Files
swift-mirror/lib/Parse/ParseIfConfig.cpp
Doug Gregor 02a20ded57 [Parsers] Stop sharing CustomAttributeInitializer instances across properties
We don't need to share them, and it's far simpler if we don't.
2024-12-06 17:40:34 -08:00

1054 lines
37 KiB
C++

//===--- ParseIfConfig.cpp - Swift Language Parser for #if directives -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Conditional Compilation Block Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTBridging.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/Version.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/ParseVersion.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
namespace {
/// Get PlatformConditionKind from platform condition name.
static std::optional<PlatformConditionKind>
getPlatformConditionKind(StringRef Name) {
return llvm::StringSwitch<std::optional<PlatformConditionKind>>(Name)
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
.Case(IDENTIFIER, PlatformConditionKind::LABEL)
#include "swift/AST/PlatformConditionKinds.def"
.Default(std::nullopt);
}
/// Get platform condition name from PlatformConditionKind.
static StringRef getPlatformConditionName(PlatformConditionKind Kind) {
switch (Kind) {
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
case PlatformConditionKind::LABEL: return IDENTIFIER;
#include "swift/AST/PlatformConditionKinds.def"
}
llvm_unreachable("Unhandled PlatformConditionKind in switch");
}
/// Extract source text of the expression.
static StringRef extractExprSource(SourceManager &SM, Expr *E) {
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(SM, E->getSourceRange());
return SM.extractText(Range);
}
static bool isValidPrefixUnaryOperator(std::optional<StringRef> UnaryOperator) {
return UnaryOperator != std::nullopt &&
(UnaryOperator.value() == ">=" || UnaryOperator.value() == "<");
}
static bool isValidVersion(const version::Version &Version,
const version::Version &ExpectedVersion,
StringRef UnaryOperator) {
if (UnaryOperator == ">=")
return Version >= ExpectedVersion;
if (UnaryOperator == "<")
return Version < ExpectedVersion;
llvm_unreachable("unsupported unary operator");
}
static llvm::VersionTuple getCanImportVersion(ArgumentList *args,
SourceManager &SM,
DiagnosticEngine *D,
bool &underlyingVersion) {
llvm::VersionTuple result;
if (args->size() != 2) {
if (D) {
D->diagnose(args->getLoc(), diag::canimport_two_parameters);
}
return result;
}
auto label = args->getLabel(1);
auto subE = args->getExpr(1);
if (label.str() == "_version") {
underlyingVersion = false;
} else if (label.str() == "_underlyingVersion") {
underlyingVersion = true;
} else {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_label);
}
return result;
}
StringRef verText;
if (auto *sle = dyn_cast<StringLiteralExpr>(subE)) {
verText = sle->getValue();
} else {
// Use the raw text for every non-string-literal expression. Versions with
// just two components are parsed as number literals, but versions with more
// components are parsed as unresolved dot expressions.
verText = extractExprSource(SM, subE);
}
if (verText.empty()) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_empty_version, label.str());
}
return result;
}
// VersionTuple supports a maximum of 4 components.
ssize_t excessComponents = verText.count('.') - 3;
if (excessComponents > 0) {
do {
verText = verText.rsplit('.').first;
} while (--excessComponents > 0);
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_version_too_many_components,
verText);
}
}
if (result.tryParse(verText)) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_invalid_version, verText);
}
}
return result;
}
static Expr *getSingleSubExp(ArgumentList *args, StringRef kindName,
DiagnosticEngine *D) {
if (args->empty())
return nullptr;
if (auto *unary = args->getUnlabeledUnaryExpr())
return unary;
// canImport() has an optional second parameter.
if (kindName == "canImport") {
return args->getExpr(0);
}
return nullptr;
}
/// Returns \c true if the condition is a version check.
static bool isVersionIfConfigCondition(Expr *Condition);
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context);
/// The condition validator.
class ValidateIfConfigCondition :
public ExprVisitor<ValidateIfConfigCondition, Expr*> {
ASTContext &Ctx;
DiagnosticEngine &D;
bool HasError;
/// Get the identifier string of the UnresolvedDeclRefExpr.
