Files
swift-mirror/lib/AST/Availability.cpp
Allan Shortlidge dfc741e30a AST: Optimize storage of VersionTuples in AvailableAttr.
Representing introduced, deprecated, and obsoleted versions at rest as optional
version tuples is redundant, since the empty version tuple already represents
"version not present".

NFC.
2025-01-22 16:01:19 -08:00

946 lines
34 KiB
C++

//===--- Availability.cpp - Swift Availability Structures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data structures for API availability.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/AvailabilityConstraint.h"
#include "swift/AST/AvailabilityDomain.h"
#include "swift/AST/AvailabilityInference.h"
#include "swift/AST/AvailabilityRange.h"
#include "swift/AST/Decl.h"
#include "swift/AST/PlatformKind.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeWalker.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Platform.h"
#include "swift/ClangImporter/ClangModule.h"
#include <map>
using namespace swift;
void VersionRange::Profile(llvm::FoldingSetNodeID &id) const {
id.AddBoolean(hasLowerEndpoint());
if (!hasLowerEndpoint()) {
id.AddBoolean(isAll());
return;
}
auto profileVersionComponent = [&id](std::optional<unsigned> component) {
id.AddBoolean(component.has_value());
if (component)
id.AddInteger(*component);
};
auto lowerEndpoint = getLowerEndpoint();
id.AddInteger(lowerEndpoint.getMajor());
profileVersionComponent(lowerEndpoint.getMinor());
profileVersionComponent(lowerEndpoint.getSubminor());
profileVersionComponent(lowerEndpoint.getBuild());
}
AvailabilityRange
AvailabilityRange::forDeploymentTarget(const ASTContext &Ctx) {
return AvailabilityRange(
VersionRange::allGTE(Ctx.LangOpts.getMinPlatformVersion()));
}
AvailabilityRange AvailabilityRange::forInliningTarget(const ASTContext &Ctx) {
return AvailabilityRange(
VersionRange::allGTE(Ctx.LangOpts.MinimumInliningTargetVersion));
}
AvailabilityRange AvailabilityRange::forRuntimeTarget(const ASTContext &Ctx) {
return AvailabilityRange(VersionRange::allGTE(Ctx.LangOpts.RuntimeVersion));
}
PlatformKind AvailabilityConstraint::getPlatform() const {
return getAttr().getPlatform();
}
std::optional<AvailabilityRange>
AvailabilityConstraint::getRequiredNewerAvailabilityRange(
ASTContext &ctx) const {
switch (getKind()) {
case Kind::AlwaysUnavailable:
case Kind::RequiresVersion:
case Kind::Obsoleted:
return std::nullopt;
case Kind::IntroducedInNewerVersion:
return getAttr().getIntroducedRange(ctx);
}
}
bool AvailabilityConstraint::isConditionallySatisfiable() const {
switch (getKind()) {
case Kind::AlwaysUnavailable:
case Kind::RequiresVersion:
case Kind::Obsoleted:
return false;
case Kind::IntroducedInNewerVersion:
return true;
}
}
bool AvailabilityConstraint::isActiveForRuntimeQueries(ASTContext &ctx) const {
if (getAttr().getPlatform() == PlatformKind::none)
return true;
return swift::isPlatformActive(getAttr().getPlatform(), ctx.LangOpts,
/*forTargetVariant=*/false,
/*forRuntimeQuery=*/true);
}
namespace {
/// The inferred availability required to access a group of declarations
/// on a single platform.
struct InferredAvailability {
AvailableAttr::Kind Kind = AvailableAttr::Kind::Default;
std::optional<llvm::VersionTuple> Introduced;
std::optional<llvm::VersionTuple> Deprecated;
std::optional<llvm::VersionTuple> Obsoleted;
StringRef Message;
StringRef Rename;
bool IsSPI = false;
};
/// The type of a function that merges two version tuples.
typedef const llvm::VersionTuple &(*MergeFunction)(
const llvm::VersionTuple &, const llvm::VersionTuple &);
} // end anonymous namespace
/// Apply a merge function to two optional versions, returning the result
/// in Inferred.
