
DT = nullptr;
|
|
// Now attempt to simplify the remaining blocks.
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
RU.run();
|
|
Changed = true;
|
|
}
|
|
|
|
if (tailDuplicateObjCMethodCallSuccessorBlocks()) {
|
|
Changed = true;
|
|
if (simplifyBlocks())
|
|
RU.run();
|
|
}
|
|
|
|
// Split all critical edges from non cond_br terminators.
|
|
Changed |= splitAllCriticalEdges(Fn, true, nullptr, nullptr);
|
|
|
|
// Canonicalize switch_enum instructions.
|
|
Changed |= canonicalizeSwitchEnums();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Is an argument from this terminator considered mandatory?
|
|
static bool hasMandatoryArgument(TermInst *term) {
|
|
// It's more maintainable to just white-list the instructions that
|
|
// *do* have mandatory arguments.
|
|
return (!isa<BranchInst>(term) && !isa<CondBranchInst>(term));
|
|
}
|
|
|
|
|
|
// Get the element of Aggregate corresponding to the one extracted by
|
|
// Extract.
|
|
static SILValue getInsertedValue(SILInstruction *Aggregate,
|
|
SILInstruction *Extract) {
|
|
if (auto *Struct = dyn_cast<StructInst>(Aggregate)) {
|
|
auto *SEI = cast<StructExtractInst>(Extract);
|
|
return Struct->getFieldValue(SEI->getField());
|
|
}
|
|
auto *Tuple = cast<TupleInst>(Aggregate);
|
|
auto *TEI = cast<TupleExtractInst>(Extract);
|
|
return Tuple->getElement(TEI->getFieldNo());
|
|
}
|
|
|
|
/// Find a parent SwitchEnumInst of the block \p BB. The block \p BB is a
|
|
/// predecessor of the merge-block \p PostBB which should post-dominate the
|
|
/// switch_enum. Any successors of the switch_enum which reach \p BB (and are
|
|
/// post-dominated by \p BB) are added to \p Blocks.
|
|
static SwitchEnumInst *
|
|
getSwitchEnumPred(SILBasicBlock *BB, SILBasicBlock *PostBB,
|
|
SmallVectorImpl<SILBasicBlock *> &Blocks) {
|
|
|
|
if (BB->pred_empty())
|
|
return nullptr;
|
|
|
|
// Check that this block only produces the value, but does not
|
|
// have any side effects.
|
|
auto First = BB->begin();
|
|
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
assert(BI->getDestBB() == PostBB && "BB not a predecessor of PostBB");
|
|
|
|
if (BI != &*First) {
|
|
// There may be only one instruction before the branch.
|
|
if (BI != &*std::next(First))
|
|
return nullptr;
|
|
|
|
// There are some instructions besides the branch.
|
|
// It should be only an integer literal instruction.
|
|
// Handle only integer values for now.
|
|
auto *ILI = dyn_cast<IntegerLiteralInst>(First);
|
|
if (!ILI)
|
|
return nullptr;
|
|
|
|
// Check that this literal is only used by the terminator.
|
|
for (auto U : ILI->getUses())
|
|
if (U->getUser() != BI)
|
|
return nullptr;
|
|
}
|
|
|
|
// Check if BB is reachable from a single enum case, which means that the
|
|
// immediate predecessor of BB is the switch_enum itself.
|
|
if (SILBasicBlock *PredBB = BB->getSinglePredecessor()) {
|
|
// Check if a predecessor BB terminates with a switch_enum instruction
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(PredBB->getTerminator())) {
|
|
Blocks.push_back(BB);
|
|
return SEI;
|
|
}
|
|
}
|
|
|
|
// Check if BB is reachable from multiple enum cases. This means that there is
|
|
// a single-branch block for each enum case which branch to BB.
|
|
SILBasicBlock *CommonPredPredBB = nullptr;
|
|
for (auto PredBB : BB->getPreds()) {
|
|
TermInst *PredTerm = PredBB->getTerminator();
|
|
if (!isa<BranchInst>(PredTerm) || PredTerm != &*PredBB->begin())
|
|
return nullptr;
|
|
|
|
auto *PredPredBB = PredBB->getSinglePredecessor();
|
|
if (!PredPredBB)
|
|
return nullptr;
|
|
|
|
// Check if all predecessors of BB have a single common predecessor (which
|
|
// should be the block with the switch_enum).