std::optional<StringRef> getDeclRefStr(Expr *E, DeclRefKind Kind) {
auto UDRE = dyn_cast<UnresolvedDeclRefExpr>(E);
if (!UDRE ||
!UDRE->hasName() ||
UDRE->getRefKind() != Kind ||
UDRE->getName().isCompoundName())
return std::nullopt;
return UDRE->getName().getBaseIdentifier().str();
}
/// True for expressions representing either top level modules
/// or nested submodules.
bool isModulePath(Expr *E) {
auto UDE = dyn_cast<UnresolvedDotExpr>(E);
if (!UDE)
return getDeclRefStr(E, DeclRefKind::Ordinary).has_value();
return UDE->getFunctionRefInfo().isUnappliedBaseName() &&
isModulePath(UDE->getBase());
}
Expr *diagnoseUnsupportedExpr(Expr *E) {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_expression_type);
return nullptr;
}
// Support '||' and '&&' operator. The precedence of '&&' is higher than '||'.
// Invalid operator and the next operand are diagnosed and removed from AST.
Expr *foldSequence(Expr *LHS, ArrayRef<Expr*> &S, bool isRecurse = false) {
assert(!S.empty() && ((S.size() & 1) == 0));
auto getNextOperator = [&]() -> std::optional<StringRef> {
assert((S.size() & 1) == 0);
while (!S.empty()) {
auto Name = getDeclRefStr(S[0], DeclRefKind::BinaryOperator);
if (Name.has_value() && (*Name == "||" || *Name == "&&"))
return Name;
auto DiagID = isa<UnresolvedDeclRefExpr>(S[0])
? diag::unsupported_conditional_compilation_binary_expression
: diag::unsupported_conditional_compilation_expression_type;
D.diagnose(S[0]->getLoc(), DiagID);
HasError |= true;
// Consume invalid operator and the immediate RHS.
S = S.slice(2);
}
return std::nullopt;
};
// Extract out the first operator name.
auto OpName = getNextOperator();
if (!OpName.has_value())
// If failed, it's not a sequence anymore.
return LHS;
Expr *Op = S[0];
// We will definitely be consuming at least one operator.
// Pull out the prospective RHS and slice off the first two elements.
Expr *RHS = S[1];
S = S.slice(2);
while (true) {
// Pull out the next binary operator.
auto NextOpName = getNextOperator();
bool IsEnd = !NextOpName.has_value();
if (!IsEnd && *OpName == "||" && *NextOpName == "&&") {
RHS = foldSequence(RHS, S, /*isRecurse*/true);
continue;
}
// Apply the operator with left-associativity by folding the first two
// operands.
LHS = BinaryExpr::create(Ctx, LHS, Op, RHS, /*implicit*/ false);
// If we don't have the next operator, we're done.
if (IsEnd)
break;
if (isRecurse && *OpName == "&&" && *NextOpName == "||")
break;
OpName = NextOpName;
Op = S[0];
RHS = S[1];
S = S.slice(2);
}
return LHS;
}
public:
ValidateIfConfigCondition(ASTContext &Ctx, DiagnosticEngine &D)
: Ctx(Ctx), D(D), HasError(false) {}
// Explicit configuration flag.
Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
if (!getDeclRefStr(E, DeclRefKind::Ordinary).has_value())
return diagnoseUnsupportedExpr(E);
return E;
}
// 'true' or 'false' constant.
Expr *visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E;
}
// '0' and '1' are warned, but we accept it.
Expr *visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
if (E->isNegative() ||
(E->getDigitsText() != "0" && E->getDigitsText() != "1")) {
return diagnoseUnsupportedExpr(E);
}
// "#if 0" isn't valid, but it is common, so recognize it and handle it
// with a fixit.
StringRef replacement = E->getDigitsText() == "0" ? "false" :"true";
D.diagnose(E->getLoc(), diag::unsupported_conditional_compilation_integer,
E->getDigitsText(), replacement)
.fixItReplace(E->getLoc(), replacement);
return E;
}
// Platform conditions.
