Files
swift-mirror/lib/AST/SwiftNameTranslation.cpp
Doug Gregor de4d4a4244 Teach the TypeRefinementContext not to skip declarations within macro expansions
The construction of type refinement contexts performs lazy expansion
for the contents of macro expansions, so that TRC creation doesn't
force all macros to be expanded. However, the logic that skips macro
expansions would *also* skip some declarations produced within a macro
expansion, even when building the TRC specifically for that macro
expansion buffer. This manifest as missing some availability
information within the TRC, rejecting some well-formed code.

Tune the logic for "don't visit macro expansions when building a TRC"
to recognize when we're building a TRC for that macro expansion.

Fixes rdar://128400301.
2024-11-10 07:32:00 -08:00

403 lines
14 KiB
C++

//===--- SwiftNameTranslation.cpp - Swift to ObjC Name Translation APIs ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities for translating Swift names to ObjC.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SwiftNameTranslation.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/StringExtras.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/SmallString.h"
#include <optional>
using namespace swift;
StringRef swift::objc_translation::
getNameForObjC(const ValueDecl *VD, CustomNamesOnly_t customNamesOnly) {
assert(isa<ClassDecl>(VD) || isa<ProtocolDecl>(VD) || isa<StructDecl>(VD) ||
isa<EnumDecl>(VD) || isa<EnumElementDecl>(VD) ||
isa<TypeAliasDecl>(VD));
if (auto objc = VD->getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName()) {
assert(name->getNumSelectorPieces() == 1);
return name->getSelectorPieces().front().str();
}
}
if (customNamesOnly)
return StringRef();
if (auto clangDecl = dyn_cast_or_null<clang::NamedDecl>(VD->getClangDecl())) {
if (const clang::IdentifierInfo *II = clangDecl->getIdentifier())
return II->getName();
if (auto *anonDecl = dyn_cast<clang::TagDecl>(clangDecl))
if (auto *anonTypedef = anonDecl->getTypedefNameForAnonDecl())
return anonTypedef->getIdentifier()->getName();
}
return VD->getBaseIdentifier().str();
}
std::string swift::objc_translation::
getErrorDomainStringForObjC(const EnumDecl *ED) {
// Should have already been diagnosed as diag::objc_enum_generic.
assert(!ED->isGenericContext() && "Trying to bridge generic enum error to Obj-C");
SmallVector<const NominalTypeDecl *, 4> outerTypes;
for (const NominalTypeDecl * D = ED;
D != nullptr;
D = D->getDeclContext()->getSelfNominalTypeDecl()) {
// We don't currently PrintAsClang any types whose parents are private or
// fileprivate.
assert(D->getFormalAccess() >= AccessLevel::Internal &&
"We don't currently append private discriminators");
outerTypes.push_back(D);
}
std::string buffer = ED->getParentModule()->getNameStr().str();
for (auto D : llvm::reverse(outerTypes)) {
buffer += ".";
buffer += D->getNameStr();
}
return buffer;
}
bool swift::objc_translation::
printSwiftEnumElemNameInObjC(const EnumElementDecl *EL, llvm::raw_ostream &OS,
Identifier PreferredName) {
StringRef ElemName = getNameForObjC(EL, CustomNamesOnly);
if (!ElemName.empty()) {
OS << ElemName;
return true;
}
OS << getNameForObjC(EL->getDeclContext()->getSelfEnumDecl());
if (PreferredName.empty())
ElemName = EL->getBaseIdentifier().str();
else
ElemName = PreferredName.str();
SmallString<64> Scratch;
OS << camel_case::toSentencecase(ElemName, Scratch);
return false;
}
std::pair<Identifier, ObjCSelector> swift::objc_translation::
getObjCNameForSwiftDecl(const ValueDecl *VD, DeclName PreferredName){
ASTContext &Ctx = VD->getASTContext();
Identifier BaseName;
if (PreferredName) {
auto BaseNameStr = PreferredName.getBaseName().userFacingName();
BaseName = Ctx.getIdentifier(BaseNameStr);
}
if (auto *FD = dyn_cast<AbstractFunctionDecl>(VD)) {
return {Identifier(), FD->getObjCSelector(PreferredName)};
} else if (auto *VAD = dyn_cast<VarDecl>(VD)) {
if (PreferredName)
return {BaseName, ObjCSelector()};
return {VAD->getObjCPropertyName(), ObjCSelector()};
} else if (auto *SD = dyn_cast<SubscriptDecl>(VD)) {
return getObjCNameForSwiftDecl(SD->getParsedAccessor(AccessorKind::Get),
PreferredName);
} else if (auto *EL = dyn_cast<EnumElementDecl>(VD)) {
SmallString<64> Buffer;
{
llvm::raw_svector_ostream OS(Buffer);
printSwiftEnumElemNameInObjC(EL, OS, BaseName);
}
return {Ctx.getIdentifier(Buffer.str()), ObjCSelector()};
} else {
// @objc(ExplicitName) > PreferredName > Swift name.