|
|
if (CommonPredPredBB && PredPredBB != CommonPredPredBB)
|
|
return nullptr;
|
|
|
|
CommonPredPredBB = PredPredBB;
|
|
Blocks.push_back(PredBB);
|
|
}
|
|
// Check if the common predecessor block has a switch_enum.
|
|
return dyn_cast<SwitchEnumInst>(CommonPredPredBB->getTerminator());
|
|
}
|
|
|
|
/// Helper function to produce a SILValue from a result value
|
|
/// produced by a basic block responsible for handling a
|
|
/// specific enum tag.
|
|
static SILValue
|
|
getSILValueFromCaseResult(SILBuilder &B, SILLocation Loc,
|
|
SILType Type, IntegerLiteralInst *ValInst) {
|
|
auto Value = ValInst->getValue();
|
|
if (Value.getBitWidth() != 1)
|
|
return B.createIntegerLiteral(Loc, Type, Value);
|
|
else
|
|
// This is a boolean value
|
|
return B.createIntegerLiteral(Loc, Type, Value.getBoolValue());
|
|
}
|
|
|
|
/// Given an integer argument, see if it is ultimately matching whether
|
|
/// a given enum is of a given tag. If so, create a new select_enum instruction
|
|
/// This is used to simplify arbitrary simple switch_enum diamonds into
|
|
/// select_enums.
|
|
bool simplifySwitchEnumToSelectEnum(SILBasicBlock *BB, unsigned ArgNum,
|
|
SILArgument *IntArg) {
|
|
|
|
// Don't know which values should be passed if there is more
|
|
// than one basic block argument.
|
|
if (BB->bbarg_size() > 1)
|
|
return false;
|
|
|
|
// Mapping from case values to the results corresponding to this case value.
|
|
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseToValue;
|
|
|
|
// Mapping from BB responsible for a specific case value to the result it
|
|
// produces.
|
|
llvm::DenseMap<SILBasicBlock *, IntegerLiteralInst *> BBToValue;
|
|
|
|
// switch_enum instruction to be replaced.
|
|
SwitchEnumInst *SEI = nullptr;
|
|
|
|
// Iterate over all immediate predecessors of the target basic block.
|
|
// - Check that each one stems directly or indirectly from the same
|
|
// switch_enum instruction.
|
|
// - Remember for each case tag of the switch_enum instruction which
|
|
// integer value it produces.
|
|
// - Check that each block handling a given case tag of a switch_enum
|
|
// only produces an integer value and does not have any side-effects.
|
|
// Predecessors which do not satisfy these conditions are not included in the
|
|
// BBToValue map (but we don't bail in this case).
|
|
for (auto P : BB->getPreds()) {
|
|
// Only handle branch instructions.
|
|
auto *TI = P->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return false;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
// Only handle integer values
|
|
auto *IntLit = dyn_cast<IntegerLiteralInst>(Arg);
|
|
if (!IntLit)
|
|
continue;
|
|
|
|
// Set of blocks that branch to/reach this basic block P and are immediate
|
|
// successors of a switch_enum instruction.
|
|
SmallVector<SILBasicBlock *, 8> Blocks;
|
|
|
|
// Try to find a parent SwitchEnumInst for the current predecessor of BB.
|
|
auto *PredSEI = getSwitchEnumPred(P, BB, Blocks);
|
|
|
|
// Check if the predecessor is not produced by a switch_enum instruction.
|
|
if (!PredSEI)
|
|
continue;
|
|
|
|
// Check if all predecessors stem from the same switch_enum instruction.
|
|
if (SEI && SEI != PredSEI)
|
|
continue;
|
|
SEI = PredSEI;
|
|
|
|
// Remember the result value used to branch to this instruction.
|
|
for (auto B : Blocks)
|
|
BBToValue[B] = IntLit;
|
|
}
|
|
|
|
if (!SEI)
|
|
return false;
|
|
|
|
// Check if all enum cases and the default case go to one of our collected
|
|
// blocks. This check ensures that the target block BB post-dominates the
|
|
// switch_enum block.
