Files
swift-mirror/lib/SIL/Utils/InstructionUtils.cpp
Michael Gottesman 082b824a8e [rbi] Change Region Based Isolation for closures to not use the AST and instead just use SIL.
The reason why I am doing this is that in certain cases the AST captures indices
will never actually line up with partial apply capture indices since we seem to
"smush" together closures and locally defined functions.

NOTE: The reason for the really small amount of test changes is that this change
does not change the actual output by design. The only cases I had to change were
a case where we began to emit a better diagnostic and also where I added code
coverage around _ and let _ since those require ignored_use to be implemented so
that they would be diagnosed (previously we just did not emit anything so we
couldn't emit the diagnostic at the SIL level).

rdar://142661388
2025-01-22 21:12:36 -08:00

1483 lines
54 KiB
C++

//===--- InstructionUtils.cpp - Utilities for SIL instructions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-inst-utils"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
static llvm::cl::opt<bool> EnableExpandAll("enable-expand-all",
llvm::cl::init(false));
SILValue swift::lookThroughOwnershipInsts(SILValue v) {
while (true) {
switch (v->getKind()) {
default:
return v;
case ValueKind::MoveValueInst:
case ValueKind::CopyValueInst:
case ValueKind::BeginBorrowInst:
v = cast<SingleValueInstruction>(v)->getOperand(0);
}
}
}
bool swift::visitNonOwnershipUses(SILValue value,
function_ref<bool(Operand *)> visitor) {
// All ownership insts have a single operand, so a recursive walk is
// sufficient and cannot revisit operands.
for (Operand *use : value->getUses()) {
auto *user = use->getUser();
switch (user->getKind()) {
default:
if (!visitor(use))
return false;
break;
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
if (!visitNonOwnershipUses(cast<SingleValueInstruction>(user), visitor))
return false;
break;
}
}
return true;
}
SILValue swift::lookThroughCopyValueInsts(SILValue val) {
while (auto *cvi =
dyn_cast_or_null<CopyValueInst>(val->getDefiningInstruction())) {
val = cvi->getOperand();
}
return val;
}
/// Strip off casts/indexing insts/address projections from V until there is
/// nothing left to strip.
///
/// FIXME: Why don't we strip projections after stripping indexes?
SILValue swift::getUnderlyingObject(SILValue v) {
while (true) {
SILValue v2 = stripCasts(v);
v2 = stripAddressProjections(v2);
v2 = stripIndexingInsts(v2);
v2 = lookThroughOwnershipInsts(v2);
if (auto *ecm = dyn_cast<EndCOWMutationInst>(v2)) {
v2 = ecm->getOperand();
} else if (auto *eir = dyn_cast<EndInitLetRefInst>(v2)) {
v2 = eir->getOperand();
} else if (auto *mvr = dyn_cast<MultipleValueInstructionResult>(v2)) {
if (auto *bci = dyn_cast<BeginCOWMutationInst>(mvr->getParent()))
v2 = bci->getOperand();
}
if (v2 == v)
return v2;
v = v2;
}
}
/// Return the underlying SILValue after stripping off identity SILArguments if
/// we belong to a BB with one predecessor.
SILValue swift::stripSinglePredecessorArgs(SILValue V) {
while (true) {
auto *A = dyn_cast<SILArgument>(V);
if (!A)
return V;
SILBasicBlock *BB = A->getParent();
// First try and grab the single predecessor of our parent BB. If we don't
// have one, bail.
SILBasicBlock *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return V;
// Then grab the terminator of Pred...
TermInst *PredTI = Pred->getTerminator();
// And attempt to find our matching argument.
//
// *NOTE* We can only strip things here if we know that there is no semantic
// change in terms of upcasts/downcasts/enum extraction since this is used
// by other routines here. This means that we can only look through
// cond_br/br.
