Files
swift-mirror/lib/ClangImporter/ImportName.cpp
Gabor Horvath 1601564342 [cxx-interop] Import rvalue references as consuming parameters
Unfortunately, importing them as is results in ambiguous call sites.
E.g., std::vector::push_back has overloads for lvalue reference and
rvalue reference and we have no way to distinguish them at the call site
in Swift. To overcome this issue, functions with rvalue reference
parameters are imported with 'consuming:' argument labels.

Note that, in general, move only types and consuming is not properly
supported in Swift yet. We do not invoke the dtor for the moved-from
objects. This is a preexisting problem that can be observed with move
only types before this PR, so the fix will be done in a separate PR.
Fortunately, for most types, the moved-from objects do not require
additional cleanups.

rdar://125816354
2024-12-02 13:09:21 +00:00

2565 lines
94 KiB
C++

//===--- ImportName.cpp - Imported Swift names for Clang decls ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides class definitions for naming-related concerns in the
// ClangImporter.
//
//===----------------------------------------------------------------------===//
#include "CFTypeInfo.h"
#include "ClangClassTemplateNamePrinter.h"
#include "ClangDiagnosticConsumer.h"
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ClangSwiftTypeCorrespondence.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/TypeRepr.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/StringExtras.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/Parse/ParseDeclName.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <memory>
#include <optional>
#include "llvm/ADT/Statistic.h"
#define DEBUG_TYPE "Import Name"
STATISTIC(ImportNameNumCacheHits, "# of times the import name cache was hit");
STATISTIC(ImportNameNumCacheMisses, "# of times the import name cache was missed");
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
static const char *getOperatorName(clang::OverloadedOperatorKind Operator) {
switch (Operator) {
case clang::OO_None:
case clang::NUM_OVERLOADED_OPERATORS:
return nullptr;
#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
case clang::OO_##Name: \
return #Name;
#include "clang/Basic/OperatorKinds.def"
}
llvm_unreachable("Invalid OverloadedOperatorKind!");
}
/// Determine whether the given Clang selector matches the given
/// selector pieces.
static bool isNonNullarySelector(clang::Selector selector,
ArrayRef<StringRef> pieces) {
unsigned n = selector.getNumArgs();
if (n == 0) return false;
if (n != pieces.size()) return false;
for (unsigned i = 0; i != n; ++i) {
if (selector.getNameForSlot(i) != pieces[i]) return false;
}
return true;
}
/// Whether we should make a variadic method with the given selector
/// non-variadic.
static bool shouldMakeSelectorNonVariadic(clang::Selector selector) {
// This is UIActionSheet's designated initializer.
if (isNonNullarySelector(selector,
{ "initWithTitle",
"delegate",
"cancelButtonTitle",
"destructiveButtonTitle",
"otherButtonTitles" }))
return true;
// This is UIAlertView's designated initializer.
if (isNonNullarySelector(selector,
{ "initWithTitle",
"message",
"delegate",
"cancelButtonTitle",
"otherButtonTitles" }))
return true;
// Nothing else for now.
return false;
}
static bool isBlockParameter(const clang::ParmVarDecl *param) {
return param->getType()->isBlockPointerType();
}
static bool isErrorOutParameter(const clang::ParmVarDecl *param,
ForeignErrorConvention::IsOwned_t &isErrorOwned) {
clang::QualType type = param->getType();
// Must be a pointer.
auto ptrType = type->getAs<clang::PointerType>();
if (!ptrType) return false;
type = ptrType->getPointeeType();
// For NSError**, take ownership from the qualifier.
if (auto objcPtrType = type->getAs<clang::ObjCObjectPointerType>()) {
auto iface = objcPtrType->getInterfaceDecl();
if (iface && iface->getName() == "NSError") {
switch (type.getObjCLifetime()) {
case clang::Qualifiers::OCL_None:
llvm_unreachable("not in ARC?");
case clang::Qualifiers::OCL_ExplicitNone:
case clang::Qualifiers::OCL_Autoreleasing:
isErrorOwned = ForeignErrorConvention::IsNotOwned;
return true;
case clang::Qualifiers::OCL_Weak:
// We just don't know how to handle this.
return false;
case clang::Qualifiers::OCL_Strong:
isErrorOwned = ForeignErrorConvention::IsOwned;
return false;
}
llvm_unreachable("bad error ownership");
}
}
return false;
}
static bool isBoolType(clang::ASTContext &ctx, clang::QualType type) {
do {
// Check whether we have a typedef for "BOOL" or "Boolean".
if (auto typedefType = dyn_cast<clang::TypedefType>(type.getTypePtr())) {
auto typedefDecl = typedefType->getDecl();
if (typedefDecl->getName() == "BOOL" ||
typedefDecl->getName() == "Boolean")
return true;
type = typedefDecl->getUnderlyingType();
continue;
}
// Try to desugar one level...
clang::QualType desugared = type.getSingleStepDesugaredType(ctx);
if (desugared.getTypePtr() == type.getTypePtr())
break;
type = desugared;
} while (!type.isNull());
return false;
}
static bool isIntegerType(clang::QualType clangType) {
if (auto builtinTy = clangType->getAs<clang::BuiltinType>()) {
return (builtinTy->getKind() >= clang::BuiltinType::Bool &&
builtinTy->getKind() <= clang::BuiltinType::UInt128) ||
(builtinTy->getKind() >= clang::BuiltinType::SChar &&
builtinTy->getKind() <= clang::BuiltinType::Int128);
}
return false;
}
static std::optional<ForeignErrorConvention::Kind>
classifyMethodErrorHandling(const clang::ObjCMethodDecl *clangDecl,
OptionalTypeKind resultOptionality) {
// TODO: opt out any non-standard methods here?
clang::ASTContext &clangCtx = clangDecl->getASTContext();
// Check for an explicit attribute.
if (auto attr = clangDecl->getAttr<clang::SwiftErrorAttr>()) {
switch (attr->getConvention()) {
case clang::SwiftErrorAttr::None:
return std::nullopt;
case clang::SwiftErrorAttr::NonNullError:
return ForeignErrorConvention::NonNilError;
// Only honor null_result if we actually imported as a
// non-optional type.
case clang::SwiftErrorAttr::NullResult:
if (resultOptionality != OTK_None &&
swift::canImportAsOptional(
clangDecl->getReturnType().getTypePtrOrNull()))
return ForeignErrorConvention::NilResult;
return std::nullopt;
// Preserve the original result type on a zero_result unless we
// imported it as Bool.
case clang::SwiftErrorAttr::ZeroResult:
if (isBoolType(clangCtx, clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroResult;
} else if (isIntegerType(clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroPreservedResult;
}
return std::nullopt;
// There's no reason to do the same for nonzero_result because the
// only meaningful value remaining would be zero.
case clang::SwiftErrorAttr::NonZeroResult:
if (isIntegerType(clangDecl->getReturnType()))
return ForeignErrorConvention::NonZeroResult;
return std::nullopt;
}
llvm_unreachable("bad swift_error kind");
}
// Otherwise, apply the default rules.
// For bool results, a zero value is an error.
if (isBoolType(clangCtx, clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroResult;
}
// For optional reference results, a nil value is normally an error.
if (resultOptionality != OTK_None &&
swift::canImportAsOptional(
clangDecl->getReturnType().getTypePtrOrNull())) {
return ForeignErrorConvention::NilResult;
}
return std::nullopt;
}
static const char ErrorSuffix[] = "AndReturnError";
static const char AltErrorSuffix[] = "WithError";
/// Determine the optionality of the given Objective-C method.
///
/// \param method The Clang method.
static OptionalTypeKind getResultOptionality(
const clang::ObjCMethodDecl *method) {
// If nullability is available on the type, use it.
if (auto nullability = method->getReturnType()->getNullability()) {
return translateNullability(*nullability);
}
// If there is a returns_nonnull attribute, non-null.
if (method->hasAttr<clang::ReturnsNonNullAttr>())
return OTK_None;
// Default to implicitly unwrapped optionals.
return OTK_ImplicitlyUnwrappedOptional;
}
/// Determine whether the given name is reserved for Swift.
static bool isSwiftReservedName(StringRef name) {
tok kind = Lexer::kindOfIdentifier(name, /*InSILMode=*/false);
return (kind != tok::identifier);
}
/// Determine whether we should lowercase the first word of the given value
/// name.
static bool shouldLowercaseValueName(StringRef name) {
// If we see any lowercase characters, we can lowercase.
for (auto c : name) {
if (clang::isLowercase(c)) return true;
}
// Otherwise, lowercasing will either be a no-op or we have ALL_CAPS.
return false;
}
/// Will recursively print out the fully qualified context for the given name.
/// Ends with a trailing "."
static void printFullContextPrefix(ImportedName name, ImportNameVersion version,
llvm::raw_ostream &os,
ClangImporter::Implementation &Impl) {
const clang::NamedDecl *newDeclContextNamed = nullptr;
switch (name.getEffectiveContext().getKind()) {
case EffectiveClangContext::UnresolvedContext:
os << name.getEffectiveContext().getUnresolvedName() << ".";
// And we're done!
return;
case EffectiveClangContext::DeclContext: {
auto namedDecl = dyn_cast<clang::NamedDecl>(
name.getEffectiveContext().getAsDeclContext());
if (!namedDecl) {
// We're done
return;
}
newDeclContextNamed = cast<clang::NamedDecl>(namedDecl);
break;
}
case EffectiveClangContext::TypedefContext:
newDeclContextNamed = name.getEffectiveContext().getTypedefName();
break;
}
// Now, let's print out the parent
assert(newDeclContextNamed && "should of been set");
auto parentName = Impl.importFullName(newDeclContextNamed, version);
printFullContextPrefix(parentName, version, os, Impl);
os << parentName.getDeclName() << ".";
}
void ClangImporter::Implementation::printSwiftName(ImportedName name,
ImportNameVersion version,
bool fullyQualified,
llvm::raw_ostream &os) {
// Property accessors.
bool isGetter = false;
bool isSetter = false;
switch (name.getAccessorKind()) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::DereferenceGetter:
case ImportedAccessorKind::DereferenceSetter:
break;
case ImportedAccessorKind::PropertyGetter:
case ImportedAccessorKind::SubscriptGetter:
os << "getter:";
isGetter = true;
break;
case ImportedAccessorKind::PropertySetter:
case ImportedAccessorKind::SubscriptSetter:
os << "setter:";
isSetter = true;
break;
}
if (fullyQualified)
printFullContextPrefix(name, version, os, *this);
// Base name.
os << name.getDeclName().getBaseName();
// Determine the number of argument labels we'll be producing.
auto argumentNames = name.getDeclName().getArgumentNames();
unsigned numArguments = argumentNames.size();
if (name.getSelfIndex()) ++numArguments;
if (isSetter) ++numArguments;
// If the result is a simple name that is not a getter, we're done.