Expr *visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn(), DeclRefKind::Ordinary);
if (!KindName.has_value()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
Expr *Arg = getSingleSubExp(E->getArgs(), *KindName, &D);
if (!Arg) {
if (E->getArgs()->empty()) {
D.diagnose(E->getLoc(), diag::platform_condition_expected_argument);
} else {
SourceLoc DiagLoc = E->getArgs()->front().getStartLoc();
assert(DiagLoc.isValid() && "parsed Argument should have a location");
D.diagnose(DiagLoc, diag::platform_condition_expected_one_argument);
}
return nullptr;
}
SourceLoc ArgLoc = Arg->getStartLoc();
// '_compiler_version' '(' string-literal ')'
if (*KindName == "_compiler_version") {
if (auto SLE = dyn_cast<StringLiteralExpr>(Arg)) {
auto ValStr = SLE->getValue();
if (ValStr.empty()) {
D.diagnose(SLE->getLoc(), diag::empty_version_string);
return nullptr;
}
auto Val = VersionParser::parseCompilerVersionString(SLE->getValue(),
SLE->getLoc(), &D);
if (!Val.has_value())
return nullptr;
return E;
}
}
// 'swift' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// 'compiler' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// '_compiler_version' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
if (*KindName == "swift" || *KindName == "compiler" ||
*KindName == "_compiler_version") {
auto PUE = dyn_cast<PrefixUnaryExpr>(Arg);
std::optional<StringRef> PrefixName =
PUE ? getDeclRefStr(PUE->getFn(), DeclRefKind::PrefixOperator)
: std::nullopt;
if (!isValidPrefixUnaryOperator(PrefixName)) {
D.diagnose(
ArgLoc, diag::unsupported_platform_condition_argument,
"a unary comparison '>=' or '<'; for example, '>=2.2' or '<2.2'");
return nullptr;
}
auto versionString = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(
versionString, PUE->getOperand()->getStartLoc(), &D);
if (!Val.has_value())
return nullptr;
return E;
}
if (*KindName == "canImport") {
if (!E->getArgs()->isUnary()) {
bool underlyingVersion;
// Diagnose canImport(_:_version:) syntax.
(void)getCanImportVersion(E->getArgs(), Ctx.SourceMgr, &D,
underlyingVersion);
}
if (!isModulePath(Arg)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"module name");
return nullptr;
}
return E;
}
if (*KindName == "hasFeature") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"feature name");
return nullptr;
}
return E;
}
if (*KindName == "hasAttribute") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"attribute name");
return nullptr;
}
return E;
}
// ( 'os' | 'arch' | '_endian' | '_pointerBitWidth' | '_runtime' | '_hasAtomicBitWidth' ) '(' identifier ')''
auto Kind = getPlatformConditionKind(*KindName);
if (!Kind.has_value()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
auto ArgStr = getDeclRefStr(Arg, DeclRefKind::Ordinary);
if (!ArgStr.has_value()) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"identifier");
return nullptr;
}
PlatformConditionKind suggestedKind = *Kind;
std::vector<StringRef> suggestedValues;
if (!LangOptions::checkPlatformConditionSupported(*Kind, *ArgStr,
suggestedKind, suggestedValues)) {
if (Kind == PlatformConditionKind::Runtime) {
// Error for _runtime()
D.diagnose(ArgLoc,
diag::unsupported_platform_runtime_condition_argument);
return nullptr;
}
// Just a warning for other unsupported arguments.