//
// For instance, routines that use stripUpcasts() do not want to strip off a
// downcast that results from checked_cast_br.
if (auto *BI = dyn_cast<BranchInst>(PredTI)) {
V = BI->getArg(A->getIndex());
continue;
}
if (auto *CBI = dyn_cast<CondBranchInst>(PredTI)) {
if (SILValue Arg = CBI->getArgForDestBB(BB, A)) {
V = Arg;
continue;
}
}
return V;
}
}
SILValue swift::stripCastsWithoutMarkDependence(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (isa<MarkDependenceInst>(v))
return v;
if (auto *svi = dyn_cast<SingleValueInstruction>(v)) {
if (isIdentityPreservingRefCast(svi) ||
isa<UncheckedTrivialBitCastInst>(v) || isa<BeginAccessInst>(v) ||
isa<EndInitLetRefInst>(v) || isa<EndCOWMutationInst>(v)) {
v = svi->getOperand(0);
continue;
}
}
return v;
}
}
SILValue swift::stripCasts(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (auto *svi = dyn_cast<SingleValueInstruction>(v)) {
if (isIdentityPreservingRefCast(svi) ||
isa<UncheckedTrivialBitCastInst>(v) || isa<MarkDependenceInst>(v) ||
isa<UncheckedOwnershipConversionInst>(v) ||
isa<BeginAccessInst>(v)) {
v = cast<SingleValueInstruction>(v)->getOperand(0);
continue;
}
}
SILValue v2 = lookThroughOwnershipInsts(v);
if (v2 != v) {
v = v2;
continue;
}
return v;
}
}
SILValue swift::stripUpCasts(SILValue v) {
assert(v->getType().isClassOrClassMetatype() &&
"Expected class or class metatype!");
v = stripSinglePredecessorArgs(v);
while (true) {
if (auto *ui = dyn_cast<UpcastInst>(v)) {
v = ui->getOperand();
continue;
}
SILValue v2 = stripSinglePredecessorArgs(v);
v2 = lookThroughOwnershipInsts(v2);
if (v2 == v) {
return v2;
}
v = v2;
}
}
SILValue swift::stripClassCasts(SILValue v) {
while (true) {
if (auto *ui = dyn_cast<UpcastInst>(v)) {
v = ui->getOperand();
continue;
}
if (auto *ucci = dyn_cast<UnconditionalCheckedCastInst>(v)) {
v = ucci->getOperand();
continue;
}
SILValue v2 = lookThroughOwnershipInsts(v);
if (v2 != v) {
v = v2;
continue;
}
return v;
}
}
SILValue swift::stripAddressProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isAddressProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::lookThroughAddressToAddressProjections(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (!Projection::isAddressToAddressProjection(v))
return v;
v = cast<SingleValueInstruction>(v)->getOperand(0);
}
}
SILValue swift::stripValueProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isObjectProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::lookThroughAddressAndValueProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isObjectProjection(V) &&
!Projection::isAddressProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::stripIndexingInsts(SILValue V) {
while (true) {
if (!isa<IndexingInst>(V))
return V;
V = cast<IndexingInst>(V)->getBase();
}
}
SILValue swift::stripExpectIntrinsic(SILValue V) {
auto *BI = dyn_cast<BuiltinInst>(V);
if (!BI)
return V;
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
return V;
return BI->getArguments()[0];
}
SILValue swift::stripBorrow(SILValue V) {
if (auto *BBI = dyn_cast<BeginBorrowInst>(V))
return BBI->getOperand();
return V;
}
// All instructions handled here must propagate their first operand into their
// single result.
//
// This is guaranteed to handle all function-type conversions: ThinToThick,
// ConvertFunction, and ConvertEscapeToNoEscapeInst.
SingleValueInstruction *swift::getSingleValueCopyOrCast(SILInstruction *I) {
if (auto convert = ConversionOperation(I))
return *convert;
switch (I->getKind()) {
default:
return nullptr;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BeginAccessInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MoveValueInst:
return cast<SingleValueInstruction>(I);
}
}
bool swift::isBeginScopeMarker(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::BeginAccessInst:
case SILInstructionKind::BeginBorrowInst:
return true;
}
}
bool swift::isEndOfScopeMarker(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::EndBorrowInst:
return true;
}
}
bool swift::isIncidentalUse(SILInstruction *user) {
return isEndOfScopeMarker(user) || user->isDebugInstruction() ||
isa<FixLifetimeInst>(user) || isa<EndLifetimeInst>(user) ||
isa<IgnoredUseInst>(user);
}
bool swift::isMoveOnlyWrapperUse(SILInstruction *user) {
switch (user->getKind()) {
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst:
return true;
default:
return false;
}
}
bool swift::onlyAffectsRefCount(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainValueInst: \
case SILInstructionKind::Name##ReleaseValueInst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::Name##ReleaseInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#include "swift/AST/ReferenceStorage.def"
return true;
}
}
bool swift::mayCheckRefCount(SILInstruction *User) {
return isa<IsUniqueInst>(User) || isa<IsEscapingClosureInst>(User) ||
isa<BeginCOWMutationInst>(User);
}
bool swift::isSanitizerInstrumentation(SILInstruction *Instruction) {
auto *BI = dyn_cast<BuiltinInst>(Instruction);
if (!BI)
return false;
Identifier Name = BI->getName();
if (Name == BI->getModule().getASTContext().getIdentifier("tsanInoutAccess"))
return true;
return false;
}
// Instrumentation instructions should not affect the correctness of the
// program. That is, they should not affect the observable program state.