if (numArguments == 0 && name.getDeclName().isSimpleName() && !isGetter)
return;
// We need to produce a function name.
os << "(";
unsigned currentArgName = 0;
for (unsigned i = 0; i != numArguments; ++i) {
// The "self" parameter.
if (name.getSelfIndex() && *name.getSelfIndex() == i) {
os << "self:";
continue;
}
if (currentArgName < argumentNames.size()) {
if (argumentNames[currentArgName].empty())
os << "_";
else
os << argumentNames[currentArgName].str();
os << ":";
++currentArgName;
continue;
}
// We don't have a name for this argument.
os << "_:";
}
os << ")";
}
/// Retrieve the name of the given Clang declaration context for
/// printing.
static StringRef getClangDeclContextName(const clang::DeclContext *dc) {
auto type = getClangDeclContextType(dc);
if (type.isNull()) return StringRef();
return getClangTypeNameForOmission(dc->getParentASTContext(), type).Name;
}
namespace {
/// Merge the a set of imported names produced for the overridden
/// declarations of a given method or property.
template<typename DeclType>
void mergeOverriddenNames(ASTContext &ctx,
const DeclType *decl,
SmallVectorImpl<std::pair<const DeclType *,
ImportedName>>
&overriddenNames) {
typedef std::pair<const DeclType *, ImportedName> OverriddenName;
llvm::SmallPtrSet<DeclName, 4> known;
(void)known.insert(DeclName());
overriddenNames.erase(
std::remove_if(overriddenNames.begin(), overriddenNames.end(),
[&](OverriddenName overridden) {
return !known.insert(overridden.second.getDeclName())
.second;
}),
overriddenNames.end());
if (overriddenNames.size() < 2)
return;
// Complain about inconsistencies.
std::string nameStr;
auto method = dyn_cast<clang::ObjCMethodDecl>(decl);
if (method)
nameStr = method->getSelector().getAsString();
else
nameStr = cast<clang::ObjCPropertyDecl>(decl)->getName().str();
for (unsigned i = 1, n = overriddenNames.size(); i != n; ++i) {
if (ctx.Diags.isPrettyPrintingDecl())
continue;
ctx.Diags.diagnose(SourceLoc(), diag::inconsistent_swift_name,
method == nullptr,
nameStr,
getClangDeclContextName(decl->getDeclContext()),
overriddenNames[0].second,
getClangDeclContextName(
overriddenNames[0].first->getDeclContext()),
overriddenNames[i].second,
getClangDeclContextName(
overriddenNames[i].first->getDeclContext()));
}
}
} // end anonymous namespace
/// Skip a leading 'k' in a 'kConstant' pattern
static StringRef stripLeadingK(StringRef name) {
if (name.size() >= 2 && name[0] == 'k' &&
clang::isUppercase(name[1]))
return name.drop_front(1);
return name;
}
/// Strips a trailing "Notification", if present. Returns {} if name doesn't end
/// in "Notification", or it there would be nothing left.
StringRef importer::stripNotification(StringRef name) {
name = stripLeadingK(name);
StringRef notification = "Notification";
if (name.size() <= notification.size() || !name.ends_with(notification))
return {};
return name.drop_back(notification.size());
}
/// Match the name of the given Objective-C method to its enclosing class name
/// to determine the name prefix that would be stripped if the class method
/// were treated as an initializer.
static std::optional<unsigned>
matchFactoryAsInitName(const clang::ObjCMethodDecl *method) {
// Only class methods can be mapped to initializers in this way.
if (!method->isClassMethod())
return std::nullopt;
// Said class methods must be in an actual class.
auto objcClass = method->getClassInterface();
if (!objcClass)
return std::nullopt;
// See if we can match the class name to the beginning of the first
// selector piece.
auto firstPiece = method->getSelector().getNameForSlot(0);
if (firstPiece.empty())
return std::nullopt;
StringRef firstArgLabel = matchLeadingTypeName(firstPiece,
objcClass->getName());
if (firstArgLabel.size() == firstPiece.size())
return std::nullopt;
// FIXME: Factory methods cannot have dummy parameters added for
// historical reasons.
if (!firstArgLabel.empty() && method->getSelector().getNumArgs() == 0)
return std::nullopt;
// Return the prefix length.
return firstPiece.size() - firstArgLabel.size();
}
/// Determine the kind of initializer the given factory method could be mapped
/// to, or produce \c None.
static std::optional<CtorInitializerKind>
determineFactoryInitializerKind(const clang::ObjCMethodDecl *method) {
// Determine whether we have a suitable return type.
if (method->hasRelatedResultType()) {
// When the factory method has an "instancetype" result type, we
// can import it as a convenience factory method.
return CtorInitializerKind::ConvenienceFactory;
}
if (auto objcPtr = method->getReturnType()
->getAs<clang::ObjCObjectPointerType>()) {
auto objcClass = method->getClassInterface();
if (!objcClass)
return std::nullopt;
if (objcPtr->getInterfaceDecl() != objcClass) {
// FIXME: Could allow a subclass here, but the rest of the compiler
// isn't prepared for that yet.
return std::nullopt;
}
// Factory initializer.
return CtorInitializerKind::Factory;
}
// Not imported as an initializer.
return std::nullopt;
}
namespace {
/// Describes the details of any swift_name or swift_async_name
/// attribute found via
struct AnySwiftNameAttr {
/// The name itself.
StringRef name;
/// Whether this was a swift_async_name attribute.
bool isAsync;
friend bool operator==(AnySwiftNameAttr lhs, AnySwiftNameAttr rhs) {
return lhs.name == rhs.name && lhs.isAsync == rhs.isAsync;
}
};
/// Aggregate struct for the common members of clang::SwiftVersionedAdditionAttr and
/// clang::SwiftVersionedRemovalAttr.
///
/// For a SwiftVersionedRemovalAttr, the Attr member will be null.
struct VersionedSwiftNameInfo {
std::optional<AnySwiftNameAttr> Attr;
llvm::VersionTuple Version;
bool IsReplacedByActive;
};
/// The action to take upon seeing a particular versioned swift_name annotation.
enum class VersionedSwiftNameAction {
/// This annotation is not interesting.
Ignore,
/// This annotation is better than whatever we have so far.
Use,
/// This annotation is better than nothing, but that's all; don't bother
/// recording its version.
UseAsFallback,
/// This annotation itself isn't interesting, but its version shows that the
/// correct answer is whatever's currently active.
ResetToActive
};
} // end anonymous namespace
static VersionedSwiftNameAction
checkVersionedSwiftName(VersionedSwiftNameInfo info,
llvm::VersionTuple bestSoFar,
ImportNameVersion requestedVersion) {
if (!bestSoFar.empty() && bestSoFar <= info.Version)
return VersionedSwiftNameAction::Ignore;
auto requestedClangVersion = requestedVersion.asClangVersionTuple();
if (info.IsReplacedByActive) {
// We know that there are no versioned names between the active version and
// a replacement version, because otherwise /that/ name would be active.
// So if replacement < requested, we want to use the old value that was
// replaced (but with very low priority), and otherwise we want to use the
// new value that is now active. (Special case: replacement = 0 means that
// a header annotation was replaced by an unversioned API notes annotation.)
if (info.Version.empty() ||
info.Version >= requestedClangVersion) {
return VersionedSwiftNameAction::ResetToActive;
}
if (bestSoFar.empty())
return VersionedSwiftNameAction::UseAsFallback;
return VersionedSwiftNameAction::Ignore;
}
if (info.Version < requestedClangVersion)
return VersionedSwiftNameAction::Ignore;
return VersionedSwiftNameAction::Use;
}
static std::optional<AnySwiftNameAttr>
findSwiftNameAttr(const clang::Decl *decl, ImportNameVersion version) {
#ifndef NDEBUG
if (std::optional<const clang::Decl *> def =
getDefinitionForClangTypeDecl(decl)) {
assert((*def == nullptr || *def == decl) &&
"swift_name should only appear on the definition");
}
#endif
if (version == ImportNameVersion::raw())
return std::nullopt;
/// Decode the given Clang attribute to try to determine whether it is
/// a Swift name attribute.
auto decodeAttr =
[&](const clang::Attr *attr) -> std::optional<AnySwiftNameAttr> {
if (version.supportsConcurrency()) {
if (auto asyncAttr = dyn_cast<clang::SwiftAsyncNameAttr>(attr)) {
return AnySwiftNameAttr { asyncAttr->getName(), /*isAsync=*/true };
}
}
if (auto nameAttr = dyn_cast<clang::SwiftNameAttr>(attr)) {
return AnySwiftNameAttr { nameAttr->getName(), /*isAsync=*/false };
}
return std::nullopt;
};
// Handle versioned API notes for Swift 3 and later. This is the common case.
if (version > ImportNameVersion::swift2()) {
// FIXME: Until Apple gets a chance to update UIKit's API notes, always use
// the new name for certain properties.
if (auto *namedDecl = dyn_cast<clang::NamedDecl>(decl))
if (importer::isSpecialUIKitStructZeroProperty(namedDecl))
version = ImportNameVersion::swift4_2();
// Dig out the attribute that specifies the Swift name.
std::optional<AnySwiftNameAttr> activeAttr;
if (auto asyncAttr = decl->getAttr<clang::SwiftAsyncNameAttr>())
activeAttr = decodeAttr(asyncAttr);
if (!activeAttr) {
if (auto nameAttr = decl->getAttr<clang::SwiftNameAttr>())
activeAttr = decodeAttr(nameAttr);
}
if (auto enumDecl = dyn_cast<clang::EnumDecl>(decl)) {
// Intentionally don't get the canonical type here.
if (auto typedefType = dyn_cast<clang::TypedefType>(getUnderlyingType(enumDecl))) {
// If the typedef is available in Swift, the user will get ambiguity.