StringRef DiagName;
switch (*Kind) {
case PlatformConditionKind::OS:
DiagName = "operating system"; break;
case PlatformConditionKind::Arch:
DiagName = "architecture"; break;
case PlatformConditionKind::Endianness:
DiagName = "endianness"; break;
case PlatformConditionKind::PointerBitWidth:
DiagName = "pointer bit width"; break;
case PlatformConditionKind::CanImport:
DiagName = "import conditional"; break;
case PlatformConditionKind::TargetEnvironment:
DiagName = "target environment"; break;
case PlatformConditionKind::PtrAuth:
DiagName = "pointer authentication scheme"; break;
case PlatformConditionKind::HasAtomicBitWidth:
DiagName = "has atomic bit width"; break;
case PlatformConditionKind::Runtime:
llvm_unreachable("handled above");
}
D.diagnose(ArgLoc, diag::unknown_platform_condition_argument, DiagName,
*KindName);
if (suggestedKind != *Kind) {
auto suggestedKindName = getPlatformConditionName(suggestedKind);
D.diagnose(ArgLoc, diag::note_typo_candidate, suggestedKindName)
.fixItReplace(E->getFn()->getSourceRange(), suggestedKindName);
}
for (auto suggestion : suggestedValues)
D.diagnose(ArgLoc, diag::note_typo_candidate, suggestion)
.fixItReplace(Arg->getSourceRange(), suggestion);
}
else if (!suggestedValues.empty()) {
// The value the user gave has been replaced by something newer.
assert(suggestedValues.size() == 1 && "only support one replacement");
auto replacement = suggestedValues.front();
D.diagnose(ArgLoc, diag::renamed_platform_condition_argument, *ArgStr,
replacement)
.fixItReplace(Arg->getSourceRange(), replacement);
}
return E;
}
// Grouped condition. e.g. '(FLAG)'
Expr *visitParenExpr(ParenExpr *E) {
E->setSubExpr(validate(E->getSubExpr()));
return E;
}
// Prefix '!'. Other prefix operators are rejected.
Expr *visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::PrefixOperator);
if (!OpName.has_value() || *OpName != "!") {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_unary_expression);
return nullptr;
}
E->setOperand(validate(E->getOperand()));
return E;
}
Expr *visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::BinaryOperator);
if (auto lhs = validate(E->getLHS())) {
// If the left-hand side is a versioned condition, skip evaluation of
// the right-hand side if it won't ever affect the result.
if (OpName && isVersionIfConfigCondition(lhs)) {
assert(*OpName == "&&" || *OpName == "||");
bool isLHSTrue = evaluateIfConfigCondition(lhs, Ctx);
if (isLHSTrue && *OpName == "||")
return lhs;
if (!isLHSTrue && *OpName == "&&")
return lhs;
}
E->getArgs()->setExpr(0, lhs);
}
if (auto rhs = validate(E->getRHS()))
E->getArgs()->setExpr(1, rhs);
return E;
}
// Fold sequence expression for non-Swift3 mode.
Expr *visitSequenceExpr(SequenceExpr *E) {
ArrayRef<Expr*> Elts = E->getElements();
Expr *foldedExpr = Elts[0];
Elts = Elts.slice(1);
foldedExpr = foldSequence(foldedExpr, Elts);
assert(Elts.empty());
return validate(foldedExpr);
}
// Other expression types are unsupported.
Expr *visitExpr(Expr *E) {
return diagnoseUnsupportedExpr(E);
}
Expr *validate(Expr *E) {
if (auto E2 = visit(E))
return E2;
HasError |= true;
return E;
}
bool hasError() const {
return HasError;
}
};
/// Validate and modify the condition expression.
/// Returns \c true if the condition contains any error.
static bool validateIfConfigCondition(Expr *&condition,
ASTContext &Context,
DiagnosticEngine &D) {
ValidateIfConfigCondition Validator(Context, D);
condition = Validator.validate(condition);
return Validator.hasError();
}
/// The condition evaluator.
/// The condition must be validated with validateIfConfigCondition().