// The constant evaluator relies on this property to skip instructions.
bool swift::isInstrumentation(SILInstruction *Instruction) {
if (isSanitizerInstrumentation(Instruction))
return true;
if (isa<IncrementProfilerCounterInst>(Instruction))
return true;
return false;
}
SILValue swift::isPartialApplyOfReabstractionThunk(PartialApplyInst *PAI) {
// A partial_apply of a reabstraction thunk either has a single capture
// (a function) or two captures (function and dynamic Self type).
if (PAI->getNumArguments() != 1 &&
PAI->getNumArguments() != 2)
return SILValue();
auto *Fun = PAI->getReferencedFunctionOrNull();
if (!Fun)
return SILValue();
// Make sure we have a reabstraction thunk.
if (Fun->isThunk() != IsReabstractionThunk)
return SILValue();
// The argument should be a closure.
auto Arg = PAI->getArgument(0);
if (!Arg->getType().is<SILFunctionType>() ||
(!Arg->getType().isReferenceCounted(PAI->getFunction()->getModule()) &&
Arg->getType().getAs<SILFunctionType>()->getRepresentation() !=
SILFunctionType::Representation::Thick))
return SILValue();
// Look through copies.
if (auto copy = dyn_cast<CopyValueInst>(Arg)) {
Arg = copy->getOperand();
}
return Arg;
}
bool swift::onlyUsedByAssignByWrapper(PartialApplyInst *PAI) {
bool usedByAssignByWrapper = false;
for (Operand *Op : PAI->getUses()) {
SILInstruction *User = Op->getUser();
if (isa<AssignByWrapperInst>(User) && Op->getOperandNumber() >= 2) {
usedByAssignByWrapper = true;
continue;
}
if (isa<DestroyValueInst>(User))
continue;
return false;
}
return usedByAssignByWrapper;
}
bool swift::onlyUsedByAssignOrInit(PartialApplyInst *PAI) {
bool usedByAssignOrInit = false;
for (Operand *Op : PAI->getUses()) {
SILInstruction *user = Op->getUser();
if (isa<AssignOrInitInst>(user)) {
usedByAssignOrInit = true;
continue;
}
if (isa<DestroyValueInst>(user)) {
continue;
}
return false;
}
return usedByAssignOrInit;
}
static RuntimeEffect metadataEffect(SILType ty) {
ClassDecl *cl = ty.getClassOrBoundGenericClass();
if (cl && !cl->hasKnownSwiftImplementation())
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC;
return RuntimeEffect::MetaData;
}
/// Whether this particular SIL function is known a prior not to use the
/// generic metadata it is given.
static bool knownToNotUseGenericMetadata(SILFunction &f) {
// swift_willThrowTypedImpl only uses the generic metadata when a global
// hook has been installed, so we treat it as if the generic metadata is
// unused.
if (f.getName() == "swift_willThrowTypedImpl")
return true;
return false;
}
/// Whether this apply site is a call to a functio that is known not to use
/// the generic metadata it is given.
static bool knownToNotUseGenericMetadata(ApplySite &as) {
if (auto *callee = as.getCalleeFunction()) {
return knownToNotUseGenericMetadata(*callee);
}
return false;
}
RuntimeEffect swift::getRuntimeEffect(SILInstruction *inst, SILType &impactType) {
auto ifNonTrivial = [&](SILType type, RuntimeEffect effect) -> RuntimeEffect {
// Nonescaping closures are modeled with ownership to track borrows, but
// copying and destroying them has no actual runtime effect since they
// are trivial after lowering.