// It also means they may not have intended this API to be imported like this.
if (importer::isUnavailableInSwift(typedefType->getDecl(), nullptr, true)) {
if (auto asyncAttr = typedefType->getDecl()->getAttr<clang::SwiftAsyncNameAttr>())
activeAttr = decodeAttr(asyncAttr);
if (!activeAttr) {
if (auto nameAttr = typedefType->getDecl()->getAttr<clang::SwiftNameAttr>())
activeAttr = decodeAttr(nameAttr);
}
}
}
}
std::optional<AnySwiftNameAttr> result = activeAttr;
llvm::VersionTuple bestSoFar;
for (auto *attr : decl->attrs()) {
VersionedSwiftNameInfo info;
if (auto *versionedAttr = dyn_cast<clang::SwiftVersionedAdditionAttr>(attr)) {
auto added = decodeAttr(versionedAttr->getAdditionalAttr());
if (!added)
continue;
info = {added, versionedAttr->getVersion(),
versionedAttr->getIsReplacedByActive()};
} else if (auto *removeAttr =
dyn_cast<clang::SwiftVersionedRemovalAttr>(attr)) {
if (removeAttr->getAttrKindToRemove() != clang::attr::SwiftName)
continue;
info = {std::nullopt, removeAttr->getVersion(),
removeAttr->getIsReplacedByActive()};
} else {
continue;
}
switch (checkVersionedSwiftName(info, bestSoFar, version)) {
case VersionedSwiftNameAction::Ignore:
continue;
case VersionedSwiftNameAction::Use:
result = info.Attr;
bestSoFar = info.Version;
break;
case VersionedSwiftNameAction::UseAsFallback:
// HACK: If there's a swift_name attribute in the headers /and/ in the
// unversioned API notes /and/ in the active versioned API notes, there
// will be two "replacement" attributes, one for each of the first two
// cases. Prefer the first one we see, because that turns out to be the
// one from the API notes, which matches the semantics when there are no
// versioned API notes. (This isn't very principled but there's at least
// a test to tell us if it changes.)
if (result == activeAttr)
result = info.Attr;
assert(bestSoFar.empty());
break;
case VersionedSwiftNameAction::ResetToActive:
result = activeAttr;
bestSoFar = info.Version;
break;
}
}
return result;
}
// The remainder of this function emulates the limited form of swift_name
// supported in Swift 2.
auto attr = decl->getAttr<clang::SwiftNameAttr>();
if (!attr)
return std::nullopt;
// API notes produce attributes with no source location; ignore them because
// they weren't used for naming in Swift 2.
if (attr->getLocation().isInvalid())
return std::nullopt;
// Hardcode certain kinds of explicitly-written Swift names that were
// permitted and used in Swift 2. All others are ignored, so that we are
// assuming a more direct translation from the Objective-C APIs into Swift.
if (auto enumerator = dyn_cast<clang::EnumConstantDecl>(decl)) {
// Foundation's NSXMLDTDKind had an explicit swift_name attribute in
// Swift 2. Honor it.
if (enumerator->getName() == "NSXMLDTDKind") return decodeAttr(attr);
return std::nullopt;
}
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// Special case: mapping to an initializer.
if (attr->getName().starts_with("init(")) {
// If we have a class method, honor the annotation to turn a class
// method into an initializer.
if (method->isClassMethod()) return decodeAttr(attr);
return std::nullopt;
}
// Special case: preventing a mapping to an initializer.
if (matchFactoryAsInitName(method) && determineFactoryInitializerKind(method))
return decodeAttr(attr);
return std::nullopt;
}
return std::nullopt;
}
/// Determine whether the given class method should be imported as
/// an initializer.
static FactoryAsInitKind
getFactoryAsInit(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method,
ImportNameVersion version) {
if (auto customNameAttr = findSwiftNameAttr(method, version)) {
if (customNameAttr->name.starts_with("init("))
return FactoryAsInitKind::AsInitializer;
else
return FactoryAsInitKind::AsClassMethod;
}
return FactoryAsInitKind::Infer;
}
std::optional<CtorInitializerKind>
determineCtorInitializerKind(const clang::ObjCMethodDecl *method) {
const clang::ObjCInterfaceDecl *interface = method->getClassInterface();
if (isInitMethod(method)) {
// If the owning Objective-C class has designated initializers and this
// is not one of them, treat it as a convenience initializer.
if (interface && interface->hasDesignatedInitializers() &&
!method->hasAttr<clang::ObjCDesignatedInitializerAttr>()) {
return CtorInitializerKind::Convenience;
}
return CtorInitializerKind::Designated;
}
if (method->isClassMethod())
return determineFactoryInitializerKind(method);
return std::nullopt;
}
/// Determine whether this Objective-C method should be imported as
/// an initializer.
///
/// \param prefixLength Will be set to the length of the prefix that
/// should be stripped from the first selector piece, e.g., "init"
/// or the restated name of the class in a factory method.
static bool shouldImportAsInitializer(const clang::ObjCMethodDecl *method,
ImportNameVersion version,
unsigned &prefixLength) {
/// Is this an initializer?
if (isInitMethod(method)) {
prefixLength = 4;
return true;
}
// It must be a class method.
if (!method->isClassMethod()) return false;
// Said class methods must be in an actual class.
auto objcClass = method->getClassInterface();
if (!objcClass) return false;
// Check whether we should try to import this factory method as an
// initializer.
switch (getFactoryAsInit(objcClass, method, version)) {
case FactoryAsInitKind::AsInitializer:
// Okay; check for the correct result type below.
prefixLength = 0;
break;
case FactoryAsInitKind::Infer:
// See if we can match the class name to the beginning of the first
// selector piece.
if (auto matchedLength = matchFactoryAsInitName(method)) {
prefixLength = *matchedLength;
break;
}
return false;
case FactoryAsInitKind::AsClassMethod:
return false;
}
if (determineFactoryInitializerKind(method))
return true;
// Not imported as an initializer.
return false;
}
/// Attempt to omit needless words from the given function name.
static bool omitNeedlessWordsInFunctionName(
StringRef &baseName, SmallVectorImpl<StringRef> &argumentNames,
ArrayRef<const clang::ParmVarDecl *> params, clang::QualType resultType,
const clang::DeclContext *dc, const SmallBitVector &nonNullArgs,
std::optional<unsigned> errorParamIndex, bool returnsSelf,
bool isInstanceMethod, std::optional<unsigned> completionHandlerIndex,
std::optional<StringRef> completionHandlerName,
NameImporter &nameImporter) {
clang::ASTContext &clangCtx = nameImporter.getClangContext();
// Collect the parameter type names.
StringRef firstParamName;
SmallVector<OmissionTypeName, 4> paramTypes;
for (unsigned i = 0, n = params.size(); i != n; ++i) {
auto param = params[i];
// Capture the first parameter name.
if (i == 0)
firstParamName = param->getName();
bool isLastParameter
= (i == params.size() - 1) ||
(i == params.size() - 2 &&
errorParamIndex && *errorParamIndex == params.size() - 1);
// Figure out whether there will be a default argument for this
// parameter.
StringRef argumentName;
if (i < argumentNames.size())
argumentName = argumentNames[i];
auto argumentAttrs =
ClangImporter::Implementation::inferDefaultArgument(
param->getType(),
getParamOptionality(param, !nonNullArgs.empty() && nonNullArgs[i]),
nameImporter.getIdentifier(baseName), argumentName, i == 0,
isLastParameter, nameImporter);
paramTypes.push_back(
(argumentAttrs.hasAlternateCXXOptionsEnumName()
? OmissionTypeName(argumentAttrs.getAlternateCXXOptionsEnumName())
: getClangTypeNameForOmission(clangCtx, param->getOriginalType()))
.withDefaultArgument(argumentAttrs.hasDefaultArg()));
}
// Find the property names.
const InheritedNameSet *allPropertyNames = nullptr;
auto contextType = getClangDeclContextType(dc);
if (!contextType.isNull()) {
if (auto objcPtrType = contextType->getAsObjCInterfacePointerType())
if (auto objcClassDecl = objcPtrType->getInterfaceDecl())
allPropertyNames = nameImporter.getAllPropertyNames(
objcClassDecl, isInstanceMethod);
}
// Omit needless words.
return omitNeedlessWords(baseName, argumentNames, firstParamName,
getClangTypeNameForOmission(clangCtx, resultType),
getClangTypeNameForOmission(clangCtx, contextType),
paramTypes, returnsSelf, /*isProperty=*/false,
allPropertyNames, completionHandlerIndex,
completionHandlerName, nameImporter.getScratch());
}
/// Prepare global name for importing onto a swift_newtype.
static StringRef determineSwiftNewtypeBaseName(StringRef baseName,
StringRef newtypeName,
bool &strippedPrefix) {
StringRef newBaseName = stripLeadingK(baseName);
if (newBaseName != baseName) {
baseName = newBaseName;
strippedPrefix = true;
}
// Special case: Strip Notification for NSNotificationName
auto stripped = stripNotification(baseName);
if (!stripped.empty())
return stripped;
bool nonIdentifier = false;
auto pre = getCommonWordPrefix(newtypeName, baseName, nonIdentifier);
if (pre.size()) {
baseName = baseName.drop_front(pre.size());
strippedPrefix = true;
}
return baseName;
}
EffectiveClangContext
NameImporter::determineEffectiveContext(const clang::NamedDecl *decl,
const clang::DeclContext *dc,
ImportNameVersion version) {
EffectiveClangContext res;
// Enumerators can end up within their enclosing enum or in the global
// scope, depending how their enclosing enumeration is imported.
if (isa<clang::EnumConstantDecl>(decl)) {
auto enumDecl = cast<clang::EnumDecl>(dc);
switch (getEnumKind(enumDecl)) {
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum:
case EnumKind::Options:
// Enums are mapped to Swift enums, Options to Swift option sets.
if (version != ImportNameVersion::raw()) {
res = cast<clang::DeclContext>(enumDecl);
break;
}
LLVM_FALLTHROUGH;
case EnumKind::Constants:
case EnumKind::Unknown:
// The enum constant goes into the redeclaration context of the
// enum.
res = enumDecl->getRedeclContext();
break;
}
// Import onto a swift_newtype if present
} else if (auto newtypeDecl = findSwiftNewtype(decl, clangSema, version)) {
res = newtypeDecl;
// Everything else goes into its redeclaration context.
} else {
res = dc->getRedeclContext();
}
// Anything in an Objective-C category or extension is adjusted to the
// class context.
if (auto category =
dyn_cast_or_null<clang::ObjCCategoryDecl>(res.getAsDeclContext())) {
// If the enclosing category is invalid, we cannot import the declaration.
if (category->isInvalidDecl())
return {};
return category->getClassInterface();
}
return res;
}
bool NameImporter::hasNamingConflict(const clang::NamedDecl *decl,
const clang::IdentifierInfo *proposedName,
const clang::TypedefNameDecl *cfTypedef) {
// Test to see if there is a value with the same name as 'proposedName'
// in the same module as the decl
// FIXME: This will miss macros.
auto clangModule = getClangSubmoduleForDecl(decl);
if (clangModule.has_value() && clangModule.value())
clangModule = clangModule.value()->getTopLevelModule();
auto conflicts = [&](const clang::Decl *OtherD) -> bool {
// If these are simply redeclarations, they do not conflict.
if (decl->getCanonicalDecl() == OtherD->getCanonicalDecl())
return false;
// If we have a CF typedef, check whether the "other"
// declaration we found is just the opaque type behind it. If
// so, it does not conflict.
if (cfTypedef) {
if (auto cfPointerTy =
cfTypedef->getUnderlyingType()->getAs<clang::PointerType>()) {
if (auto tagDecl = cfPointerTy->getPointeeType()->getAsTagDecl()) {
if (tagDecl->getCanonicalDecl() == OtherD)
return false;
}
}
}
auto declModule = getClangSubmoduleForDecl(OtherD);
if (!declModule.has_value())
return false;
// Handle the bridging header case. This is pretty nasty since things
// can get added to it *later*, but there's not much we can do.
if (!declModule.value())
return *clangModule == nullptr;
return *clangModule == declModule.value()->getTopLevelModule();
};
// Allow this lookup to find hidden names. We don't want the
// decision about whether to rename the decl to depend on
// what exactly the user has imported. Indeed, if we're being
// asked to resolve a serialization cross-reference, the user
// may not have imported this module at all, which means a
// normal lookup wouldn't even find the decl!