class EvaluateIfConfigCondition :
public ExprVisitor<EvaluateIfConfigCondition, bool> {
ASTContext &Ctx;
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
EvaluateIfConfigCondition(ASTContext &Ctx) : Ctx(Ctx) {}
bool visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E->getValue();
}
bool visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
return E->getDigitsText() != "0";
}
bool visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
auto Name = getDeclRefStr(E);
if (Name.empty())
return false;
if (Name.starts_with("$") && Ctx.LangOpts.hasFeature(Name.drop_front()))
return true;
return Ctx.LangOpts.isCustomConditionalCompilationFlagSet(Name);
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
auto *Arg = getSingleSubExp(E->getArgs(), KindName, nullptr);
if (KindName == "_compiler_version" && isa<StringLiteralExpr>(Arg)) {
auto Str = cast<StringLiteralExpr>(Arg)->getValue();
auto Val =
VersionParser::parseCompilerVersionString(Str, SourceLoc(), nullptr)
.value();
auto thisVersion = version::getCurrentCompilerVersion();
return thisVersion >= Val;
} else if ((KindName == "swift") || (KindName == "compiler") ||
(KindName == "_compiler_version")) {
auto PUE = cast<PrefixUnaryExpr>(Arg);
auto PrefixName = getDeclRefStr(PUE->getFn());
auto Str = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(Str, SourceLoc(), nullptr)
.value();
version::Version thisVersion;
if (KindName == "swift") {
thisVersion = Ctx.LangOpts.EffectiveLanguageVersion;
} else if (KindName == "compiler") {
thisVersion = version::Version::getCurrentLanguageVersion();
} else if (KindName == "_compiler_version") {
thisVersion = version::getCurrentCompilerVersion();
} else {
llvm_unreachable("unsupported version conditional");
}
return isValidVersion(thisVersion, Val, PrefixName);
} else if (KindName == "canImport") {
auto Str = extractExprSource(Ctx.SourceMgr, Arg);
bool underlyingModule = false;
llvm::VersionTuple version;
if (!E->getArgs()->isUnlabeledUnary()) {
version = getCanImportVersion(E->getArgs(), Ctx.SourceMgr, nullptr,
underlyingModule);
}
ImportPath::Module::Builder builder(Ctx, Str, /*separator=*/'.',
Arg->getStartLoc());
return Ctx.canImportModule(builder.get(), E->getLoc(), version,
underlyingModule);
} else if (KindName == "hasFeature") {
auto featureName = getDeclRefStr(Arg);
return Ctx.LangOpts.hasFeature(featureName);
} else if (KindName == "hasAttribute") {
auto attributeName = getDeclRefStr(Arg);
return hasAttribute(Ctx.LangOpts, attributeName);
}
auto Val = getDeclRefStr(Arg);
auto Kind = getPlatformConditionKind(KindName).value();
return Ctx.LangOpts.checkPlatformCondition(Kind, Val);
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return !visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) {
return visit(E->getSubExpr());
}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) || visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) && visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitExpr(Expr *E) { llvm_unreachable("Unvalidated condition?"); }
};
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context) {
return EvaluateIfConfigCondition(Context).visit(Condition);
}
/// Version condition checker.
class IsVersionIfConfigCondition :
public ExprVisitor<IsVersionIfConfigCondition, bool> {
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
IsVersionIfConfigCondition() {}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) && visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) || visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
return KindName == "_compiler_version" || KindName == "swift" ||
KindName == "compiler";
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) { return visit(E->getSubExpr()); }
bool visitExpr(Expr *E) { return false; }
};
static bool isVersionIfConfigCondition(Expr *Condition) {
return IsVersionIfConfigCondition().visit(Condition);
}
/// Get the identifier string from an \c Expr if it's an
/// \c UnresolvedDeclRefExpr, otherwise the empty string.
static StringRef getDeclRefStr(Expr *E) {
if (auto *UDRE = dyn_cast<UnresolvedDeclRefExpr>(E)) {
return UDRE->getName().getBaseIdentifier().str();
}
return "";
}
static bool isPlatformConditionDisjunction(Expr *E, PlatformConditionKind Kind,
ArrayRef<StringRef> Vals) {
if (auto *Or = dyn_cast<BinaryExpr>(E)) {
if (getDeclRefStr(Or->getFn()) == "||") {
return (isPlatformConditionDisjunction(Or->getLHS(), Kind, Vals) &&
isPlatformConditionDisjunction(Or->getRHS(), Kind, Vals));
}
} else if (auto *P = dyn_cast<ParenExpr>(E)) {
return isPlatformConditionDisjunction(P->getSubExpr(), Kind, Vals);
} else if (auto *C = dyn_cast<CallExpr>(E)) {
if (getPlatformConditionKind(getDeclRefStr(C->getFn())) != Kind)
return false;
if (auto *Arg = C->getArgs()->getUnlabeledUnaryExpr()) {
auto ArgStr = getDeclRefStr(Arg);
for (auto V : Vals) {
if (ArgStr == V)
return true;
}
}
}
return false;
}
// Search for the first occurrence of a _likely_ (but not definite) implicit
// simulator-environment platform condition, or negation thereof. This is
// defined as any logical conjunction of one or more os() platform conditions
// _strictly_ from the set {iOS, tvOS, watchOS} and one or more arch() platform
// conditions _strictly_ from the set {i386, x86_64}.