static bool
mergeIntoInferredVersion(const std::optional<llvm::VersionTuple> &Version,
std::optional<llvm::VersionTuple> &Inferred,
MergeFunction Merge) {
if (Version.has_value()) {
if (Inferred.has_value()) {
Inferred = Merge(Inferred.value(), Version.value());
return *Inferred == *Version;
} else {
Inferred = Version;
return true;
}
}
return false;
}
/// Merge an attribute's availability with an existing inferred availability
/// so that the new inferred availability is at least as available as
/// the attribute requires.
static void mergeWithInferredAvailability(SemanticAvailableAttr Attr,
InferredAvailability &Inferred) {
auto *ParsedAttr = Attr.getParsedAttr();
Inferred.Kind = static_cast<AvailableAttr::Kind>(
std::max(static_cast<unsigned>(Inferred.Kind),
static_cast<unsigned>(ParsedAttr->getKind())));
// The merge of two introduction versions is the maximum of the two versions.
if (mergeIntoInferredVersion(Attr.getIntroduced(), Inferred.Introduced,
std::max)) {
Inferred.IsSPI = Attr.isSPI();
}
// The merge of deprecated and obsoleted versions takes the minimum.
mergeIntoInferredVersion(Attr.getDeprecated(), Inferred.Deprecated, std::min);
mergeIntoInferredVersion(Attr.getObsoleted(), Inferred.Obsoleted, std::min);
if (Inferred.Message.empty() && !Attr.getMessage().empty())
Inferred.Message = Attr.getMessage();
if (Inferred.Rename.empty() && !Attr.getRename().empty())
Inferred.Rename = Attr.getRename();
}
/// Create an implicit availability attribute for the given domain
/// and with the inferred availability.
static AvailableAttr *createAvailableAttr(AvailabilityDomain Domain,
const InferredAvailability &Inferred,
ASTContext &Context) {
// If there is no information that would go into the availability attribute,
// don't create one.
if (Inferred.Kind == AvailableAttr::Kind::Default && !Inferred.Introduced &&
!Inferred.Deprecated && !Inferred.Obsoleted && Inferred.Message.empty() &&
Inferred.Rename.empty())
return nullptr;
llvm::VersionTuple Introduced =
Inferred.Introduced.value_or(llvm::VersionTuple());
llvm::VersionTuple Deprecated =
Inferred.Deprecated.value_or(llvm::VersionTuple());
llvm::VersionTuple Obsoleted =
Inferred.Obsoleted.value_or(llvm::VersionTuple());
return new (Context) AvailableAttr(
SourceLoc(), SourceRange(), Domain, Inferred.Kind, Inferred.Message,
Inferred.Rename, Introduced, SourceRange(), Deprecated, SourceRange(),
Obsoleted, SourceRange(), /*Implicit=*/true, Inferred.IsSPI);
}
void AvailabilityInference::applyInferredAvailableAttrs(
Decl *ToDecl, ArrayRef<const Decl *> InferredFromDecls) {
auto &Context = ToDecl->getASTContext();
// Iterate over the declarations and infer required availability on
// a per-platform basis.
std::map<AvailabilityDomain, InferredAvailability> Inferred;
for (const Decl *D : InferredFromDecls) {
llvm::SmallVector<SemanticAvailableAttr, 8> MergedAttrs;
do {
llvm::SmallVector<SemanticAvailableAttr, 8> PendingAttrs;
for (auto AvAttr : D->getSemanticAvailableAttrs()) {
// Skip an attribute from an outer declaration if it is for a platform
// that was already handled implicitly by an attribute from an inner
// declaration.
if (llvm::any_of(MergedAttrs,
[&AvAttr](SemanticAvailableAttr MergedAttr) {
return inheritsAvailabilityFromPlatform(
AvAttr.getPlatform(), MergedAttr.getPlatform());
}))
continue;
mergeWithInferredAvailability(AvAttr, Inferred[AvAttr.getDomain()]);
PendingAttrs.push_back(AvAttr);
}
MergedAttrs.append(PendingAttrs);
// Walk up the enclosing declaration hierarchy to make sure we aren't
// missing any inherited attributes.