//
// Meanwhile, we don't need to worry about finding unwanted
// hidden declarations from different modules because we do a
// module check before deciding that there's a conflict.
clang::LookupResult lookupResult(clangSema, proposedName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
lookupResult.setAllowHidden(true);
lookupResult.suppressDiagnostics();
// Only force the Objective-C codepath in LookupName if clangSema.TUScope is
// nullptr
if (clangSema.LookupName(lookupResult, /*scope=*/clangSema.TUScope,
/*AllowBuiltinCreation=*/false,
/*ForceNoCPlusPlus=*/!clangSema.TUScope)) {
if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
return true;
}
// No need to lookup tags if we are using C++ mode.
if (!clang::LangStandard::getLangStandardForKind(
clangSema.getLangOpts().LangStd)
.isCPlusPlus()) {
lookupResult.clear(clang::Sema::LookupTagName);
if (clangSema.LookupName(lookupResult, /*scope=*/nullptr)) {
if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
return true;
}
}
return false;
}
static bool shouldBeSwiftPrivate(NameImporter &nameImporter,
const clang::NamedDecl *decl,
ImportNameVersion version,
bool isAsyncImport) {
// For an async import, check whether there is a swift_async attribute
// that specifies whether this should be considered swift_private or not.
if (isAsyncImport) {
if (auto *asyncAttr = decl->getAttr<clang::SwiftAsyncAttr>()) {
switch (asyncAttr->getKind()) {
case clang::SwiftAsyncAttr::None:
// Fall through to let us decide based on swift_private.
break;
case clang::SwiftAsyncAttr::SwiftPrivate:
return true;
case clang::SwiftAsyncAttr::NotSwiftPrivate:
return false;
}
}
}
// Decl with the attribute are obviously private
if (decl->hasAttr<clang::SwiftPrivateAttr>())
return true;
// Enum constants that are not imported as members should be considered
// private if the parent enum is marked private.
if (auto *ECD = dyn_cast<clang::EnumConstantDecl>(decl)) {
auto *ED = cast<clang::EnumDecl>(ECD->getDeclContext());
switch (nameImporter.getEnumKind(ED)) {
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum:
case EnumKind::Options:
if (version != ImportNameVersion::raw())
break;
LLVM_FALLTHROUGH;
case EnumKind::Constants:
case EnumKind::Unknown:
if (ED->hasAttr<clang::SwiftPrivateAttr>())
return true;
if (auto *enumTypedef = ED->getTypedefNameForAnonDecl())
if (enumTypedef->hasAttr<clang::SwiftPrivateAttr>())
return true;
break;
}
}
return false;
}
std::optional<ForeignErrorConvention::Info>
NameImporter::considerErrorImport(const clang::ObjCMethodDecl *clangDecl,
StringRef &baseName,
SmallVectorImpl<StringRef> &paramNames,
ArrayRef<const clang::ParmVarDecl *> params,
bool isInitializer, bool hasCustomName) {
// If the declaration name isn't parallel to the actual parameter
// list (e.g. if the method has C-style parameter declarations),
// don't try to apply error conventions.
bool expectsToRemoveError =
hasCustomName && paramNames.size() + 1 == params.size();
if (!expectsToRemoveError && paramNames.size() != params.size())
return std::nullopt;
for (unsigned index = params.size(); index-- != 0; ) {
// Allow an arbitrary number of trailing blocks.
if (isBlockParameter(params[index]))
continue;
// Otherwise, require the last parameter to be an out-parameter.
auto isErrorOwned = ForeignErrorConvention::IsNotOwned;
if (!isErrorOutParameter(params[index], isErrorOwned))
break;
auto errorKind =
classifyMethodErrorHandling(clangDecl,
getResultOptionality(clangDecl));
if (!errorKind)
return std::nullopt;
// Consider adjusting the imported declaration name to remove the
// parameter.
bool adjustName = !hasCustomName;
// Never do this if it's the first parameter of a constructor.
if (isInitializer && index == 0) {
adjustName = false;
}
// If the error parameter is the first parameter, try removing the
// standard error suffix from the base name.
StringRef suffixToStrip;
StringRef origBaseName = baseName;
if (adjustName && index == 0 && paramNames[0].empty()) {
if (baseName.ends_with(ErrorSuffix))
suffixToStrip = ErrorSuffix;
else if (baseName.ends_with(AltErrorSuffix))
suffixToStrip = AltErrorSuffix;
if (!suffixToStrip.empty()) {
StringRef newBaseName = baseName.drop_back(suffixToStrip.size());
if (newBaseName.empty() || isSwiftReservedName(newBaseName)) {
adjustName = false;
suffixToStrip = {};
} else {
baseName = newBaseName;
}
}
}
// Also suppress name changes if there's a collision.
// TODO: this logic doesn't really work with init methods
// TODO: this privileges the old API over the new one
if (adjustName &&
hasErrorMethodNameCollision(clangDecl, index, suffixToStrip)) {
// If there was a conflict on the first argument, and this was
// the first argument and we're not stripping error suffixes, just
// give up completely on error import.
if (index == 0 && suffixToStrip.empty()) {
return std::nullopt;
// If there was a conflict stripping an error suffix, adjust the
// name but don't change the base name. This avoids creating a
// spurious _: () argument.
} else if (index == 0 && !suffixToStrip.empty()) {
suffixToStrip = {};
baseName = origBaseName;
// Otherwise, give up on adjusting the name.
} else {
adjustName = false;
baseName = origBaseName;
}
}
// If we're adjusting the name, erase the error parameter.
if (adjustName) {
paramNames.erase(paramNames.begin() + index);
}
bool replaceParamWithVoid = !adjustName && !expectsToRemoveError;
ForeignErrorConvention::Info errorInfo(
*errorKind, index, isErrorOwned,
(ForeignErrorConvention::IsReplaced_t)replaceParamWithVoid);
return errorInfo;
}
// Didn't find an error parameter.
return std::nullopt;
}
bool swift::isCompletionHandlerParamName(StringRef paramName) {
return paramName == "completionHandler" ||
paramName == "withCompletionHandler" ||
paramName == "completion" || paramName == "withCompletion" ||
paramName == "completionBlock" || paramName == "withCompletionBlock" ||
paramName == "reply" || paramName == "withReply" ||
paramName == "replyTo" || paramName == "withReplyTo";
}
// Determine whether the given type is a nullable NSError type.
static bool isNullableNSErrorType(clang::QualType type) {
auto objcPtrType = type->getAs<clang::ObjCObjectPointerType>();
if (!objcPtrType)
return false;
auto iface = objcPtrType->getInterfaceDecl();
if (!iface || iface->getName() != "NSError")
return false;
// If nullability is specified, check it.
if (auto nullability = type->getNullability()) {
switch (translateNullability(*nullability)) {
case OTK_None:
return false;
case OTK_ImplicitlyUnwrappedOptional:
case OTK_Optional:
return true;
}
}
// Otherwise, assume it's nullable.
return true;
}
std::optional<ForeignAsyncConvention::Info> NameImporter::considerAsyncImport(
const clang::ObjCMethodDecl *clangDecl, StringRef baseName,
SmallVectorImpl<StringRef> &paramNames,
ArrayRef<const clang::ParmVarDecl *> params, bool isInitializer,
std::optional<unsigned> explicitCompletionHandlerParamIndex,
CustomAsyncName customName,
std::optional<unsigned> completionHandlerFlagParamIndex,
bool completionHandlerFlagIsZeroOnError,
std::optional<ForeignErrorConvention::Info> errorInfo) {
// If there are no unclaimed parameters, there's no .
unsigned errorParamAdjust = errorInfo ? 1 : 0;
if (params.size() - errorParamAdjust == 0)
return std::nullopt;
// When there is a custom async name, it will have removed the completion
// handler parameter already.
unsigned customAsyncNameAdjust =
customName == CustomAsyncName::SwiftAsyncName ? 1 : 0;
// If the # of parameter names doesn't line up with the # of parameters,
// bail out. There are extra C parameters on the method or a custom name
// was incorrect.
if (params.size() !=
paramNames.size() + errorParamAdjust + customAsyncNameAdjust)
return std::nullopt;
// If we don't already know the completion handler parameter index, go
// try to figure it out.
unsigned completionHandlerParamIndex;
unsigned completionHandlerParamNameIndex;
if (!explicitCompletionHandlerParamIndex) {
// Determine whether the naming indicates that this is a completion
// handler.
completionHandlerParamIndex = params.size() - 1;
completionHandlerParamNameIndex = paramNames.size() - 1;
switch (customName) {
case CustomAsyncName::None:
// Check whether the first parameter is the completion handler and the
// base name has a suitable completion-handler suffix.
if (completionHandlerParamIndex == 0 &&
stripWithCompletionHandlerSuffix(baseName))
break;
LLVM_FALLTHROUGH;
case CustomAsyncName::SwiftName:
// Check whether the argument label itself has an appropriate name.
if (isCompletionHandlerParamName(
paramNames[completionHandlerParamNameIndex]) ||
(completionHandlerParamNameIndex > 0 &&
stripWithCompletionHandlerSuffix(
paramNames[completionHandlerParamNameIndex]))) {
break;
}
// Check whether the parameter itself has a name that indicates that
// it is a completion handler.
if (isCompletionHandlerParamName(
params[completionHandlerParamIndex]->getName()))
break;
return std::nullopt;
case CustomAsyncName::SwiftAsyncName:
// Having a custom async name implies that this is a completion handler.
break;
}
} else {
completionHandlerParamIndex = *explicitCompletionHandlerParamIndex;
completionHandlerParamNameIndex = *explicitCompletionHandlerParamIndex;
}
// Used for returns once we've determined that the method cannot be
// imported as async, even though it has what looks like a completion handler
// parameter.
auto notAsync =
[&](const char *reason) -> std::optional<ForeignAsyncConvention::Info> {
#ifdef ASYNC_IMPORT_DEBUG
llvm::errs() << "*** failed async import: " << reason << "\n";
clangDecl->dump(llvm::errs());
#endif
return std::nullopt;
};
// Initializers cannot be 'async'.
// FIXME: We might eventually allow this.