if (auto sft = type.getAs<SILFunctionType>()) {
if (sft->isTrivialNoEscape()) {
return RuntimeEffect::NoEffect;
}
}
return effect;
};
switch (inst->getKind()) {
case SILInstructionKind::TailAddrInst:
case SILInstructionKind::IndexRawPointerInst:
case SILInstructionKind::FunctionRefInst:
case SILInstructionKind::DynamicFunctionRefInst:
case SILInstructionKind::PreviousDynamicFunctionRefInst:
case SILInstructionKind::GlobalAddrInst:
case SILInstructionKind::BaseAddrForOffsetInst:
case SILInstructionKind::IntegerLiteralInst:
case SILInstructionKind::FloatLiteralInst:
case SILInstructionKind::StringLiteralInst:
case SILInstructionKind::ClassMethodInst:
case SILInstructionKind::ObjCMethodInst:
case SILInstructionKind::ObjCSuperMethodInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::AddressToPointerInst:
case SILInstructionKind::PointerToAddressInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedAddrCastInst:
case SILInstructionKind::UncheckedTrivialBitCastInst:
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::RefToRawPointerInst:
case SILInstructionKind::RawPointerToRefInst:
#define LOADABLE_REF_STORAGE(Name, ...) \
case SILInstructionKind::RefTo##Name##Inst: \
case SILInstructionKind::Name##ToRefInst:
#include "swift/AST/ReferenceStorage.def"
#undef LOADABLE_REF_STORAGE_HELPER
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
case SILInstructionKind::RefToBridgeObjectInst:
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::BridgeObjectToWordInst:
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ThickToObjCMetatypeInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst:
case SILInstructionKind::ObjCMetatypeToObjectInst:
case SILInstructionKind::ObjCExistentialMetatypeToObjectInst:
case SILInstructionKind::ClassifyBridgeObjectInst:
case SILInstructionKind::ValueToBridgeObjectInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MergeIsolationRegionInst:
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::DropDeinitInst:
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst:
case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::LoadBorrowInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BorrowedFromInst:
case SILInstructionKind::StoreBorrowInst:
case SILInstructionKind::MarkUninitializedInst:
case SILInstructionKind::ProjectExistentialBoxInst:
case SILInstructionKind::ObjCProtocolInst:
case SILInstructionKind::ObjectInst:
case SILInstructionKind::VectorInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SelectEnumAddrInst:
case SILInstructionKind::ProjectBlockStorageInst:
case SILInstructionKind::UnreachableInst:
case SILInstructionKind::ReturnInst:
case SILInstructionKind::ThrowInst:
case SILInstructionKind::ThrowAddrInst:
case SILInstructionKind::YieldInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::BranchInst:
case SILInstructionKind::CondBranchInst:
case SILInstructionKind::SwitchValueInst:
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocStackRefInst:
case SILInstructionKind::DeallocPackInst:
// This instruction just destroys stack allocations where metadata pointers
// have been stored.