D = AvailabilityInference::parentDeclForInferredAvailability(D);
} while (D);
}
DeclAttributes &Attrs = ToDecl->getAttrs();
// Create an availability attribute for each observed platform and add
// to ToDecl.
for (auto &Pair : Inferred) {
if (auto Attr = createAvailableAttr(Pair.first, Pair.second, Context))
Attrs.add(Attr);
}
}
/// Returns the decl that should be considered the parent decl of the given decl
/// when looking for inherited availability annotations.
const Decl *
AvailabilityInference::parentDeclForInferredAvailability(const Decl *D) {
if (auto *AD = dyn_cast<AccessorDecl>(D))
return AD->getStorage();
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
if (auto *NTD = ED->getExtendedNominal())
return NTD;
}
if (auto *PBD = dyn_cast<PatternBindingDecl>(D)) {
if (PBD->getNumPatternEntries() < 1)
return nullptr;
return PBD->getAnchoringVarDecl(0);
}
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(D))
return OTD->getNamingDecl();
// Clang decls may be inaccurately parented rdar://53956555
if (D->hasClangNode())
return nullptr;
// Availability is inherited from the enclosing context.
return D->getDeclContext()->getInnermostDeclarationDeclContext();
}
/// Returns true if the introduced version in \p newAttr should be used instead
/// of the introduced version in \p prevAttr when both are attached to the same
/// declaration and refer to the active platform.
static bool isBetterThan(const SemanticAvailableAttr &newAttr,
const std::optional<SemanticAvailableAttr> &prevAttr) {
// If there is no prevAttr, newAttr of course wins.
if (!prevAttr)
return true;
// If they belong to the same platform, the one that introduces later wins.
if (prevAttr->getPlatform() == newAttr.getPlatform())
return prevAttr->getIntroduced().value() < newAttr.getIntroduced().value();
// If the new attribute's platform inherits from the old one, it wins.
return inheritsAvailabilityFromPlatform(newAttr.getPlatform(),
prevAttr->getPlatform());
}
static const clang::DarwinSDKInfo::RelatedTargetVersionMapping *
getFallbackVersionMapping(const ASTContext &Ctx,
clang::DarwinSDKInfo::OSEnvPair Kind) {
auto *SDKInfo = Ctx.getDarwinSDKInfo();
if (SDKInfo)
return SDKInfo->getVersionMapping(Kind);
return Ctx.getAuxiliaryDarwinPlatformRemapInfo(Kind);
}
static std::optional<clang::VersionTuple>
getRemappedIntroducedVersionForFallbackPlatform(
const ASTContext &Ctx, const llvm::VersionTuple &Version) {
const auto *Mapping = getFallbackVersionMapping(
Ctx, clang::DarwinSDKInfo::OSEnvPair(
llvm::Triple::IOS, llvm::Triple::UnknownEnvironment,
llvm::Triple::XROS, llvm::Triple::UnknownEnvironment));
if (!Mapping)
return std::nullopt;
return Mapping->mapIntroducedAvailabilityVersion(Version);
}
static std::optional<clang::VersionTuple>
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
const ASTContext &Ctx, const llvm::VersionTuple &Version) {
const auto *Mapping = getFallbackVersionMapping(
Ctx, clang::DarwinSDKInfo::OSEnvPair(
llvm::Triple::IOS, llvm::Triple::UnknownEnvironment,
llvm::Triple::XROS, llvm::Triple::UnknownEnvironment));
if (!Mapping)
return std::nullopt;
return Mapping->mapDeprecatedObsoletedAvailabilityVersion(Version);
}
bool AvailabilityInference::updateIntroducedPlatformForFallback(
const SemanticAvailableAttr &attr, const ASTContext &Ctx,
llvm::StringRef &Platform, llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> IntroducedVersion = attr.getIntroduced();
if (attr.getPlatform() == PlatformKind::iOS &&
IntroducedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS introduced version to the corresponding visionOS version
auto PotentiallyRemappedIntroducedVersion =
getRemappedIntroducedVersionForFallbackPlatform(Ctx,
*IntroducedVersion);
if (PotentiallyRemappedIntroducedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedIntroducedVersion.value();
return true;
}
}
return false;
}