//
// These are (at the time of writing) defined as de-facto simulators in
// Platform.cpp, and if a user is testing them they're _likely_ looking for
// simulator-ness indirectly. If there is anything else in the condition aside
// from these conditions (or the negation of such a conjunction), we
// conservatively assume the user is testing something other than
// simulator-ness.
static Expr *findAnyLikelySimulatorEnvironmentTest(Expr *Condition) {
if (!Condition)
return nullptr;
if (auto *N = dyn_cast<PrefixUnaryExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(N->getOperand());
} else if (auto *P = dyn_cast<ParenExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(P->getSubExpr());
}
// We assume the user is writing the condition in CNF -- say (os(iOS) ||
// os(tvOS)) && (arch(i386) || arch(x86_64)) -- rather than DNF, as the former
// is exponentially more terse, and these conditions are already quite
// unwieldy. If field evidence shows people using other variants, possibly add
// them here.
auto isSimulatorPlatformOSTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::OS, {"iOS", "tvOS", "watchOS"});
};
auto isSimulatorPlatformArchTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::Arch, {"i386", "x86_64"});
};
if (auto *And = dyn_cast<BinaryExpr>(Condition)) {
if (getDeclRefStr(And->getFn()) == "&&") {
if ((isSimulatorPlatformOSTest(And->getLHS()) &&
isSimulatorPlatformArchTest(And->getRHS())) ||
(isSimulatorPlatformOSTest(And->getRHS()) &&
isSimulatorPlatformArchTest(And->getLHS()))) {
return And;
}
}
}
return nullptr;
}
} // end anonymous namespace
/// Call into the Swift implementation of #if condition evaluation.
///
/// \returns std::nullopt if the Swift implementation is not available, or
/// a pair (isActive, allowSyntaxErrors) describing whether the evaluated
/// condition indicates that the region is active and whether, if inactive,
/// the code in that region is allowed to have syntax errors.
static std::optional<std::pair<bool, bool>> evaluateWithSwiftIfConfig(
Parser &parser,
SourceRange conditionRange,
bool shouldEvaluate
) {
#if SWIFT_BUILD_SWIFT_SYNTAX
return evaluateOrDefault(
parser.Context.evaluator,
EvaluateIfConditionRequest{&parser.SF, conditionRange, shouldEvaluate},
std::pair(false, false));
#else
return std::nullopt;
#endif
}
/// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
template <typename Result>
Result Parser::parseIfConfigRaw(
IfConfigContext ifConfigContext,
llvm::function_ref<void(SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role)>
parseElements,
llvm::function_ref<Result(SourceLoc endLoc, bool hadMissingEnd)> finish) {
assert(Tok.is(tok::pound_if));
Parser::StructureMarkerRAII ParsingDecl(
*this, Tok.getLoc(), Parser::StructureMarkerKind::IfConfig);
// Find the region containing code completion token.
SourceLoc ideInspectionClauseLoc;
if (SourceMgr.hasIDEInspectionTargetBuffer() &&
SourceMgr.getIDEInspectionTargetBufferID() == L->getBufferID() &&
SourceMgr.isBeforeInBuffer(Tok.getLoc(),
SourceMgr.getIDEInspectionTargetLoc())) {
llvm::SaveAndRestore<std::optional<StableHasher>> H(CurrentTokenHash,
std::nullopt);
BacktrackingScope backtrack(*this);
do {
auto startLoc = Tok.getLoc();
consumeToken();
skipUntilConditionalBlockClose();
auto endLoc = PreviousLoc;
if (SourceMgr.rangeContainsTokenLoc(
SourceRange(startLoc, endLoc),
SourceMgr.getIDEInspectionTargetLoc())) {
ideInspectionClauseLoc = startLoc;
break;
}
} while (Tok.isNot(tok::pound_endif, tok::eof));
}
bool shouldEvaluate =
// Don't evaluate if it's in '-parse' mode, etc.
shouldEvaluatePoundIfDecls() &&
// If it's in inactive #if ... #endif block, there's no point to do it.