// TODO: should the restriction be lifted in ClangImporter?
if (isInitializer)
return notAsync("initializers cannot be async");
// Accessors are never imported as async.
if (clangDecl->isPropertyAccessor())
return notAsync("method is a property accessor");
// Check whether we method has a suitable return type.
if (clangDecl->getReturnType()->isVoidType()) {
// 'void' is the common case; the method produces no synchronous result.
} else if (errorInfo &&
ForeignErrorConvention::resultTypeErasedToVoid(
errorInfo->getKind())) {
// The method has been imported as throwing in a manner that erased the
// result type to Void.
} else {
return notAsync("method does not return void");
}
// The completion handler parameter must have block type.
auto completionHandlerParam = params[completionHandlerParamIndex];
if (!isBlockParameter(completionHandlerParam))
return notAsync("parameter is not a block");
// Dig out the function type of the completion handler's block type.
// If there is no prototype, (e.g., the completion handler is of type
// void (^)()), we cannot importer it.
auto completionHandlerFunctionType =
completionHandlerParam->getType()->castAs<clang::BlockPointerType>()
->getPointeeType()->getAs<clang::FunctionType>();
if (!completionHandlerFunctionType)
return notAsync("block parameter does not have a prototype");
// The completion handler parameter must itself return 'void'.
if (!completionHandlerFunctionType->getReturnType()->isVoidType())
return notAsync("completion handler parameter does not return 'void'");
// Scan the parameters of the block type to look for a parameter of a
// nullable NSError type, which would indicate that the async method could
// throw.
std::optional<unsigned> completionHandlerErrorParamIndex;
ArrayRef<clang::QualType> completionHandlerParamTypes;
if (auto prototype = completionHandlerFunctionType
->getAs<clang::FunctionProtoType>()) {
completionHandlerParamTypes = prototype->getParamTypes();
}
for (unsigned paramIdx : indices(completionHandlerParamTypes)) {
auto paramType = completionHandlerParamTypes[paramIdx];
// We are only interested in nullable NSError parameters.
if (!isNullableNSErrorType(paramType))
continue;
// If this is the first nullable error parameter, note that.
if (!completionHandlerErrorParamIndex) {
completionHandlerErrorParamIndex = paramIdx;
continue;
}
// More than one nullable NSError parameter. Don't import as throwing.
completionHandlerErrorParamIndex = std::nullopt;
break;
}
// Drop the completion handler parameter name when needed.
switch (customName) {
case CustomAsyncName::None:
case CustomAsyncName::SwiftName:
paramNames.erase(paramNames.begin() + completionHandlerParamNameIndex);
break;
case CustomAsyncName::SwiftAsyncName:
break;
}
return ForeignAsyncConvention::Info(
completionHandlerParamIndex, completionHandlerErrorParamIndex,
completionHandlerFlagParamIndex, completionHandlerFlagIsZeroOnError);
}
bool NameImporter::hasErrorMethodNameCollision(
const clang::ObjCMethodDecl *method, unsigned paramIndex,
StringRef suffixToStrip) {
// Copy the existing selector pieces into an array.
auto selector = method->getSelector();
unsigned numArgs = selector.getNumArgs();
assert(numArgs > 0);
SmallVector<const clang::IdentifierInfo *, 4> chunks;
for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
chunks.push_back(selector.getIdentifierInfoForSlot(i));
}
auto &ctx = method->getASTContext();
if (paramIndex == 0 && !suffixToStrip.empty()) {
StringRef name = chunks[0]->getName();
assert(name.ends_with(suffixToStrip));
name = name.drop_back(suffixToStrip.size());
chunks[0] = &ctx.Idents.get(name);
} else if (paramIndex != 0) {
chunks.erase(chunks.begin() + paramIndex);
}
auto newSelector = ctx.Selectors.getSelector(numArgs - 1, chunks.data());
const clang::ObjCMethodDecl *conflict;
if (auto iface = method->getClassInterface()) {
conflict = iface->lookupMethod(newSelector, method->isInstanceMethod());
} else {
auto protocol = cast<clang::ObjCProtocolDecl>(method->getDeclContext());
conflict = protocol->getMethod(newSelector, method->isInstanceMethod());
}
if (conflict == nullptr)
return false;
// Look to see if the conflicting decl is unavailable, either because it's
// been marked NS_SWIFT_UNAVAILABLE, because it's actually marked unavailable,
// or because it was deprecated before our API sunset. We can handle
// "conflicts" where one form is unavailable.
return !isUnavailableInSwift(conflict, &availability,
enableObjCInterop());
}
/// Whether we should suppress this factory method being imported as an
/// initializer. We want to do this when explicitly directed to, or when
/// importing a property accessor.
static bool suppressFactoryMethodAsInit(const clang::ObjCMethodDecl *method,
ImportNameVersion version,
CtorInitializerKind initKind) {
return (version == ImportNameVersion::raw() || method->isPropertyAccessor()) &&
(initKind == CtorInitializerKind::Factory ||
initKind == CtorInitializerKind::ConvenienceFactory);
}
static void
addDefaultArgNamesForClangFunction(const clang::FunctionDecl *funcDecl,
SmallVectorImpl<StringRef> &argumentNames) {
for (size_t i = 0; i < funcDecl->param_size(); ++i) {
if (funcDecl->getParamDecl(i)->getType()->isRValueReferenceType())
argumentNames.push_back("consuming");
else
argumentNames.push_back(StringRef());
}
if (funcDecl->isVariadic())
argumentNames.push_back(StringRef());
}
static StringRef renameUnsafeMethod(ASTContext &ctx,
const clang::NamedDecl *decl,
StringRef name) {
if (isa<clang::CXXMethodDecl>(decl) &&
!evaluateOrDefault(ctx.evaluator, IsSafeUseOfCxxDecl({decl, ctx}), {})) {
return ctx.getIdentifier(("__" + name + "Unsafe").str()).str();
}
return name;
}
ImportedName NameImporter::importNameImpl(const clang::NamedDecl *D,
ImportNameVersion version,
clang::DeclarationName givenName) {
ImportedName result;
/// Whether we want a Swift 3 or later name
bool swift3OrLaterName = version > ImportNameVersion::swift2();
// Objective-C categories and extensions don't have names, despite
// being "named" declarations.
if (isa<clang::ObjCCategoryDecl>(D))
return ImportedName();
// Dig out the definition, if there is one.
if (auto def = getDefinitionForClangTypeDecl(D)) {
if (*def)
D = static_cast<const clang::NamedDecl *>(*def);
}
// Compute the effective context.
auto dc = const_cast<clang::DeclContext *>(D->getDeclContext());
auto effectiveCtx = determineEffectiveContext(D, dc, version);
if (!effectiveCtx)
return ImportedName();
result.effectiveContext = effectiveCtx;
// If this is a using declaration, import the name of the shadowed decl and
// adjust the context.
if (auto usingShadowDecl = dyn_cast<clang::UsingShadowDecl>(D)) {
auto targetDecl = usingShadowDecl->getTargetDecl();
if (isa<clang::CXXMethodDecl>(targetDecl)) {
ImportedName baseName = importName(targetDecl, version, givenName);
baseName.effectiveContext = effectiveCtx;
return baseName;
}
}
// Gather information from the swift_async attribute, if there is one.
std::optional<unsigned> completionHandlerParamIndex;
bool completionHandlerFlagIsZeroOnError = false;
std::optional<unsigned> completionHandlerFlagParamIndex;
if (version.supportsConcurrency()) {
if (const auto *swiftAsyncAttr = D->getAttr<clang::SwiftAsyncAttr>()) {
// If this is swift_async(none), don't import as async at all.
if (swiftAsyncAttr->getKind() == clang::SwiftAsyncAttr::None)
return ImportedName();
// Get the completion handler parameter index, if there is one.
completionHandlerParamIndex =
swiftAsyncAttr->getCompletionHandlerIndex().getASTIndex();
}
if (const auto *asyncErrorAttr = D->getAttr<clang::SwiftAsyncErrorAttr>()) {
switch (auto convention = asyncErrorAttr->getConvention()) {
// No flag parameter in these cases.
case clang::SwiftAsyncErrorAttr::NonNullError:
case clang::SwiftAsyncErrorAttr::None:
break;
// Get the flag argument index and polarity from the attribute.
case clang::SwiftAsyncErrorAttr::NonZeroArgument:
case clang::SwiftAsyncErrorAttr::ZeroArgument:
// NB: Attribute is 1-based rather than 0-based.
completionHandlerFlagParamIndex = asyncErrorAttr->getHandlerParamIdx() - 1;
completionHandlerFlagIsZeroOnError =
convention == clang::SwiftAsyncErrorAttr::ZeroArgument;
break;
}
}
}
// FIXME: ugly to check here, instead perform unified check up front in
// containing struct...
if (findSwiftNewtype(D, clangSema, version))
result.info.importAsMember = true;
// Find the original method/property declaration and retrieve the
// name from there.
if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
// Inherit the name from the "originating" declarations, if
// there are any.
SmallVector<std::pair<const clang::ObjCMethodDecl *, ImportedName>, 4>
overriddenNames;
SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
method->getOverriddenMethods(overriddenMethods);
for (auto overridden : overriddenMethods) {
const auto overriddenName = importName(overridden, version, givenName);
if (overriddenName.getDeclName())
overriddenNames.push_back({overridden, overriddenName});
}
// If we found any names of overridden methods, return those names.
if (!overriddenNames.empty()) {
if (overriddenNames.size() > 1)
mergeOverriddenNames(swiftCtx, method, overriddenNames);
overriddenNames[0].second.effectiveContext = result.effectiveContext;
// Compute the initializer kind from the derived method, though.
if (auto kind = determineCtorInitializerKind(method))
overriddenNames[0].second.info.initKind = *kind;
return overriddenNames[0].second;
}
} else if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
// Inherit the name from the "originating" declarations, if
// there are any.
if (auto getter = property->getGetterMethodDecl()) {
SmallVector<std::pair<const clang::ObjCPropertyDecl *, ImportedName>, 4>
overriddenNames;
SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
SmallPtrSet<const clang::ObjCPropertyDecl *, 4> knownProperties;
(void)knownProperties.insert(property);
getter->getOverriddenMethods(overriddenMethods);
for (auto overridden : overriddenMethods) {
if (!overridden->isPropertyAccessor())
continue;
auto overriddenProperty = overridden->findPropertyDecl(true);
if (!overriddenProperty)
continue;
if (!knownProperties.insert(overriddenProperty).second)
continue;
const auto overriddenName = importName(overriddenProperty, version,
givenName);
if (overriddenName.getDeclName())
overriddenNames.push_back({overriddenProperty, overriddenName});
}
// If we found any names of overridden methods, return those names.
if (!overriddenNames.empty()) {
if (overriddenNames.size() > 1)
mergeOverriddenNames(swiftCtx, property, overriddenNames);
overriddenNames[0].second.effectiveContext = result.effectiveContext;
return overriddenNames[0].second;
}
}
}
// If we have a swift_name attribute, use that.
if (auto nameAttr = findSwiftNameAttr(D, version)) {
bool skipCustomName = false;
// Parse the name.