StringRef Name = getNameForObjC(VD, CustomNamesOnly);
if (!Name.empty())
return {Ctx.getIdentifier(Name), ObjCSelector()};
if (PreferredName)
return {BaseName, ObjCSelector()};
return {Ctx.getIdentifier(getNameForObjC(VD)), ObjCSelector()};
}
}
bool swift::objc_translation::
isVisibleToObjC(const ValueDecl *VD, AccessLevel minRequiredAccess,
bool checkParent) {
if (!(VD->isObjC() || !VD->getCDeclName().empty()))
return false;
if (VD->getFormalAccess() >= minRequiredAccess) {
return true;
} else if (checkParent) {
if (auto ctor = dyn_cast<ConstructorDecl>(VD)) {
// Check if we're overriding an initializer that is visible to obj-c
if (auto parent = ctor->getOverriddenDecl())
return isVisibleToObjC(parent, minRequiredAccess, false);
}
}
return false;
}
StringRef
swift::cxx_translation::getNameForCxx(const ValueDecl *VD,
CustomNamesOnly_t customNamesOnly) {
ASTContext& ctx = VD->getASTContext();
for (auto *EA : VD->getAttrs().getAttributes<ExposeAttr>()) {
if (EA->getExposureKind() == ExposureKind::Cxx && !EA->Name.empty())
return EA->Name;
}
if (customNamesOnly)
return StringRef();
if (isa<ConstructorDecl>(VD))
return "init";
if (VD->isOperator()) {
std::string name = ("operator" + VD->getBaseIdentifier().str()).str();
return ctx.getIdentifier(name).str();
}
if (auto *mod = dyn_cast<ModuleDecl>(VD)) {
if (mod->isStdlibModule())
return "swift";
}
if (VD->getModuleContext()->isStdlibModule()) {
// Incorporate argument labels into Stdlib API names.
// FIXME: This should be done more broadly.
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
std::string result;
llvm::raw_string_ostream os(result);
os << VD->getBaseIdentifier().str();
if (!AFD->getParameters())
return os.str();
for (const auto *param : *AFD->getParameters()) {
auto paramName = param->getArgumentName();
if (paramName.empty())
continue;
auto paramNameStr = paramName.str();
os << char(std::toupper(paramNameStr[0]));
os << paramNameStr.drop_front(1);
}
auto r = ctx.getIdentifier(os.str());
return r.str();
}
// FIXME: String.Index should be exposed as String::Index, not
// _String_Index.
if (VD->getBaseIdentifier().str() == "Index") {
return "String_Index";
}
}
return VD->getBaseIdentifier().str();
}
swift::cxx_translation::DeclRepresentation
swift::cxx_translation::getDeclRepresentation(
const ValueDecl *VD,
std::optional<std::function<bool(const NominalTypeDecl *)>> isZeroSized) {
if (getActorIsolation(const_cast<ValueDecl *>(VD)).isActorIsolated())
return {Unsupported, UnrepresentableIsolatedInActor};
if (isa<MacroDecl>(VD))
return {Unsupported, UnrepresentableMacro};
GenericSignature genericSignature;
// Don't expose @_alwaysEmitIntoClient decls as they require their
// bodies to be emitted into client.
if (VD->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return {Unsupported, UnrepresentableRequiresClientEmission};
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
if (AFD->hasAsync())
return {Unsupported, UnrepresentableAsync};
if (AFD->hasThrows() &&
!AFD->getASTContext().LangOpts.hasFeature(
Feature::GenerateBindingsForThrowingFunctionsInCXX))
return {Unsupported, UnrepresentableThrows};
if (AFD->isGeneric())
genericSignature = AFD->getGenericSignature();
}
if (const auto *typeDecl = dyn_cast<NominalTypeDecl>(VD)) {
if (isa<ProtocolDecl>(typeDecl)) {
if (typeDecl->hasClangNode())
return {ObjCxxOnly, std::nullopt};
return {Unsupported, UnrepresentableProtocol};
}
// Swift's consume semantics are not yet supported in C++.
if (!typeDecl->canBeCopyable())
return {Unsupported, UnrepresentableMoveOnly};
if (isa<ClassDecl>(VD) && VD->isObjC())
return {Unsupported, UnrepresentableObjC};
if (typeDecl->isGeneric()) {
if (isa<ClassDecl>(VD))
return {Unsupported, UnrepresentableGeneric};
genericSignature = typeDecl->getGenericSignature();
}
// Nested classes are not yet supported.
if (isa<ClassDecl>(VD) && !typeDecl->hasClangNode() &&
isa_and_nonnull<NominalTypeDecl>(
typeDecl->getDeclContext()->getAsDecl()))
return {Unsupported, UnrepresentableNested};
if (!isa<ClassDecl>(typeDecl) && isZeroSized && (*isZeroSized)(typeDecl))
return {Unsupported, UnrepresentableZeroSizedValueType};
}
if (const auto *varDecl = dyn_cast<VarDecl>(VD)) {
// Check if any property accessor throws, do not expose it in that case.