|
|
for (SILBasicBlock *Succ : SEI->getSuccessors()) {
|
|
if (!BBToValue.count(Succ))
|
|
return false;
|
|
}
|
|
|
|
// Insert the new enum_select instruction right after enum_switch
|
|
SILBuilder B(SEI);
|
|
|
|
// Form a set of case_tag:result pairs for select_enum
|
|
for (unsigned i = 0, e = SEI->getNumCases(); i != e; ++i) {
|
|
std::pair<EnumElementDecl *, SILBasicBlock *> Pair = SEI->getCase(i);
|
|
auto CaseValue = BBToValue[Pair.second];
|
|
auto CaseSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
CaseValue);
|
|
CaseToValue.push_back(std::make_pair(Pair.first, CaseSILValue));
|
|
}
|
|
|
|
// Default value for select_enum.
|
|
SILValue DefaultSILValue = SILValue();
|
|
|
|
if (SEI->hasDefault()) {
|
|
// Try to define a default case for enum_select based
|
|
// on the default case of enum_switch.
|
|
auto DefaultValue = BBToValue[SEI->getDefaultBB()];
|
|
DefaultSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
DefaultValue);
|
|
} else {
|
|
// Try to see if enum_switch covers all possible cases.
|
|
// If it does, then pick one of those cases as a default.
|
|
|
|
// Count the number of possible case tags for a given enum type
|
|
auto *Enum = SEI->getOperand()->getType().getEnumOrBoundGenericEnum();
|
|
unsigned ElemCount = 0;
|
|
for (auto E : Enum->getAllElements()) {
|
|
if (E)
|
|
ElemCount++;
|
|
}
|
|
|
|
// Check if all possible cases are covered.
|
|
if (ElemCount == SEI->getNumCases()) {
|
|
// This enum_switch instruction is exhaustive.
|
|
// Make the last case a default.
|
|
auto Pair = CaseToValue.pop_back_val();
|
|
DefaultSILValue = Pair.second;
|
|
}
|
|
}
|
|
|
|
// We don't need to have explicit cases for any case tags which produce the
|
|
// same result as the default branch.
|
|
if (DefaultSILValue != SILValue()) {
|
|
auto DefaultValue = DefaultSILValue;
|
|
auto *DefaultSI = dyn_cast<IntegerLiteralInst>(DefaultValue);
|
|
for (auto I = CaseToValue.begin(); I != CaseToValue.end();) {
|
|
auto CaseValue = I->second;
|
|
if (CaseValue == DefaultValue) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
|
|
if (DefaultSI) {
|
|
if (auto CaseSI = dyn_cast<IntegerLiteralInst>(CaseValue)) {
|
|
if (DefaultSI->getValue() == CaseSI->getValue()) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Create a new select_enum instruction
|
|
auto SelectInst = B.createSelectEnum(SEI->getLoc(), SEI->getOperand(),
|
|
IntArg->getType(),
|
|
DefaultSILValue, CaseToValue);
|
|
// Do not replace the bbarg
|
|
SmallVector<SILValue, 4> Args;
|
|
Args.push_back(SelectInst);
|
|
B.setInsertionPoint(&*std::next(SelectInst->getIterator()));
|
|
B.createBranch(SEI->getLoc(), BB, Args);
|
|
// Remove switch_enum instruction
|
|
SEI->getParent()->getTerminator()->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Collected information for a select_value case or default case.
|
|
struct CaseInfo {
|
|
/// The input value or null if it is the default case.
|
|
IntegerLiteralInst *Literal = nullptr;
|
|
|
|
/// The result value.
|
|
SILInstruction *Result = nullptr;
|
|
|
|
/// The block which contains the cond_br of the input value comparison
|
|
/// or the block which assigns the default value.
|
|
SILBasicBlock *CmpOrDefault = nullptr;
|
|
};
|
|
|
|
/// Get information about a potential select_value case (or default).
|
|
/// \p Input is set to the common input value.
|
|
/// \p Pred is the predecessor block of the last merge block of the CFG pattern.
|
|
/// \p ArgNum is the index of the argument passed to the merge block.
|
|
CaseInfo getCaseInfo(SILValue &Input, SILBasicBlock *Pred, unsigned ArgNum) {
|
|
|
|
CaseInfo CaseInfo;
|
|
|
|
auto *TI = Pred->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return CaseInfo;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
|
|
// Currently we only accept enums as result values.
|
|
auto *EI2 = dyn_cast<EnumInst>(Arg);
|
|
if (!EI2)
|
|
return CaseInfo;
|
|
|
|
if (EI2->hasOperand()) {
|
|
// ... or enums with enum data. This is exactly the pattern for an enum
|
|
// with integer raw value initialization.