case SILInstructionKind::DeallocPackMetadataInst:
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::BindMemoryInst:
case SILInstructionKind::RebindMemoryInst:
case SILInstructionKind::FixLifetimeInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::AssignInst:
case SILInstructionKind::AssignByWrapperInst:
case SILInstructionKind::AssignOrInitInst:
case SILInstructionKind::MarkFunctionEscapeInst:
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::ExtendLifetimeInst:
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::CondFailInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::DifferentiableFunctionInst:
case SILInstructionKind::DifferentiableFunctionExtractInst:
case SILInstructionKind::LinearFunctionInst:
case SILInstructionKind::LinearFunctionExtractInst:
case SILInstructionKind::DifferentiabilityWitnessFunctionInst:
case SILInstructionKind::IncrementProfilerCounterInst:
case SILInstructionKind::EndCOWMutationInst:
case SILInstructionKind::HasSymbolInst:
case SILInstructionKind::DynamicPackIndexInst:
case SILInstructionKind::PackPackIndexInst:
case SILInstructionKind::ScalarPackIndexInst:
case SILInstructionKind::PackElementGetInst:
case SILInstructionKind::PackElementSetInst:
case SILInstructionKind::PackLengthInst:
case SILInstructionKind::DebugStepInst:
case SILInstructionKind::FunctionExtractIsolationInst:
case SILInstructionKind::TypeValueInst:
case SILInstructionKind::IgnoredUseInst:
return RuntimeEffect::NoEffect;
case SILInstructionKind::OpenExistentialMetatypeInst:
case SILInstructionKind::OpenExistentialBoxInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
return RuntimeEffect::Existential;
case SILInstructionKind::DebugValueInst:
// Ignore runtime calls of debug_value
return RuntimeEffect::NoEffect;
case SILInstructionKind::SpecifyTestInst:
// Ignore runtime calls of test-only instructions
return RuntimeEffect::NoEffect;
case SILInstructionKind::GetAsyncContinuationInst:
case SILInstructionKind::GetAsyncContinuationAddrInst:
case SILInstructionKind::AwaitAsyncContinuationInst:
case SILInstructionKind::HopToExecutorInst:
case SILInstructionKind::ExtractExecutorInst:
return RuntimeEffect::Concurrency;
case SILInstructionKind::KeyPathInst:
return RuntimeEffect::Allocating | RuntimeEffect::Releasing |
RuntimeEffect::MetaData;
case SILInstructionKind::TuplePackExtractInst:
case SILInstructionKind::TuplePackElementAddrInst:
return RuntimeEffect::MetaData;
case SILInstructionKind::SwitchEnumAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::IndexAddrInst:
// TODO: hasArchetype() ?
if (!inst->getOperand(0)->getType().isFixedABI(*inst->getFunction())) {
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
case SILInstructionKind::RefTailAddrInst:
if (!cast<RefTailAddrInst>(inst)->getTailType().isLoadable(*inst->getFunction())) {
impactType = cast<RefTailAddrInst>(inst)->getTailType();
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
case SILInstructionKind::BeginAccessInst:
if (cast<BeginAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::EndAccessInst:
if (cast<EndAccessInst>(inst)->getBeginAccess()->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::BeginUnpairedAccessInst:
if (cast<BeginUnpairedAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::EndUnpairedAccessInst:
if (cast<EndUnpairedAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitExistentialValueInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::Releasing |
RuntimeEffect::MetaData | RuntimeEffect::Existential;
case SILInstructionKind::InitExistentialRefInst:
impactType = cast<InitExistentialRefInst>(inst)->getType();
// Make sure to get a diagnostic error in embedded swift for class existentials
// where not all protocols of a composition are class bound. For example:
// let existential: any ClassBound & NotClassBound = MyClass()
// In future we might support this case and then we can remove this check.
for (auto protoRef : cast<InitExistentialRefInst>(inst)->getConformances()) {
if (protoRef.isConcrete()) {
ProtocolConformance *conf = protoRef.getConcrete();
if (isa<NormalProtocolConformance>(conf) &&
!conf->getProtocol()->requiresClass()) {
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
}
}
return RuntimeEffect::MetaData | RuntimeEffect::ExistentialClassBound;
case SILInstructionKind::InitExistentialMetatypeInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
case SILInstructionKind::ObjCToThickMetatypeInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData;
case SILInstructionKind::OpenPackElementInst:
// We do potentially have to build type metadata as part of this
// instruction (if we have to materialize a concrete pack).
// The interface doesn't let us be specific about what metadata,
// though.
impactType = SILType();
return RuntimeEffect::MetaData;
case SILInstructionKind::OpenExistentialAddrInst:
if (cast<OpenExistentialAddrInst>(inst)->getAccessKind() ==
OpenedExistentialAccess::Mutable)
return RuntimeEffect::Allocating | RuntimeEffect::Existential;
return RuntimeEffect::Existential;
case SILInstructionKind::OpenExistentialRefInst: {
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData | RuntimeEffect::ExistentialClassBound;
}
case SILInstructionKind::UnconditionalCheckedCastInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(cast<SingleValueInstruction>(inst)->getType());
case SILInstructionKind::UnconditionalCheckedCastAddrInst:
case SILInstructionKind::CheckedCastAddrBranchInst:
case SILInstructionKind::UncheckedRefCastAddrInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(inst->getOperand(1)->getType());
case SILInstructionKind::CheckedCastBranchInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(cast<CheckedCastBranchInst>(inst)->getTargetLoweredType());
case SILInstructionKind::AllocPackInst:
// Just conservatively assume this has metadata impact.