!InInactiveClauseEnvironment &&
// If this directive contains code completion location, 'isActive' is
// determined solely by which block has the completion token.
!ideInspectionClauseLoc.isValid();
bool foundActive = false;
bool isVersionCondition = false;
CharSourceRange activeBodyRange;
while (1) {
bool isElse = Tok.is(tok::pound_else);
SourceLoc ClauseLoc = consumeToken();
Expr *Condition = nullptr;
bool isActive = false;
if (!Tok.isAtStartOfLine() && isElse && Tok.is(tok::kw_if)) {
diagnose(Tok, diag::unexpected_if_following_else_compilation_directive)
.fixItReplace(SourceRange(ClauseLoc, consumeToken()), "#elseif");
isElse = false;
}
// Parse the condition. Evaluate it to determine the active
// clause unless we're doing a parse-only pass.
if (isElse) {
isActive = !foundActive && shouldEvaluate;
} else {
llvm::SaveAndRestore<bool> S(InPoundIfEnvironment, true);
ParserResult<Expr> result = parseExprSequence(diag::expected_expr,
/*isBasic*/true,
/*isForDirective*/true);
if (result.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (result.isNull())
return makeParserError();
Condition = result.get();
if (std::optional<std::pair<bool, bool>> evalResult =
evaluateWithSwiftIfConfig(*this,
Condition->getSourceRange(),
shouldEvaluate)) {
if (!foundActive) {
isActive = evalResult->first;
isVersionCondition = evalResult->second;
}
} else if (validateIfConfigCondition(Condition, Context, Diags)) {
// Error in the condition;
isActive = false;
isVersionCondition = false;
} else if (!foundActive) {
// Evaluate the condition only if we haven't found any active one and
// we're not in parse-only mode.
if (shouldEvaluate) {
isActive = evaluateIfConfigCondition(Condition, Context);
}
// Determine isVersionCondition regardless of whether we're active.
// This is necessary in some edge cases, e.g. where we're in a nested,
// inactive #if block, and we encounter an inactive `#if compiler` check,
// as we have to explicitly skip parsing in such edge cases.
isVersionCondition = isVersionIfConfigCondition(Condition);
}
}
// Treat the region containing code completion token as "active".
if (ideInspectionClauseLoc.isValid() && !foundActive)
isActive = (ClauseLoc == ideInspectionClauseLoc);
foundActive |= isActive;
if (!Tok.isAtStartOfLine() && Tok.isNot(tok::eof)) {
diagnose(Tok.getLoc(),
diag::extra_tokens_conditional_compilation_directive);
}
if (Expr *Test = findAnyLikelySimulatorEnvironmentTest(Condition)) {
diagnose(Test->getLoc(),
diag::likely_simulator_platform_condition)
.fixItReplace(Test->getSourceRange(),
"targetEnvironment(simulator)");
}
// Parse elements
auto bodyStart = Lexer::getLocForEndOfToken(SourceMgr, PreviousLoc);
llvm::SaveAndRestore<bool> S(InInactiveClauseEnvironment,
InInactiveClauseEnvironment || !isActive);
// Disable updating the interface hash inside inactive blocks.
std::optional<llvm::SaveAndRestore<std::optional<StableHasher>>> T;
if (!isActive)
T.emplace(CurrentTokenHash, std::nullopt);
if (isActive || !isVersionCondition) {
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Normal);
} else {
DiagnosticTransaction DT(Diags);
skipUntilConditionalBlockClose();
DT.abort();
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Skipped);
}
// We ought to be at the end of the clause, diagnose if not and skip to
// the closing token. `#if` + `#endif` are considered stronger delimiters
// than `{` + `}`, so we can skip over those too.