bool AvailabilityInference::updateDeprecatedPlatformForFallback(
const SemanticAvailableAttr &attr, const ASTContext &Ctx,
llvm::StringRef &Platform, llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> DeprecatedVersion = attr.getDeprecated();
if (attr.getPlatform() == PlatformKind::iOS &&
DeprecatedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS deprecated version to the corresponding visionOS version
auto PotentiallyRemappedDeprecatedVersion =
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
Ctx, *DeprecatedVersion);
if (PotentiallyRemappedDeprecatedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedDeprecatedVersion.value();
return true;
}
}
return false;
}
bool AvailabilityInference::updateObsoletedPlatformForFallback(
const SemanticAvailableAttr &attr, const ASTContext &Ctx,
llvm::StringRef &Platform, llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> ObsoletedVersion = attr.getObsoleted();
if (attr.getPlatform() == PlatformKind::iOS && ObsoletedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS obsoleted version to the corresponding visionOS version
auto PotentiallyRemappedObsoletedVersion =
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
Ctx, *ObsoletedVersion);
if (PotentiallyRemappedObsoletedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedObsoletedVersion.value();
return true;
}
}
return false;
}
void AvailabilityInference::updatePlatformStringForFallback(
const SemanticAvailableAttr &attr, const ASTContext &Ctx,
llvm::StringRef &Platform) {
if (attr.getPlatform() == PlatformKind::iOS &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
}
}
bool AvailabilityInference::updateBeforePlatformForFallback(
const BackDeployedAttr *attr, const ASTContext &Ctx,
llvm::StringRef &Platform, llvm::VersionTuple &PlatformVer) {
auto BeforeVersion = attr->Version;
if (attr->Platform == PlatformKind::iOS &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS before version to the corresponding visionOS version
auto PotentiallyRemappedIntroducedVersion =
getRemappedIntroducedVersionForFallbackPlatform(Ctx, BeforeVersion);
if (PotentiallyRemappedIntroducedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedIntroducedVersion.value();
return true;
}
}
return false;
}
static std::optional<SemanticAvailableAttr>
getDeclAvailableAttrForPlatformIntroduction(const Decl *D) {
std::optional<SemanticAvailableAttr> bestAvailAttr;
D = abstractSyntaxDeclForAvailableAttribute(D);
for (auto attr : D->getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (!attr.isPlatformSpecific() || !attr.getIntroduced())
continue;
if (isBetterThan(attr, bestAvailAttr))
bestAvailAttr.emplace(attr);
}
return bestAvailAttr;
}
std::optional<AvailabilityRange>
AvailabilityInference::annotatedAvailableRange(const Decl *D) {
auto bestAvailAttr = D->getAvailableAttrForPlatformIntroduction();
if (!bestAvailAttr)
return std::nullopt;
return bestAvailAttr->getIntroducedRange(D->getASTContext());
}
bool Decl::isAvailableAsSPI() const {
return AvailabilityInference::isAvailableAsSPI(this);
}
SemanticAvailableAttributes
Decl::getSemanticAvailableAttrs(bool includeInactive) const {
return SemanticAvailableAttributes(getAttrs(), this, includeInactive);
}
std::optional<SemanticAvailableAttr>
Decl::getSemanticAvailableAttr(const AvailableAttr *attr) const {
return evaluateOrDefault(getASTContext().evaluator,
SemanticAvailableAttrRequest{attr, this},
std::nullopt);
}
std::optional<SemanticAvailableAttr>
Decl::getActiveAvailableAttrForCurrentPlatform(bool ignoreAppExtensions) const {
std::optional<SemanticAvailableAttr> bestAttr;
for (auto attr : getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (!attr.isPlatformSpecific())
continue;
if (ignoreAppExtensions &&
isApplicationExtensionPlatform(attr.getPlatform()))
continue;
// We have an attribute that is active for the platform, but is it more
// specific than our current best?