ParsedDeclName parsedName = parseDeclName(nameAttr->name);
if (!parsedName || parsedName.isOperator())
return result;
// If we have an Objective-C method that is being mapped to an
// initializer (e.g., a factory method whose name doesn't fit the
// convention for factory methods), make sure that it can be
// imported as an initializer.
bool isInitializer = false;
auto method = dyn_cast<clang::ObjCMethodDecl>(D);
if (method) {
unsigned initPrefixLength;
if (parsedName.BaseName == "init" && parsedName.IsFunctionName) {
if (!shouldImportAsInitializer(method, version, initPrefixLength)) {
// We cannot import this as an initializer anyway.
return ImportedName();
}
if (auto kind = determineCtorInitializerKind(method))
result.info.initKind = *kind;
// If this swift_name attribute maps a factory method to an
// initializer and we were asked not to do so, ignore the
// custom name.
if (suppressFactoryMethodAsInit(method, version,
result.getInitKind())) {
skipCustomName = true;
} else {
// Note that this is an initializer.
isInitializer = true;
}
}
}
if (!skipCustomName) {
result.info.hasCustomName = true;
result.declName = parsedName.formDeclName(
swiftCtx, /*isSubscript=*/false,
isa<clang::ClassTemplateSpecializationDecl>(D));
// Handle globals treated as members.
if (parsedName.isMember()) {
// FIXME: Make sure this thing is global.
result.effectiveContext = parsedName.ContextName;
if (parsedName.SelfIndex) {
result.info.hasSelfIndex = true;
result.info.selfIndex = *parsedName.SelfIndex;
}
result.info.importAsMember = true;
if (parsedName.BaseName == "init")
result.info.initKind = CtorInitializerKind::Factory;
}
// Map property getters/setters.
if (parsedName.IsGetter)
result.info.accessorKind = ImportedAccessorKind::PropertyGetter;
else if (parsedName.IsSetter)
result.info.accessorKind = ImportedAccessorKind::PropertySetter;
// only allow effectful property imports if through `swift_async_name`
const bool effectfulProperty = parsedName.IsGetter && nameAttr->isAsync;
// Consider throws and async imports.
if (method && (parsedName.IsFunctionName || effectfulProperty)) {
// Get the parameters.
ArrayRef<const clang::ParmVarDecl *> params{method->param_begin(),
method->param_end()};
if (auto errorInfo = considerErrorImport(method, parsedName.BaseName,
parsedName.ArgumentLabels,
params, isInitializer,
/*hasCustomName=*/true)) {
result.info.hasErrorInfo = true;
result.info.errorInfo = *errorInfo;
}
if (version.supportsConcurrency()) {
if (auto asyncInfo = considerAsyncImport(
method, parsedName.BaseName, parsedName.ArgumentLabels,
params, isInitializer,
completionHandlerParamIndex,
nameAttr->isAsync ? CustomAsyncName::SwiftAsyncName
: CustomAsyncName::SwiftName,
completionHandlerFlagParamIndex,
completionHandlerFlagIsZeroOnError,
result.getErrorInfo())) {
result.info.hasAsyncInfo = true;
result.info.asyncInfo = *asyncInfo;
// Update the name to reflect the new parameter labels.
result.declName = formDeclName(
swiftCtx, parsedName.BaseName, parsedName.ArgumentLabels,
/*isFunction=*/true, isInitializer, /*isSubscript=*/false,
isa<clang::ClassTemplateSpecializationDecl>(D));
} else if (nameAttr->isAsync) {
// The custom name was for an async import, but we didn't in fact
// import as async for some reason. Ignore this import.
return ImportedName();
}
}
}
return result;
}
}
// Special case: unnamed/anonymous fields.
if (auto field = dyn_cast<clang::FieldDecl>(D)) {
static_assert((clang::Decl::lastField - clang::Decl::firstField) == 2,
"update logic for new FieldDecl subclasses");
if (isa<clang::ObjCIvarDecl>(D) || isa<clang::ObjCAtDefsFieldDecl>(D))
// These are not ordinary fields and are not imported into Swift.
return result;
if (field->isAnonymousStructOrUnion() || field->getDeclName().isEmpty()) {
// Generate a field name for anonymous fields, this will be used in
// order to be able to expose the indirect fields injected from there
// as computed properties forwarding the access to the subfield.
std::string name;
llvm::raw_string_ostream nameStream(name);
nameStream << "__Anonymous_field" << field->getFieldIndex();
result.setDeclName(swiftCtx.getIdentifier(nameStream.str()));
result.setEffectiveContext(field->getDeclContext());
return result;
}
}
if (D->getDeclName().isEmpty()) {
// If the type has no name and no structure name, but is not anonymous,
// generate a name for it. Specifically this is for cases like:
// struct a {
// struct {} z;
// }
// Where the member z is an unnamed struct, but does have a member-name
// and is accessible as a member of struct a.
if (auto recordDecl = dyn_cast<clang::RecordDecl>(
D->getLexicalDeclContext())) {
for (auto field : recordDecl->fields()) {
auto fieldTagDecl = field->getType()->getAsTagDecl();
if (fieldTagDecl == D) {
// Create a name for the declaration from the field name.
std::string name;
llvm::raw_string_ostream nameStream(name);
const char *kind;
if (fieldTagDecl->isStruct())
kind = "struct";
else if (fieldTagDecl->isClass())
kind = "class";
else if (fieldTagDecl->isUnion())
kind = "union";
else if (fieldTagDecl->isEnum())
kind = "enum";
else
llvm_unreachable("unknown decl kind");
nameStream << "__Unnamed_" << kind << "_";
if (field->isAnonymousStructOrUnion()) {
nameStream << "__Anonymous_field" << field->getFieldIndex();
} else {
assert(!field->getDeclName().isEmpty() &&
"Microsoft anonymous struct extension?");
nameStream << field->getName();
}
result.setDeclName(swiftCtx.getIdentifier(nameStream.str()));
result.setEffectiveContext(D->getDeclContext());
return result;
}
}
}
// If this enum inherits from a typedef we can compute the name from the
// typedef (even if it's an anonymous enum).
if (auto enumDecl = dyn_cast<clang::EnumDecl>(D)) {
// Intentionally don't get the canonical type here.
if (auto typedefType = dyn_cast<clang::TypedefType>(getUnderlyingType(enumDecl))) {
// If the typedef is available in Swift, the user will get ambiguity.
// It also means they may not have intended this API to be imported like this.
if (importer::isUnavailableInSwift(typedefType->getDecl(), nullptr, true)) {
StringRef baseName = typedefType->getDecl()->getName();
SmallString<16> swiftPrivateScratch;
// If this declaration has the swift_private attribute, prepend "__"
if (shouldBeSwiftPrivate(*this, D, version,
result.info.hasAsyncInfo)) {
swiftPrivateScratch = "__";
swiftPrivateScratch += baseName;
baseName = swiftPrivateScratch;
}
result.setDeclName(swiftCtx.getIdentifier(baseName));
result.setEffectiveContext(D->getDeclContext());
return result;
}
}
}
// Otherwise, for empty names, there is nothing to do.
return result;
}
/// Whether the result is a function name.
bool isFunction = false;
bool isInitializer = false;
unsigned initializerPrefixLen;
StringRef baseName;
SmallVector<StringRef, 4> argumentNames;
SmallString<16> selectorSplitScratch;
ArrayRef<const clang::ParmVarDecl *> params;
switch (D->getDeclName().getNameKind()) {
case clang::DeclarationName::CXXConstructorName: {
isInitializer = true;
isFunction = true;
result.info.initKind = CtorInitializerKind::Designated;
baseName = "init";
auto ctor = dyn_cast<clang::CXXConstructorDecl>(D);
if (auto templateCtor = dyn_cast<clang::FunctionTemplateDecl>(D))
ctor = cast<clang::CXXConstructorDecl>(templateCtor->getAsFunction());
// If we couldn't find a constructor decl, bail.
if (!ctor)
return ImportedName();
addDefaultArgNamesForClangFunction(ctor, argumentNames);
break;
}
case clang::DeclarationName::CXXConversionFunctionName: {
auto conversionDecl = dyn_cast<clang::CXXConversionDecl>(D);
if (!conversionDecl)
return ImportedName();
auto toType = conversionDecl->getConversionType();
// Only import `operator bool()` for now.
if (toType->isBooleanType()) {
isFunction = true;
baseName = "__convertToBool";
addDefaultArgNamesForClangFunction(conversionDecl, argumentNames);
break;
}
return ImportedName();
}
case clang::DeclarationName::CXXDestructorName:
case clang::DeclarationName::CXXLiteralOperatorName:
case clang::DeclarationName::CXXUsingDirective:
case clang::DeclarationName::CXXDeductionGuideName:
// TODO: Handling these is part of C++ interoperability.
return ImportedName();
case clang::DeclarationName::CXXOperatorName: {
auto op = D->getDeclName().getCXXOverloadedOperator();
auto functionDecl = dyn_cast<clang::FunctionDecl>(D);
if (auto functionTemplate = dyn_cast<clang::FunctionTemplateDecl>(D))
functionDecl = functionTemplate->getAsFunction();
if (!functionDecl)
return ImportedName();
switch (op) {
case clang::OverloadedOperatorKind::OO_Plus:
case clang::OverloadedOperatorKind::OO_Minus:
case clang::OverloadedOperatorKind::OO_Star:
case clang::OverloadedOperatorKind::OO_Slash:
case clang::OverloadedOperatorKind::OO_PlusEqual:
case clang::OverloadedOperatorKind::OO_MinusEqual:
case clang::OverloadedOperatorKind::OO_StarEqual:
case clang::OverloadedOperatorKind::OO_SlashEqual:
case clang::OverloadedOperatorKind::OO_Percent:
case clang::OverloadedOperatorKind::OO_Caret:
case clang::OverloadedOperatorKind::OO_Amp:
case clang::OverloadedOperatorKind::OO_Pipe:
case clang::OverloadedOperatorKind::OO_Exclaim:
case clang::OverloadedOperatorKind::OO_Less:
case clang::OverloadedOperatorKind::OO_Greater:
case clang::OverloadedOperatorKind::OO_LessLess:
case clang::OverloadedOperatorKind::OO_GreaterGreater:
case clang::OverloadedOperatorKind::OO_EqualEqual:
case clang::OverloadedOperatorKind::OO_PlusPlus:
case clang::OverloadedOperatorKind::OO_ExclaimEqual:
case clang::OverloadedOperatorKind::OO_LessEqual:
case clang::OverloadedOperatorKind::OO_GreaterEqual:
case clang::OverloadedOperatorKind::OO_AmpAmp:
case clang::OverloadedOperatorKind::OO_PipePipe: {
auto operatorName = isa<clang::CXXMethodDecl>(functionDecl)
? "__operator" + std::string{getOperatorName(op)}
: clang::getOperatorSpelling(op);
baseName = swiftCtx.getIdentifier(operatorName).str();
isFunction = true;
addDefaultArgNamesForClangFunction(functionDecl, argumentNames);
if (auto cxxMethod = dyn_cast<clang::CXXMethodDecl>(functionDecl)) {
if (op == clang::OverloadedOperatorKind::OO_Star &&
cxxMethod->param_empty()) {
auto returnType = functionDecl->getReturnType();
if ((!returnType->isReferenceType() &&
!returnType->isAnyPointerType()) ||
returnType->isAnyPointerType() ||
returnType->getPointeeType().isConstQualified())
result.info.accessorKind = ImportedAccessorKind::DereferenceGetter;
else
result.info.accessorKind = ImportedAccessorKind::DereferenceSetter;
}
}
break;
}
case clang::OverloadedOperatorKind::OO_Call:
baseName = "callAsFunction";
isFunction = true;
addDefaultArgNamesForClangFunction(functionDecl, argumentNames);
break;
case clang::OverloadedOperatorKind::OO_Subscript: {
auto returnType = functionDecl->getReturnType();
if ((!returnType->isReferenceType() && !returnType->isAnyPointerType()) ||
returnType->getPointeeType().isConstQualified()) {
// If we are handling a non-reference return type, treat it as a getter
// so that we do not SILGen the value type operator[] as an rvalue.