if (Tok.isNot(tok::pound_elseif, tok::pound_else, tok::pound_endif,
tok::eof)) {
if (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::unexpected_rbrace_in_conditional_compilation_block);
} else if (ifConfigContext == IfConfigContext::PostfixExpr) {
diagnose(Tok, diag::expr_postfix_ifconfig_unexpectedtoken);
} else {
// We ought to never hit this case in practice, but fall back to a
// generic 'unexpected tokens' diagnostic if we weren't able to produce
// a better diagnostic during the parsing of the clause.
diagnose(Tok, diag::ifconfig_unexpectedtoken);
}
skipUntilConditionalBlockClose();
}
// Record the clause range info in SourceFile.
if (shouldEvaluate) {
auto kind = isActive ? IfConfigClauseRangeInfo::ActiveClause
: IfConfigClauseRangeInfo::InactiveClause;
SF.recordIfConfigClauseRangeInfo(
{ClauseLoc, bodyStart, Tok.getLoc(), kind});
}
if (Tok.isNot(tok::pound_elseif, tok::pound_else))
break;
if (isElse)
diagnose(Tok, diag::expected_close_after_else_directive);
}
SourceLoc EndLoc;
bool HadMissingEnd = parseEndIfDirective(EndLoc);
// Record the '#end' ranges in SourceFile.
if (!HadMissingEnd && shouldEvaluate) {
SourceLoc EndOfEndLoc = getEndOfPreviousLoc();
SF.recordIfConfigClauseRangeInfo({EndLoc, EndOfEndLoc, EndOfEndLoc,
IfConfigClauseRangeInfo::EndDirective});
}
return finish(EndLoc, HadMissingEnd);
}
// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
ParserStatus Parser::parseIfConfig(
IfConfigContext ifConfigContext,
llvm::function_ref<void(bool)> parseElements) {
ParserStatus status = makeParserSuccess();
return parseIfConfigRaw<ParserStatus>(
ifConfigContext,
[&](SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role) {
if (role != IfConfigElementsRole::Skipped)
parseElements(isActive);
},
[&](SourceLoc endLoc, bool hadMissingEnd) {
return status;
});
}
ParserStatus Parser::parseIfConfigAttributes(
DeclAttributes &attributes, bool ifConfigsAreDeclAttrs) {
ParserStatus status = makeParserSuccess();
return parseIfConfigRaw<ParserStatus>(
IfConfigContext::DeclAttrs,
[&](SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role) {
if (isActive) {
status |= parseDeclAttributeList(attributes, ifConfigsAreDeclAttrs);
} else if (role != IfConfigElementsRole::Skipped) {
DeclAttributes skippedAttributes;
status |= parseDeclAttributeList(
skippedAttributes, ifConfigsAreDeclAttrs);
}
},
[&](SourceLoc endLoc, bool hadMissingEnd) {
return status;
});
}
bool Parser::skipIfConfigOfAttributes(bool &sawAnyAttributes) {
assert(Tok.is(tok::pound_if));
while (true) {
// #if / #else / #elseif
consumeToken();
// <expression>
skipUntilTokenOrEndOfLine(tok::NUM_TOKENS);
while (true) {
if (Tok.is(tok::at_sign)) {
sawAnyAttributes = true;
skipAnyAttribute();
continue;
}
if (Tok.is(tok::pound_if)) {
skipIfConfigOfAttributes(sawAnyAttributes);
continue;
}
break;
}
if (Tok.isNot(tok::pound_elseif, tok::pound_else))
break;
}
// If we ran out of tokens, say we consumed the rest.
if (Tok.is(tok::eof))
return true;
return Tok.isAtStartOfLine() && consumeIf(tok::pound_endif);
}
bool Parser::ifConfigContainsOnlyAttributes() {
assert(Tok.is(tok::pound_if));
bool sawAnyAttributes = false;
BacktrackingScope backtrack(*this);
return skipIfConfigOfAttributes(sawAnyAttributes) && sawAnyAttributes;
}