for (const auto *accessor : varDecl->getAllAccessors()) {
if (accessor->hasThrows())
return {Unsupported, UnrepresentableThrows};
}
}
if (const auto *enumDecl = dyn_cast<EnumDecl>(VD)) {
if (enumDecl->isIndirect())
return {Unsupported, UnrepresentableIndirectEnum};
for (const auto *enumCase : enumDecl->getAllCases()) {
for (const auto *elementDecl : enumCase->getElements()) {
if (!elementDecl->hasAssociatedValues())
continue;
if (elementDecl->isIndirect())
return {Unsupported, UnrepresentableIndirectEnum};
// Do not expose any enums with > 1
// enum parameter, or any enum parameter
// whose type we do not yet support.
if (auto *params = elementDecl->getParameterList()) {
if (params->size() > 1)
return {Unsupported, UnrepresentableEnumCaseTuple};
for (const auto *param : *params) {
auto paramType = param->getInterfaceType();
if (!paramType->is<GenericTypeParamType>()) {
auto *nominal = paramType->getNominalOrBoundGenericNominal();
if (!nominal || isa<ProtocolDecl>(nominal))
return {Unsupported, UnrepresentableEnumCaseType};
}
}
}
}
}
}
// Generic requirements are not yet supported in C++.
if (!isExposableToCxx(genericSignature)) {
return {Unsupported, UnrepresentableGenericRequirements};
}
return {Representable, std::nullopt};
}
bool swift::cxx_translation::isVisibleToCxx(const ValueDecl *VD,
AccessLevel minRequiredAccess,
bool checkParent) {
// Do not expose anything from _Concurrency module yet.
if (VD->getModuleContext()->ValueDecl::getName().getBaseIdentifier() ==
VD->getASTContext().Id_Concurrency)
return false;
if (VD->getFormalAccess() >= minRequiredAccess) {
return true;
} else if (checkParent) {
if (auto ctor = dyn_cast<ConstructorDecl>(VD)) {
// Check if we're overriding an initializer that is visible to obj-c
if (auto parent = ctor->getOverriddenDecl())
return isVisibleToCxx(parent, minRequiredAccess, false);
}
}
return false;
}
bool swift::cxx_translation::isExposableToCxx(GenericSignature genericSig) {
// If there's no generic signature, it's fine.
if (!genericSig)
return true;
// FIXME: This should use getRequirements() and actually
// support arbitrary requirements. We don't really want
// to use getRequirementsWithInverses() here.
//
// For now, we use the inverse transform as a quick way to
// check for the "default" generic signature where each
// generic parameter is Copyable and Escapable, but not
// subject to any other requirements; that's exactly the
// generic signature that C++ interop supports today.
SmallVector<Requirement, 2> reqs;
SmallVector<InverseRequirement, 2> inverseReqs;
genericSig->getRequirementsWithInverses(reqs, inverseReqs);
if (!reqs.empty()) {
// Conformance requirements to marker protocols are okay.
for (const auto &req: reqs) {
if (req.getKind() != RequirementKind::Conformance)
return false;
auto proto = req.getProtocolDecl();
if (!proto->isMarkerProtocol() && !proto->hasClangNode())
return false;
}
}
// Allow Copyable and Escapable.
for (const auto &req: inverseReqs) {
switch (req.getKind()) {
case InvertibleProtocolKind::Copyable:
continue;
case InvertibleProtocolKind::Escapable:
continue;
}
return false;
}
return true;
}
Diagnostic
swift::cxx_translation::diagnoseRepresenationError(RepresentationError error,
ValueDecl *vd) {
switch (error) {
case UnrepresentableObjC:
return Diagnostic(diag::expose_unsupported_objc_decl_to_cxx, vd);
case UnrepresentableAsync:
return Diagnostic(diag::expose_unsupported_async_decl_to_cxx, vd);
case UnrepresentableIsolatedInActor:
return Diagnostic(diag::expose_unsupported_actor_isolated_to_cxx, vd);
case UnrepresentableRequiresClientEmission:
return Diagnostic(diag::expose_unsupported_client_emission_to_cxx, vd);
case UnrepresentableGeneric:
return Diagnostic(diag::expose_generic_decl_to_cxx, vd);
case UnrepresentableGenericRequirements:
return Diagnostic(diag::expose_generic_requirement_to_cxx, vd);
case UnrepresentableThrows:
return Diagnostic(diag::expose_throwing_to_cxx, vd);
case UnrepresentableIndirectEnum:
return Diagnostic(diag::expose_indirect_enum_cxx, vd);
case UnrepresentableEnumCaseType:
return Diagnostic(diag::expose_enum_case_type_to_cxx, vd);
case UnrepresentableEnumCaseTuple:
return Diagnostic(diag::expose_enum_case_tuple_to_cxx, vd);
case UnrepresentableProtocol:
return Diagnostic(diag::expose_protocol_to_cxx_unsupported, vd);
case UnrepresentableMoveOnly:
return Diagnostic(diag::expose_move_only_to_cxx, vd);
case UnrepresentableNested:
return Diagnostic(diag::expose_nested_type_to_cxx, vd);
case UnrepresentableMacro:
return Diagnostic(diag::expose_macro_to_cxx, vd);
case UnrepresentableZeroSizedValueType:
return Diagnostic(diag::expose_zero_size_to_cxx, vd);
}
}