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
if (!EI1)
|
|
return CaseInfo;
|
|
|
|
// But not enums with enums with data.
|
|
if (EI1->hasOperand())
|
|
return CaseInfo;
|
|
}
|
|
|
|
// Check if we come to the Pred block by comparing the input value to a
|
|
// constant.
|
|
SILBasicBlock *CmpBlock = Pred->getSinglePredecessor();
|
|
if (!CmpBlock)
|
|
return CaseInfo;
|
|
|
|
auto *CmpInst = dyn_cast<CondBranchInst>(CmpBlock->getTerminator());
|
|
if (!CmpInst)
|
|
return CaseInfo;
|
|
|
|
auto *CondInst = dyn_cast<BuiltinInst>(CmpInst->getCondition());
|
|
if (!CondInst)
|
|
return CaseInfo;
|
|
|
|
if (!CondInst->getName().str().startswith("cmp_eq"))
|
|
return CaseInfo;
|
|
|
|
auto CondArgs = CondInst->getArguments();
|
|
assert(CondArgs.size() == 2);
|
|
|
|
SILValue Arg1 = CondArgs[0];
|
|
SILValue Arg2 = CondArgs[1];
|
|
|
|
if (isa<IntegerLiteralInst>(Arg1))
|
|
std::swap(Arg1, Arg2);
|
|
|
|
auto *CmpVal = dyn_cast<IntegerLiteralInst>(Arg2);
|
|
if (!CmpVal)
|
|
return CaseInfo;
|
|
|
|
SILBasicBlock *FalseBB = CmpInst->getFalseBB();
|
|
if (!FalseBB)
|
|
return CaseInfo;
|
|
|
|
// Check for a common input value.
|
|
if (Input && Input != Arg1)
|
|
return CaseInfo;
|
|
|
|
Input = Arg1;
|
|
CaseInfo.Result = EI2;
|
|
if (CmpInst->getTrueBB() == Pred) {
|
|
// This is a case for the select_value.
|
|
CaseInfo.Literal = CmpVal;
|
|
CaseInfo.CmpOrDefault = CmpBlock;
|
|
} else {
|
|
// This is the default for the select_value.
|
|
CaseInfo.CmpOrDefault = Pred;
|
|
}
|
|
|
|
return CaseInfo;
|
|
}
|
|
|
|
/// Move an instruction which is an operand to the new SelectValueInst to its
|
|
/// correct place.
|
|
/// Either the instruction is somewhere inside the CFG pattern, then we move it
|
|
/// up, immediately before the SelectValueInst in the pattern's dominating
|
|
/// entry block. Or it is somewhere above the entry block, then we can leave the
|
|
/// instruction there.
|
|
void moveIfNotDominating(SILInstruction *I, SILInstruction *InsertPos,
|
|
DominanceInfo *DT) {
|
|
SILBasicBlock *InstBlock = I->getParent();
|
|
SILBasicBlock *InsertBlock = InsertPos->getParent();
|
|
if (!DT->dominates(InstBlock, InsertBlock)) {
|
|
assert(DT->dominates(InsertBlock, InstBlock));
|
|
I->moveBefore(InsertPos);
|
|
}
|
|
}
|
|
|
|
/// Simplify a pattern of integer compares to a select_value.
|
|
/// \code
|
|
/// if input == 1 {
|
|
/// result = Enum.A
|
|
/// } else if input == 2 {
|
|
/// result = Enum.B
|
|
/// ...
|
|
/// } else {
|
|
/// result = Enum.X
|
|
/// }
|
|
/// \endcode
|
|
/// Currently this only works if the input value is an integer and the result
|
|
/// value is an enum.