if (!bestAttr || inheritsAvailabilityFromPlatform(
attr.getPlatform(), bestAttr->getPlatform())) {
bestAttr.emplace(attr);
}
}
return bestAttr;
}
std::optional<SemanticAvailableAttr> Decl::getDeprecatedAttr() const {
auto &ctx = getASTContext();
std::optional<SemanticAvailableAttr> result;
auto bestActive = getActiveAvailableAttrForCurrentPlatform();
for (auto attr : getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (attr.isPlatformSpecific() && (!bestActive || attr != bestActive))
continue;
// Unconditional deprecated.
if (attr.isUnconditionallyDeprecated())
return attr;
auto deprecatedVersion = attr.getDeprecated();
StringRef deprecatedPlatform;
llvm::VersionTuple remappedDeprecatedVersion;
if (AvailabilityInference::updateDeprecatedPlatformForFallback(
attr, ctx, deprecatedPlatform, remappedDeprecatedVersion))
deprecatedVersion = remappedDeprecatedVersion;
if (!deprecatedVersion.has_value())
continue;
llvm::VersionTuple minVersion = attr.getActiveVersion(ctx);
// We treat the declaration as deprecated if it is deprecated on
// all deployment targets.
if (deprecatedVersion.value() <= minVersion) {
result.emplace(attr);
}
}
return result;
}
std::optional<SemanticAvailableAttr> Decl::getSoftDeprecatedAttr() const {
auto &ctx = getASTContext();
std::optional<SemanticAvailableAttr> result;
auto bestActive = getActiveAvailableAttrForCurrentPlatform();
for (auto attr : getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (attr.isPlatformSpecific() && (!bestActive || attr != bestActive))
continue;
// FIXME: This needs to do a version remap.
auto deprecatedVersion = attr.getDeprecated();
if (!deprecatedVersion.has_value())
continue;
llvm::VersionTuple activeVersion = attr.getActiveVersion(ctx);
if (deprecatedVersion.value() > activeVersion)
result.emplace(attr);
}
return result;
}
std::optional<SemanticAvailableAttr> Decl::getNoAsyncAttr() const {
std::optional<SemanticAvailableAttr> bestAttr;
for (auto attr : getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (!attr.isNoAsync())
continue;
if (!bestAttr) {
// If there is no best attr selected and the attr either has an active
// platform, or doesn't have one at all, select it.
bestAttr.emplace(attr);
} else if (bestAttr && attr.isPlatformSpecific() &&
bestAttr->isPlatformSpecific() &&
inheritsAvailabilityFromPlatform(attr.getPlatform(),
bestAttr->getPlatform())) {
// if they both have a viable platform, use the better one
bestAttr.emplace(attr);
} else if (attr.isPlatformSpecific() && !bestAttr->isPlatformSpecific()) {
// Use the one more specific
bestAttr.emplace(attr);
}
}
return bestAttr;
}
bool Decl::isUnavailableInCurrentSwiftVersion() const {
llvm::VersionTuple vers = getASTContext().LangOpts.EffectiveLanguageVersion;
for (auto attr : getSemanticAvailableAttrs(/*includingInactive=*/false)) {
if (attr.isSwiftLanguageModeSpecific()) {
auto introduced = attr.getIntroduced();
if (introduced && *introduced > vers)
return true;
auto obsoleted = attr.getObsoleted();
if (obsoleted && *obsoleted <= vers)
return true;
}
}
return false;
}
std::optional<SemanticAvailableAttr>
getDeclUnavailableAttr(const Decl *D, bool ignoreAppExtensions) {
auto &ctx = D->getASTContext();
std::optional<SemanticAvailableAttr> result;
auto bestActive =
D->getActiveAvailableAttrForCurrentPlatform(ignoreAppExtensions);
for (auto attr : D->getSemanticAvailableAttrs(/*includingInactive=*/false)) {
// If this is a platform-specific attribute and it isn't the most
// specific attribute for the current platform, we're done.
if (attr.isPlatformSpecific() && (!bestActive || attr != bestActive))
continue;
if (ignoreAppExtensions &&
isApplicationExtensionPlatform(attr.getPlatform()))
continue;
// Unconditional unavailable.
if (attr.isUnconditionallyUnavailable())
return attr;
switch (attr.getVersionAvailability(ctx)) {
case AvailableVersionComparison::Available:
case AvailableVersionComparison::PotentiallyUnavailable:
break;
case AvailableVersionComparison::Obsoleted:
case AvailableVersionComparison::Unavailable:
result.emplace(attr);
break;
}
}
return result;
}
std::optional<SemanticAvailableAttr>
Decl::getUnavailableAttr(bool ignoreAppExtensions) const {
if (auto attr = getDeclUnavailableAttr(this, ignoreAppExtensions))
return attr;
// If D is an extension member, check if the extension is unavailable.