baseName = "__operatorSubscriptConst";
result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
} else if (returnType->isAnyPointerType()) {
baseName = "__operatorSubscript";
result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
} else {
baseName = "__operatorSubscript";
result.info.accessorKind = ImportedAccessorKind::SubscriptSetter;
}
isFunction = true;
addDefaultArgNamesForClangFunction(functionDecl, argumentNames);
break;
}
default:
// We don't import these yet.
return ImportedName();
}
break;
}
case clang::DeclarationName::Identifier:
// Map the identifier.
baseName = D->getDeclName().getAsIdentifierInfo()->getName();
if (givenName) {
if (!givenName.isIdentifier())
return ImportedName();
baseName = givenName.getAsIdentifierInfo()->getName();
}
// For Objective-C BOOL properties, use the name of the getter
// which, conventionally, has an "is" prefix.
if (swift3OrLaterName) {
if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
if (isBoolType(clangSema.Context, property->getType()))
baseName = property->getGetterName().getNameForSlot(0);
}
}
if (auto function = dyn_cast<clang::FunctionDecl>(D)) {
isFunction = true;
addDefaultArgNamesForClangFunction(function, argumentNames);
}
break;
case clang::DeclarationName::ObjCMultiArgSelector:
case clang::DeclarationName::ObjCOneArgSelector:
case clang::DeclarationName::ObjCZeroArgSelector: {
auto objcMethod = cast<clang::ObjCMethodDecl>(D);
// Map the Objective-C selector directly.
auto selector = D->getDeclName().getObjCSelector();
// Respect the given name.
if (givenName) {
switch (givenName.getNameKind()) {
case clang::DeclarationName::ObjCOneArgSelector:
case clang::DeclarationName::ObjCMultiArgSelector:
case clang::DeclarationName::ObjCZeroArgSelector:
// Make sure the given name has the right count of arguments.
if (selector.getNumArgs() != givenName.getObjCSelector().getNumArgs())
return ImportedName();
selector = givenName.getObjCSelector();
break;
default:
return ImportedName();
}
}
baseName = selector.getNameForSlot(0);
// We don't support methods with empty first selector pieces.
if (baseName.empty())
return ImportedName();
isInitializer = shouldImportAsInitializer(objcMethod, version,
initializerPrefixLen);
if (isInitializer) {
if (auto kind = determineCtorInitializerKind(objcMethod))
result.info.initKind = *kind;
// If we would import a factory method as an initializer but were
// asked not to, don't consider this as an initializer.
if (suppressFactoryMethodAsInit(objcMethod, version,
result.getInitKind())) {
isInitializer = false;
}
}
if (isInitializer)
baseName = "init";
// Get the parameters.
params = {objcMethod->param_begin(), objcMethod->param_end()};
// If we have a variadic method for which we need to drop the last
// selector piece, do so now.
unsigned numArgs = selector.getNumArgs();
if (objcMethod->isVariadic() && shouldMakeSelectorNonVariadic(selector)) {
--numArgs;
result.info.droppedVariadic = true;
params = params.drop_back(1);
}
for (unsigned index = 0; index != numArgs; ++index) {
if (index == 0) {
argumentNames.push_back(StringRef());
} else {
StringRef argName = selector.getNameForSlot(index);
argumentNames.push_back(argName);
}
}
// For initializers, compute the first argument name.
if (isInitializer) {
// Skip over the prefix.
auto argName = selector.getNameForSlot(0).substr(initializerPrefixLen);
// Drop "With" if present after the "init".
bool droppedWith = false;
if (argName.starts_with("With")) {
argName = argName.substr(4);
droppedWith = true;
}
// Lowercase the remaining argument name.
argName = camel_case::toLowercaseWord(argName, selectorSplitScratch);
// If we dropped "with" and ended up with a reserved name,
// put "with" back.
if (droppedWith && isSwiftReservedName(argName)) {
selectorSplitScratch = "with";
selectorSplitScratch +=
selector.getNameForSlot(0).substr(initializerPrefixLen + 4);
argName = selectorSplitScratch;
}
// Set the first argument name to be the name we computed. If
// there is no first argument, create one for this purpose.
if (argumentNames.empty()) {
if (!argName.empty()) {
// FIXME: Record what happened here for the caller?
argumentNames.push_back(argName);
}
} else {
argumentNames[0] = argName;
}
}
if (auto errorInfo = considerErrorImport(
objcMethod, baseName, argumentNames, params, isInitializer,
/*hasCustomName=*/false)) {
result.info.hasErrorInfo = true;
result.info.errorInfo = *errorInfo;
}
isFunction = true;
// Is this one of the accessors for subscripts?
if (objcMethod->getMethodFamily() == clang::OMF_None &&
objcMethod->isInstanceMethod()) {
if (isNonNullarySelector(objcMethod->getSelector(),
{"objectAtIndexedSubscript"}) ||
isNonNullarySelector(objcMethod->getSelector(),
{"objectForKeyedSubscript"}))
result.info.accessorKind = ImportedAccessorKind::SubscriptGetter;
else if (isNonNullarySelector(objcMethod->getSelector(),
{"setObject", "atIndexedSubscript"}) ||
isNonNullarySelector(objcMethod->getSelector(),
{"setObject", "forKeyedSubscript"}))
result.info.accessorKind = ImportedAccessorKind::SubscriptSetter;
}
if (version.supportsConcurrency() &&
result.info.accessorKind == ImportedAccessorKind::None) {
if (auto asyncInfo = considerAsyncImport(
objcMethod, baseName, argumentNames, params, isInitializer,
completionHandlerParamIndex, CustomAsyncName::None,
completionHandlerFlagParamIndex,
completionHandlerFlagIsZeroOnError,
result.getErrorInfo())) {
result.info.hasAsyncInfo = true;
result.info.asyncInfo = *asyncInfo;
}
}
break;
}
}
// Perform automatic name transformations.
// Enumeration constants may have common prefixes stripped.
bool strippedPrefix = false;
if (version != ImportNameVersion::raw() && isa<clang::EnumConstantDecl>(D)) {
auto enumDecl = cast<clang::EnumDecl>(D->getDeclContext());
auto enumInfo = getEnumInfo(enumDecl);
StringRef removePrefix = enumInfo.getConstantNamePrefix();
if (!removePrefix.empty()) {
if (baseName.starts_with(removePrefix)) {
baseName = baseName.substr(removePrefix.size());
strippedPrefix = true;
} else if (givenName) {
// Calculate the new prefix.
// What if the preferred name causes longer prefix?
StringRef subPrefix = [](StringRef LHS, StringRef RHS) {
if (LHS.size() > RHS.size())
std::swap(LHS, RHS) ;
return StringRef(LHS.data(), std::mismatch(LHS.begin(), LHS.end(),
RHS.begin()).first - LHS.begin());
}(removePrefix, baseName);
if (!subPrefix.empty()) {
baseName = baseName.substr(subPrefix.size());
strippedPrefix = true;
}
}
}
}
// If the error is an error enum, it will be mapped to the 'Code'
// enum nested within an NSError-containing struct. Strip the word
// "Code" off the end of the name, if it's there, because it's
// redundant.
if (auto enumDecl = dyn_cast<clang::EnumDecl>(D)) {
if (enumDecl->isThisDeclarationADefinition()) {
auto enumInfo = getEnumInfo(enumDecl);
if (enumInfo.isErrorEnum() && baseName.size() > 4 &&
camel_case::getLastWord(baseName) == "Code")
baseName = baseName.substr(0, baseName.size() - 4);
}
}
// Objective-C protocols may have the suffix "Protocol" appended if
// the non-suffixed name would conflict with another entity in the
// same top-level module.
SmallString<16> baseNameWithProtocolSuffix;
if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (objcProto->hasDefinition()) {
if (hasNamingConflict(D, objcProto->getIdentifier(), nullptr)) {
baseNameWithProtocolSuffix = baseName;
baseNameWithProtocolSuffix += SWIFT_PROTOCOL_SUFFIX;
baseName = baseNameWithProtocolSuffix;
}
}
}
// Typedef declarations might be CF types that will drop the "Ref"
// suffix.
clang::ASTContext &clangCtx = clangSema.Context;
if (swift3OrLaterName) {
if (auto typedefNameDecl = dyn_cast<clang::TypedefNameDecl>(D)) {
auto swiftName = getCFTypeName(typedefNameDecl);
if (!swiftName.empty() &&
!hasNamingConflict(D, &clangCtx.Idents.get(swiftName),
typedefNameDecl)) {
// Adopt the requested name.
baseName = swiftName;
}
}
}
if (auto classTemplateSpecDecl =
dyn_cast<clang::ClassTemplateSpecializationDecl>(D)) {
/// Symbolic specializations get imported as the symbolic class template
/// type.
if (importSymbolicCXXDecls)
return importNameImpl(classTemplateSpecDecl->getSpecializedTemplate(),
version, givenName);
if (!isa<clang::ClassTemplatePartialSpecializationDecl>(D)) {
auto name = printClassTemplateSpecializationName(classTemplateSpecDecl,
swiftCtx, this, version);
baseName = swiftCtx.getIdentifier(name).get();
}
}
SmallString<16> newName;
// Check if we need to rename the C++ method to disambiguate it.
if (auto method = dyn_cast<clang::CXXMethodDecl>(D)) {
if (!method->isConst() && !method->isOverloadedOperator() && !method->isStatic()) {
// See if any other methods within the same struct have the same name, but
// differ in constness.
auto otherDecls = dc->lookup(method->getDeclName());
bool shouldRename = false;
for (auto otherDecl : otherDecls) {
if (otherDecl == D)
continue;
if (auto otherMethod = dyn_cast<clang::CXXMethodDecl>(otherDecl)) {
// TODO: what if the other method is also non-const?
if (otherMethod->isConst()) {
shouldRename = true;
break;
}
}
}
if (shouldRename) {
newName = baseName;
newName += "Mutating";
baseName = newName;
}
}
if (method->isImplicit() &&
baseName.starts_with("__synthesizedVirtualCall_")) {
// If this is a thunk for a virtual method of a C++ reference type, we
// strip away the underscored prefix. This method should be visible and
// callable from Swift.
newName = baseName.substr(StringRef("__synthesizedVirtualCall_").size());
baseName = newName;
}
}
// swift_newtype-ed declarations may have common words with the type name
// stripped.
if (auto newtypeDecl = findSwiftNewtype(D, clangSema, version)) {
result.info.importAsMember = true;
baseName = determineSwiftNewtypeBaseName(baseName, newtypeDecl->getName(),
strippedPrefix);
}
if (!result.isSubscriptAccessor() && swift3OrLaterName) {
// Objective-C properties.