|
|
/// \p MergeBlock The "last" block which contains an argument in which all
|
|
/// result values are merged.
|
|
/// \p ArgNum The index of the block argument which is the result value.
|
|
/// \p DT The dominance info.
|
|
/// \return Returns true if a select_value is generated.
|
|
bool simplifyToSelectValue(SILBasicBlock *MergeBlock, unsigned ArgNum,
|
|
DominanceInfo *DT) {
|
|
if (!DT)
|
|
return false;
|
|
|
|
// Collect all case infos from the merge block's predecessors.
|
|
SmallPtrSet<SILBasicBlock *, 8> FoundCmpBlocks;
|
|
SmallVector<CaseInfo, 8> CaseInfos;
|
|
SILValue Input;
|
|
for (auto *Pred : MergeBlock->getPreds()) {
|
|
CaseInfo CaseInfo = getCaseInfo(Input, Pred, ArgNum);
|
|
if (!CaseInfo.Result)
|
|
return false;
|
|
|
|
FoundCmpBlocks.insert(CaseInfo.CmpOrDefault);
|
|
CaseInfos.push_back(CaseInfo);
|
|
}
|
|
|
|
SmallVector<std::pair<SILValue, SILValue>, 8> Cases;
|
|
SILValue defaultResult;
|
|
|
|
// The block of the first input value compare. It dominates all other blocks
|
|
// in this CFG pattern.
|
|
SILBasicBlock *dominatingBlock = nullptr;
|
|
|
|
// Build the cases for the SelectValueInst and find the first dominatingBlock.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal) {
|
|
auto *BrInst = cast<CondBranchInst>(CaseInfo.CmpOrDefault->getTerminator());
|
|
if (FoundCmpBlocks.count(BrInst->getFalseBB()) != 1)
|
|
return false;
|
|
Cases.push_back({CaseInfo.Literal, CaseInfo.Result});
|
|
SILBasicBlock *Pred = CaseInfo.CmpOrDefault->getSinglePredecessor();
|
|
if (!Pred || FoundCmpBlocks.count(Pred) == 0) {
|
|
// There may be only a single block whose predecessor we didn't see. And
|
|
// this is the entry block to the CFG pattern.
|
|
if (dominatingBlock)
|
|
return false;
|
|
dominatingBlock = CaseInfo.CmpOrDefault;
|
|
}
|
|
} else {
|
|
if (defaultResult)
|
|
return false;
|
|
defaultResult = CaseInfo.Result;
|
|
}
|
|
}
|
|
if (!defaultResult)
|
|
return false;
|
|
|
|
if (!dominatingBlock)
|
|
return false;
|
|
|
|
// Generate the select_value right before the first cond_br of the pattern.
|
|
SILInstruction *insertPos = dominatingBlock->getTerminator();
|
|
SILBuilder B(insertPos);
|
|
|
|
// Move all needed operands to a place where they dominate the select_value.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal)
|
|
moveIfNotDominating(CaseInfo.Literal, insertPos, DT);
|
|
auto *EI2 = dyn_cast<EnumInst>(CaseInfo.Result);
|
|
assert(EI2);
|
|
|
|
if (EI2->hasOperand()) {
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
assert(EI1);
|
|
assert(!EI1->hasOperand());
|
|
|
|
moveIfNotDominating(EI1, insertPos, DT);
|
|
}
|
|
moveIfNotDominating(EI2, insertPos, DT);
|
|
}
|
|
|
|
SILArgument *bbArg = MergeBlock->getBBArg(ArgNum);
|
|
auto SelectInst = B.createSelectValue(dominatingBlock->getTerminator()->getLoc(),
|
|
Input, bbArg->getType(),
|
|
defaultResult, Cases);
|
|
|
|
bbArg->replaceAllUsesWith(SelectInst);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to simplify the ith argument of BB. We simplify cases
|
|
// where there is a single use of the argument that is an extract from
|
|
// a struct or tuple and where the predecessors all build the struct
|
|
// or tuple and pass it directly.
|
|
bool SimplifyCFG::simplifyArgument(SILBasicBlock *BB, unsigned i) {
|
|
auto *A = BB->getBBArg(i);
|
|
|
|
// Try to create a select_value.