//
// Skip decls imported from Clang, they could be associated to the wrong
// extension and inherit undesired unavailability. The ClangImporter
// associates Objective-C protocol members to the first category where the
// protocol is directly or indirectly adopted, no matter its availability
// and the availability of other categories. rdar://problem/53956555
if (!getClangNode())
if (auto ext = dyn_cast<ExtensionDecl>(getDeclContext()))
return ext->getUnavailableAttr(ignoreAppExtensions);
return std::nullopt;
}
static bool isDeclCompletelyUnavailable(const Decl *decl) {
// Don't trust unavailability on declarations from clang modules.
if (isa<ClangModuleUnit>(decl->getDeclContext()->getModuleScopeContext()))
return false;
auto unavailableAttr = decl->getUnavailableAttr(/*ignoreAppExtensions=*/true);
if (!unavailableAttr)
return false;
// getUnavailableAttr() can return an @available attribute that is
// obsoleted for certain deployment targets or language modes. These decls
// can still be reached by code in other modules that is compiled with
// a different deployment target or language mode.
if (!unavailableAttr->isUnconditionallyUnavailable())
return false;
// Universally unavailable declarations are always completely unavailable.
if (unavailableAttr->getPlatform() == PlatformKind::none)
return true;
// FIXME: Support zippered frameworks (rdar://125371621)
// If we have a target variant (e.g. we're building a zippered macOS
// framework) then the decl is only unreachable if it is unavailable for both
// the primary target and the target variant.
if (decl->getASTContext().LangOpts.TargetVariant.has_value())
return false;
return true;
}
SemanticDeclAvailability
SemanticDeclAvailabilityRequest::evaluate(Evaluator &evaluator,
const Decl *decl) const {
auto inherited = SemanticDeclAvailability::PotentiallyAvailable;
if (auto *parent =
AvailabilityInference::parentDeclForInferredAvailability(decl)) {
inherited = evaluateOrDefault(
evaluator, SemanticDeclAvailabilityRequest{parent}, inherited);
}
if (inherited == SemanticDeclAvailability::CompletelyUnavailable ||
isDeclCompletelyUnavailable(decl))
return SemanticDeclAvailability::CompletelyUnavailable;
if (inherited == SemanticDeclAvailability::ConditionallyUnavailable ||
decl->isUnavailable())
return SemanticDeclAvailability::ConditionallyUnavailable;
return SemanticDeclAvailability::PotentiallyAvailable;
}
bool Decl::isSemanticallyUnavailable() const {
auto availability = evaluateOrDefault(
getASTContext().evaluator, SemanticDeclAvailabilityRequest{this},
SemanticDeclAvailability::PotentiallyAvailable);
return availability != SemanticDeclAvailability::PotentiallyAvailable;
}
bool Decl::isUnreachableAtRuntime() const {
auto availability = evaluateOrDefault(
getASTContext().evaluator, SemanticDeclAvailabilityRequest{this},
SemanticDeclAvailability::PotentiallyAvailable);
return availability == SemanticDeclAvailability::CompletelyUnavailable;
}
static UnavailableDeclOptimization
getEffectiveUnavailableDeclOptimization(ASTContext &ctx) {
if (ctx.LangOpts.UnavailableDeclOptimizationMode.has_value())
return *ctx.LangOpts.UnavailableDeclOptimizationMode;
// FIXME: Allow unavailable decl optimization on visionOS.
// visionOS must be ABI compatible with iOS. Enabling unavailable declaration
// optimizations naively would break compatibility since declarations marked
// unavailable on visionOS would be optimized regardless of whether they are
// available on iOS. rdar://116742214
if (ctx.LangOpts.Target.isXROS())
return UnavailableDeclOptimization::None;
return UnavailableDeclOptimization::None;
}
bool Decl::isAvailableDuringLowering() const {
// Unconditionally unavailable declarations should be skipped during lowering
// when -unavailable-decl-optimization=complete is specified.