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(D)) {
auto contextType = getClangDeclContextType(
D->getDeclContext());
if (!contextType.isNull()) {
auto contextTypeName =
getClangTypeNameForOmission(clangCtx, contextType);
auto propertyTypeName =
getClangTypeNameForOmission(clangCtx, objcProperty->getType());
// Find the property names.
const InheritedNameSet *allPropertyNames = nullptr;
if (!contextType.isNull()) {
if (auto objcPtrType = contextType->getAsObjCInterfacePointerType())
if (auto objcClassDecl = objcPtrType->getInterfaceDecl())
allPropertyNames =
getAllPropertyNames(objcClassDecl, /*forInstance=*/true);
}
(void)omitNeedlessWords(baseName, {}, "", propertyTypeName,
contextTypeName, {}, /*returnsSelf=*/false,
/*isProperty=*/true, allPropertyNames,
std::nullopt, std::nullopt, scratch);
}
}
// Objective-C methods.
if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
(void)omitNeedlessWordsInFunctionName(
baseName, argumentNames, params, method->getReturnType(),
method->getDeclContext(), getNonNullArgs(method, params),
result.getErrorInfo()
? std::optional<unsigned>(static_cast<unsigned int>(
result.getErrorInfo()->ErrorParameterIndex))
: std::nullopt,
method->hasRelatedResultType(), method->isInstanceMethod(),
swift::transform(result.getAsyncInfo(),
[](const ForeignAsyncConvention::Info &info) {
return info.completionHandlerParamIndex();
}),
swift::transform(
result.getAsyncInfo(),
[&](const ForeignAsyncConvention::Info &info) {
return method->getDeclName().getObjCSelector().getNameForSlot(
info.completionHandlerParamIndex());
}),
*this);
}
// If the result is a value, lowercase it.
if (strippedPrefix && isa<clang::ValueDecl>(D) &&
shouldLowercaseValueName(baseName)) {
baseName = camel_case::toLowercaseInitialisms(baseName, scratch);
}
}
// If this declaration has the swift_private attribute, prepend "__" to the
// appropriate place.
SmallString<16> swiftPrivateScratch;
if (shouldBeSwiftPrivate(*this, D, version, result.info.hasAsyncInfo)) {
// Special case: empty arg factory, "for historical reasons", is not private
if (isInitializer && argumentNames.empty() &&
(result.getInitKind() == CtorInitializerKind::Factory ||
result.getInitKind() == CtorInitializerKind::ConvenienceFactory))
return result;
// Make the given name private.
swiftPrivateScratch = "__";
if (isInitializer) {
// For initializers, prepend "__" to the first argument name.
if (argumentNames.empty()) {
// FIXME: Record that we did this.
argumentNames.push_back("__");
} else {
swiftPrivateScratch += argumentNames[0];
argumentNames[0] = swiftPrivateScratch;
}
} else {
// For all other entities, prepend "__" to the base name.
swiftPrivateScratch += baseName;
baseName = swiftPrivateScratch;
}
}
baseName = renameUnsafeMethod(swiftCtx, D, baseName);
result.declName = formDeclName(swiftCtx, baseName, argumentNames, isFunction,
isInitializer, /*isSubscript=*/false,
isa<clang::ClassTemplateSpecializationDecl>(D));
return result;
}
/// Returns true if it is expected that the macro is ignored.
static bool shouldIgnoreMacro(StringRef name, const clang::MacroInfo *macro,
clang::Preprocessor &PP) {
// Ignore include guards. Try not to ignore definitions of useful constants,
// which may end up looking like include guards.
if (macro->isUsedForHeaderGuard() && macro->getNumTokens() == 1) {
auto tok = macro->tokens()[0];
if (tok.is(clang::tok::numeric_constant) && tok.getLength() == 1 &&
PP.getSpellingOfSingleCharacterNumericConstant(tok) == 1)
return true;
}
// If there are no tokens, there is nothing to convert.
if (macro->tokens_empty())
return true;
// Consult the list of macros to suppress.
auto suppressMacro = llvm::StringSwitch<bool>(name)
#define SUPPRESS_MACRO(NAME) .Case(#NAME, true)
#include "MacroTable.def"
.Default(false);
if (suppressMacro)
return true;
return false;
}
bool ClangImporter::shouldIgnoreMacro(StringRef Name,
const clang::MacroInfo *Macro) {
return ::shouldIgnoreMacro(Name, Macro, Impl.getClangPreprocessor());
}
Identifier ImportedName::getBaseIdentifier(ASTContext &ctx) const {
auto baseName = declName.getBaseName();
if (!baseName.isSpecial())
return baseName.getIdentifier();
return ctx.getIdentifier(baseName.userFacingName());
}
Identifier
NameImporter::importMacroName(const clang::IdentifierInfo *clangIdentifier,
const clang::MacroInfo *macro) {
// If we're supposed to ignore this macro, return an empty identifier.
if (::shouldIgnoreMacro(clangIdentifier->getName(), macro,
getClangPreprocessor()))
return Identifier();
// No transformation is applied to the name.
StringRef name = clangIdentifier->getName();
return swiftCtx.getIdentifier(name);
}
ImportedName NameImporter::importName(const clang::NamedDecl *decl,
ImportNameVersion version,
clang::DeclarationName givenName) {
CacheKeyType key(decl, version);
if (!givenName) {
if (auto cachedRes = importNameCache[key]) {
++ImportNameNumCacheHits;
return cachedRes;
}
}
++ImportNameNumCacheMisses;
auto res = importNameImpl(decl, version, givenName);
// Add information about the async version of the name to the non-async
// version of the name.
if (!version.supportsConcurrency()) {
if (auto importedAsyncName = importName(decl, version.withConcurrency(true),
givenName)) {
res.info.hasAsyncAlternateInfo = importedAsyncName.info.hasAsyncInfo;
res.info.asyncInfo = importedAsyncName.info.asyncInfo;
}
}
if (!givenName)
importNameCache[key] = res;
return res;
}
bool NameImporter::forEachDistinctImportName(
const clang::NamedDecl *decl, ImportNameVersion activeVersion,
llvm::function_ref<bool(ImportedName, ImportNameVersion)> action) {
using ImportNameKey = std::tuple<DeclName, EffectiveClangContext, bool>;
SmallVector<ImportNameKey, 8> seenNames;
ImportedName newName = importName(decl, activeVersion);
if (!newName)
return true;
ImportNameKey key(newName.getDeclName(), newName.getEffectiveContext(),
newName.getAsyncInfo().has_value());
if (action(newName, activeVersion))
seenNames.push_back(key);
activeVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
// Check to see if the name is different.
ImportedName newName = importName(decl, nameVersion);
if (!newName)
return;
ImportNameKey key(newName.getDeclName(), newName.getEffectiveContext(),
newName.getAsyncInfo().has_value());
bool seen = llvm::any_of(
seenNames, [&key](const ImportNameKey &existing) -> bool {
return std::get<0>(key) == std::get<0>(existing) &&
std::get<2>(key) == std::get<2>(existing) &&
std::get<1>(key).equalsWithoutResolving(std::get<1>(existing));
});
if (seen)
return;
if (action(newName, nameVersion))
seenNames.push_back(key);
});
return false;
}
const InheritedNameSet *NameImporter::getAllPropertyNames(
clang::ObjCInterfaceDecl *classDecl,
bool forInstance) {
classDecl = classDecl->getCanonicalDecl();
// If we already have this information, return it.
auto known = allProperties.find({classDecl, forInstance});
if (known != allProperties.end()) return known->second.get();
// Otherwise, get information from our superclass first.
const InheritedNameSet *parentSet = nullptr;
if (auto superclassDecl = classDecl->getSuperClass()) {
parentSet = getAllPropertyNames(superclassDecl, forInstance);
}
// Create the set of properties.
llvm::BumpPtrAllocator &alloc = scratch.getAllocator();
known = allProperties.insert({
std::pair<const clang::ObjCInterfaceDecl *, char>(classDecl, forInstance),
std::make_unique<InheritedNameSet>(parentSet, alloc) }).first;
// Local function to add properties from the given set.
auto addProperties = [&](clang::DeclContext::decl_range members) {
for (auto member : members) {
// Add Objective-C property names.
if (auto property = dyn_cast<clang::ObjCPropertyDecl>(member)) {
if (forInstance)
known->second->add(property->getName());
continue;
}
// Add no-parameter, non-void method names.
if (auto method = dyn_cast<clang::ObjCMethodDecl>(member)) {
if (method->getSelector().isUnarySelector() &&
!method->getReturnType()->isVoidType() &&
!method->hasRelatedResultType() &&
method->isInstanceMethod() == forInstance) {
known->second->add(method->getSelector().getNameForSlot(0));
continue;
}
}
}
};
// Dig out the class definition.
auto classDef = classDecl->getDefinition();
if (!classDef) return known->second.get();
// Collect property names from the class definition.
addProperties(classDef->decls());
// Dig out the module that owns the class definition.
auto module = classDef->getImportedOwningModule();
if (module) module = module->getTopLevelModule();
// Collect property names from all categories and extensions in the same
// module as the class.
for (auto category : classDef->known_categories()) {
auto categoryModule = category->getImportedOwningModule();
if (categoryModule) categoryModule = categoryModule->getTopLevelModule();
if (module != categoryModule) continue;
addProperties(category->decls());
}
return known->second.get();
}