|
|
if (simplifyToSelectValue(BB, i, DT))
|
|
return true;
|
|
|
|
// If we are reading an i1, then check to see if it comes from
|
|
// a switch_enum. If so, we may be able to lower this sequence to
|
|
// a select_enum.
|
|
if (!DT && A->getType().is<BuiltinIntegerType>())
|
|
return simplifySwitchEnumToSelectEnum(BB, i, A);
|
|
|
|
// For now, just focus on cases where there is a single use.
|
|
if (!A->hasOneUse())
|
|
return false;
|
|
|
|
auto *Use = *A->use_begin();
|
|
auto *User = cast<SILInstruction>(Use->getUser());
|
|
if (!dyn_cast<StructExtractInst>(User) &&
|
|
!dyn_cast<TupleExtractInst>(User))
|
|
return false;
|
|
|
|
// For now, just handle the case where all predecessors are
|
|
// unconditional branches.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
if (!isa<BranchInst>(Pred->getTerminator()))
|
|
return false;
|
|
auto *Branch = cast<BranchInst>(Pred->getTerminator());
|
|
if (!isa<StructInst>(Branch->getArg(i)) &&
|
|
!isa<TupleInst>(Branch->getArg(i)))
|
|
return false;
|
|
}
|
|
|
|
// Okay, we'll replace the BB arg with one with the right type, replace
|
|
// the uses in this block, and then rewrite the branch operands.
|
|
A->replaceAllUsesWith(SILUndef::get(A->getType(), BB->getModule()));
|
|
auto *NewArg = BB->replaceBBArg(i, User->getType());
|
|
User->replaceAllUsesWith(NewArg);
|
|
|
|
// Rewrite the branch operand for each incoming branch.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
if (auto *Branch = cast<BranchInst>(Pred->getTerminator())) {
|
|
auto V = getInsertedValue(cast<SILInstruction>(Branch->getArg(i)),
|
|
User);
|
|
Branch->setOperand(i, V);
|
|
addToWorklist(Pred);
|
|
}
|
|
}
|
|
|
|
User->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void tryToReplaceArgWithIncomingValue(SILBasicBlock *BB, unsigned i,
|
|
DominanceInfo *DT) {
|
|
auto *A = BB->getBBArg(i);
|
|
SmallVector<SILValue, 4> Incoming;
|
|
if (!A->getIncomingValues(Incoming) || Incoming.empty())
|
|
return;
|
|
|
|
SILValue V = Incoming[0];
|
|
for (size_t Idx = 1, Size = Incoming.size(); Idx < Size; ++Idx) {
|
|
if (Incoming[Idx] != V)
|
|
return;
|
|
}
|
|
|
|
// If the incoming values of all predecessors are equal usually this means
|
|
// that the common incoming value dominates the BB. But: this might be not
|
|
// the case if BB is unreachable. Therefore we still have to check it.
|
|
if (!DT->dominates(V->getParentBB(), BB))
|
|
return;
|
|
|
|
// An argument has one result value. We need to replace this with the *value*
|
|
// of the incoming block(s).
|
|
A->replaceAllUsesWith(V);
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyArgs(SILBasicBlock *BB) {
|
|
// Ignore blocks with no arguments.
|
|
if (BB->bbarg_empty())
|
|
return false;
|
|
|
|
// Ignore the entry block.
|
|
if (BB->pred_empty())
|
|
return false;
|
|
|
|
// Ignore blocks that are successors of terminators with mandatory args.
|
|
for (SILBasicBlock *pred : BB->getPreds()) {
|
|
if (hasMandatoryArgument(pred->getTerminator()))
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (int i = BB->getNumBBArg() - 1; i >= 0; --i) {
|
|
SILArgument *A = BB->getBBArg(i);
|
|
|
|
// Replace a block argument if all incoming values are equal. If this
|
|
// succeeds, argument A will have no uses afterwards.
|
|
if (DT)
|
|
tryToReplaceArgWithIncomingValue(BB, i, DT);
|
|
|
|
// Try to simplify the argument
|
|
if (!A->use_empty()) {
|
|
if (simplifyArgument(BB, i))
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
removeArgument(BB, i);
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyProgramTerminationBlock(SILBasicBlock *BB) {
|
|
// If this is not ARC-inert, do not do anything to it.