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
UnavailableDeclOptimization::Complete)
return true;
return !isUnreachableAtRuntime();
}
bool Decl::requiresUnavailableDeclABICompatibilityStubs() const {
// Code associated with unavailable declarations should trap at runtime if
// -unavailable-decl-optimization=stub is specified.
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
UnavailableDeclOptimization::Stub)
return false;
return isUnreachableAtRuntime();
}
AvailabilityRange AvailabilityInference::annotatedAvailableRangeForAttr(
const Decl *D, const SpecializeAttr *attr, ASTContext &ctx) {
std::optional<SemanticAvailableAttr> bestAvailAttr;
for (auto *availAttr : attr->getAvailableAttrs()) {
auto semanticAttr = D->getSemanticAvailableAttr(availAttr);
if (!semanticAttr)
continue;
if (!semanticAttr->getIntroduced() || !semanticAttr->isActive(ctx) ||
!semanticAttr->isPlatformSpecific()) {
continue;
}
if (isBetterThan(*semanticAttr, bestAvailAttr))
bestAvailAttr.emplace(*semanticAttr);
}
if (bestAvailAttr)
return bestAvailAttr->getIntroducedRange(ctx);
return AvailabilityRange::alwaysAvailable();
}
std::optional<SemanticAvailableAttr>
Decl::getAvailableAttrForPlatformIntroduction() const {
if (auto attr = getDeclAvailableAttrForPlatformIntroduction(this))
return attr;
// Unlike other declarations, extensions can be used without referring to them
// by name (they don't have one) in the source. For this reason, when checking
// the available range of a declaration we also need to check to see if it is
// immediately contained in an extension and use the extension's availability
// if the declaration does not have an explicit @available attribute
// itself. This check relies on the fact that we cannot have nested
// extensions.
DeclContext *DC = getDeclContext();
if (auto *ED = dyn_cast<ExtensionDecl>(DC)) {
if (auto attr = getDeclAvailableAttrForPlatformIntroduction(ED))
return attr;
}
return std::nullopt;
}
AvailabilityRange AvailabilityInference::availableRange(const Decl *D) {
if (auto attr = D->getAvailableAttrForPlatformIntroduction())
return attr->getIntroducedRange(D->getASTContext());
return AvailabilityRange::alwaysAvailable();
}
bool AvailabilityInference::isAvailableAsSPI(const Decl *D) {
if (auto attr = D->getAvailableAttrForPlatformIntroduction())
return attr->isSPI();
return false;
}
AvailabilityRange
SemanticAvailableAttr::getIntroducedRange(const ASTContext &Ctx) const {
assert(getDomain().isActive(Ctx));
auto *attr = getParsedAttr();
if (!attr->getRawIntroduced().has_value())
return AvailabilityRange::alwaysAvailable();
llvm::VersionTuple IntroducedVersion = attr->getRawIntroduced().value();
StringRef Platform;
llvm::VersionTuple RemappedIntroducedVersion;
if (AvailabilityInference::updateIntroducedPlatformForFallback(
*this, Ctx, Platform, RemappedIntroducedVersion))
IntroducedVersion = RemappedIntroducedVersion;
return AvailabilityRange{VersionRange::allGTE(IntroducedVersion)};
}
namespace {
/// Infers the availability required to access a type.
class AvailabilityInferenceTypeWalker : public TypeWalker {
public:
AvailabilityRange AvailabilityInfo = AvailabilityRange::alwaysAvailable();
Action walkToTypePre(Type ty) override {
if (auto *nominalDecl = ty->getAnyNominal()) {
AvailabilityInfo.intersectWith(
AvailabilityInference::availableRange(nominalDecl));
}
return Action::Continue;
}
};
} // end anonymous namespace
AvailabilityRange AvailabilityInference::inferForType(Type t) {
AvailabilityInferenceTypeWalker walker;
t.walk(walker);
return walker.AvailabilityInfo;
}
AvailabilityRange ASTContext::getSwiftFutureAvailability() const {
auto target = LangOpts.Target;
auto getFutureAvailabilityRange = []() -> AvailabilityRange {
return AvailabilityRange(
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
};
if (target.isMacOSX()) {
return getFutureAvailabilityRange();
} else if (target.isiOS()) {
return getFutureAvailabilityRange();
} else if (target.isWatchOS()) {
return getFutureAvailabilityRange();
} else if (target.isXROS()) {
return getFutureAvailabilityRange();
} else {
return AvailabilityRange::alwaysAvailable();
}
}
AvailabilityRange ASTContext::getSwiftAvailability(unsigned major,
unsigned minor) const {
auto target = LangOpts.Target;
// Deal with special cases for Swift 5.3 and lower
if (major == 5 && minor <= 3) {
if (target.getArchName() == "arm64e")
return AvailabilityRange::alwaysAvailable();
if (target.isMacOSX() && target.isAArch64())
return AvailabilityRange::alwaysAvailable();
if (target.isiOS() && target.isAArch64()
&& (target.isSimulatorEnvironment()
|| target.isMacCatalystEnvironment()))
return AvailabilityRange::alwaysAvailable();
if (target.isWatchOS() && target.isArch64Bit())
return AvailabilityRange::alwaysAvailable();
}
switch (major) {
#define MAJOR_VERSION(V) case V: switch (minor) {
#define END_MAJOR_VERSION(V) } break;
#define PLATFORM(P, V) \
if (IS_PLATFORM(P)) \
return AvailabilityRange(VersionRange::allGTE(llvm::VersionTuple V));
#define IS_PLATFORM(P) PLATFORM_TEST_##P
#define FUTURE return getSwiftFutureAvailability();
#define PLATFORM_TEST_macOS target.isMacOSX()
#define PLATFORM_TEST_iOS target.isiOS()
#define PLATFORM_TEST_watchOS target.isWatchOS()
#define PLATFORM_TEST_xrOS target.isXROS()
#define _SECOND(A, B) B
#define SECOND(T) _SECOND T
#define RUNTIME_VERSION(V, PLATFORMS) \
case SECOND(V): \
PLATFORMS \
return AvailabilityRange::alwaysAvailable();
#include "swift/AST/RuntimeVersions.def"
#undef PLATFORM_TEST_macOS
#undef PLATFORM_TEST_iOS
#undef PLATFORM_TEST_watchOS
#undef PLATFORM_TEST_xrOS
#undef _SECOND
#undef SECOND
case 99:
if (minor == 99)
return getSwiftFutureAvailability();
break;
}
llvm::report_fatal_error(
Twine("Missing runtime version data for Swift ") +
Twine(major) + Twine('.') + Twine(minor));
}
bool ASTContext::supportsVersionedAvailability() const {
return minimumAvailableOSVersionForTriple(LangOpts.Target).has_value();
}
// FIXME: Rename abstractSyntaxDeclForAvailableAttribute since it's useful
// for more attributes than `@available`.
const Decl *
swift::abstractSyntaxDeclForAvailableAttribute(const Decl *ConcreteSyntaxDecl) {
// This function needs to be kept in sync with its counterpart,
// concreteSyntaxDeclForAvailableAttribute().
if (auto *PBD = dyn_cast<PatternBindingDecl>(ConcreteSyntaxDecl)) {
// Existing @available attributes in the AST are attached to VarDecls
// rather than PatternBindingDecls, so we return the first VarDecl for
// the pattern binding declaration.
// This is safe, even though there may be multiple VarDecls, because
// all parsed attribute that appear in the concrete syntax upon on the
// PatternBindingDecl are added to all of the VarDecls for the pattern
// binding.
for (auto index : range(PBD->getNumPatternEntries())) {
if (auto VD = PBD->getAnchoringVarDecl(index))
return VD;
}
} else if (auto *ECD = dyn_cast<EnumCaseDecl>(ConcreteSyntaxDecl)) {
// Similar to the PatternBindingDecl case above, we return the
// first EnumElementDecl.
if (auto *Elem = ECD->getFirstElement()) {
return Elem;
}
}
return ConcreteSyntaxDecl;
}