|
|
//
|
|
// TODO: should we use ProgramTerminationAnalysis ?. The reason we do not
|
|
// use the analysis is because the CFG is likely to be invalidated right
|
|
// after this pass, o we do not really get the benefit of reusing the
|
|
// computation for the next iteration of the pass.
|
|
if (!isARCInertTrapBB(BB))
|
|
return false;
|
|
|
|
// This is going to be the last basic block this program is going to execute
|
|
// and this block is inert from the ARC's prospective, no point to do any
|
|
// releases at this point.
|
|
bool Changed = false;
|
|
llvm::SmallPtrSet<SILInstruction *, 4> InstsToRemove;
|
|
for (auto &I : *BB) {
|
|
if (!isa<StrongReleaseInst>(I) && !isa<UnownedReleaseInst>(I) &&
|
|
!isa<ReleaseValueInst>(I) && !isa<DestroyAddrInst>(I))
|
|
continue;
|
|
InstsToRemove.insert(&I);
|
|
}
|
|
|
|
// Remove the instructions.
|
|
for (auto I : InstsToRemove) {
|
|
I->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
if (Changed)
|
|
++NumTermBlockSimplified;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
class SimplifyCFGPass : public SILFunctionTransform {
|
|
bool EnableJumpThread;
|
|
|
|
public:
|
|
SimplifyCFGPass(bool EnableJumpThread)
|
|
: EnableJumpThread(EnableJumpThread) {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (SimplifyCFG(*getFunction(), PM, getOptions().VerifyAll,
|
|
EnableJumpThread)
|
|
.run())
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
StringRef getName() override { return "Simplify CFG"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
SILTransform *swift::createSimplifyCFG() {
|
|
return new SimplifyCFGPass(false);
|
|
}
|
|
|
|
SILTransform *swift::createJumpThreadSimplifyCFG() {
|
|
return new SimplifyCFGPass(true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes only for Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Used to test critical edge splitting with sil-opt.
|
|
class SplitCriticalEdges : public SILFunctionTransform {
|
|
bool OnlyNonCondBrEdges;
|
|
|
|
public:
|
|
SplitCriticalEdges(bool SplitOnlyNonCondBrEdges)
|
|
: OnlyNonCondBrEdges(SplitOnlyNonCondBrEdges) {}
|
|
|
|
void run() override {
|
|
auto &Fn = *getFunction();
|
|
|
|
// Split all critical edges from all or non only cond_br terminators.
|
|
bool Changed =
|
|
splitAllCriticalEdges(Fn, OnlyNonCondBrEdges, nullptr, nullptr);
|
|
|
|
if (Changed) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Split Critical Edges"; }
|
|
};
|
|
|
|
// Used to test SimplifyCFG::simplifyArgs with sil-opt.
|
|
class SimplifyBBArgs : public SILFunctionTransform {
|
|
public:
|
|
SimplifyBBArgs() {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (SimplifyCFG(*getFunction(), PM, getOptions().VerifyAll, false)
|
|
.simplifyBlockArgs()) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Simplify Block Args"; }
|
|
};
|
|
|
|
// Used to test splitBBArguments with sil-opt
|
|
class SROABBArgs : public SILFunctionTransform {
|
|
public:
|
|
SROABBArgs() {}
|
|
|
|
void run() override {
|
|
if (splitBBArguments(*getFunction())) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "SROA BB Arguments"; }
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
/// Splits all critical edges in a function.
|
|
SILTransform *swift::createSplitAllCriticalEdges() {
|
|
return new SplitCriticalEdges(false);
|
|
}
|
|
|
|
/// Splits all critical edges from non cond_br terminators in a function.
|
|
SILTransform *swift::createSplitNonCondBrCriticalEdges() {
|
|
return new SplitCriticalEdges(true);
|
|
}
|
|
|
|
// Simplifies basic block arguments.
|
|
SILTransform *swift::createSROABBArgs() { return new SROABBArgs(); }
|
|
|
|
// Simplifies basic block arguments.
|
|
SILTransform *swift::createSimplifyBBArgs() {
|
|
return new SimplifyBBArgs();
|
|
}
|