return RuntimeEffect::MetaData;
case SILInstructionKind::AllocPackMetadataInst:
// Currently this instruction has no effect but in the fullness of time it
// will have a metadata effect.
return RuntimeEffect::MetaData;
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::AllocVectorInst:
case SILInstructionKind::ProjectBoxInst: {
SILType allocType = cast<SingleValueInstruction>(inst)->getType();
if (allocType.hasArchetype() && !allocType.isLoadable(*inst->getFunction())) {
impactType = allocType;
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
}
case SILInstructionKind::AllocGlobalInst: {
SILType glTy = cast<AllocGlobalInst>(inst)->getReferencedGlobal()->
getLoweredType();
if (glTy.isLoadable(*inst->getFunction()))
return RuntimeEffect::NoEffect;
if (glTy.hasOpaqueArchetype()) {
impactType = glTy;
return RuntimeEffect::Allocating | RuntimeEffect::MetaData;
}
return RuntimeEffect::Allocating;
}
case SILInstructionKind::AllocExistentialBoxInst:
impactType = cast<SingleValueInstruction>(inst)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::MetaData |
RuntimeEffect::Releasing | RuntimeEffect::Existential;
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst:
impactType = cast<SingleValueInstruction>(inst)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::MetaData |
// TODO: why Releasing?
RuntimeEffect::Releasing;
case SILInstructionKind::DeallocRefInst:
case SILInstructionKind::DeallocPartialRefInst:
case SILInstructionKind::DeallocBoxInst:
case SILInstructionKind::DeallocExistentialBoxInst:
case SILInstructionKind::DeinitExistentialAddrInst:
case SILInstructionKind::DeinitExistentialValueInst:
return RuntimeEffect::Deallocating;
case SILInstructionKind::CopyAddrInst: {
auto *ca = cast<CopyAddrInst>(inst);
if (ca->getSrc()->getType().isTrivial(ca->getFunction()))
return RuntimeEffect::NoEffect;
impactType = ca->getSrc()->getType();
if (!ca->isInitializationOfDest())
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
if (!ca->isTakeOfSrc())
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
return RuntimeEffect::MetaData;
}
case SILInstructionKind::TupleAddrConstructorInst: {
auto *ca = cast<TupleAddrConstructorInst>(inst);
impactType = ca->getDest()->getType();
if (!ca->isInitializationOfDest())
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
return RuntimeEffect::MetaData;
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *ca = cast<ExplicitCopyAddrInst>(inst);
impactType = ca->getSrc()->getType();
if (!ca->isInitializationOfDest())
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
if (!ca->isTakeOfSrc())
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
return RuntimeEffect::MetaData;
}
// Equivalent to a copy_addr [init]
case SILInstructionKind::MarkUnresolvedMoveAddrInst: {
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
}
case SILInstructionKind::StoreInst:
switch (cast<StoreInst>(inst)->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Trivial:
case StoreOwnershipQualifier::Init:
return RuntimeEffect::NoEffect;
case StoreOwnershipQualifier::Assign:
return RuntimeEffect::Releasing;
}
case SILInstructionKind::DestroyAddrInst:
impactType = inst->getOperand(0)->getType();
if (impactType.isTrivial(*inst->getFunction()))
return RuntimeEffect::NoEffect;
if (!impactType.isLoadable(*inst->getFunction()))
return RuntimeEffect::Releasing | RuntimeEffect::MetaData;
return RuntimeEffect::Releasing;
case SILInstructionKind::ValueMetatypeInst:
case SILInstructionKind::MetatypeInst: {
auto metaTy = cast<SingleValueInstruction>(inst)->getType().castTo<MetatypeType>();
if (metaTy->getRepresentation() != MetatypeRepresentation::Thin) {
Type instTy = metaTy->getInstanceType();
if (instTy->isLegalSILType())
impactType = SILType::getPrimitiveObjectType(CanType(instTy));
if (auto selfType = instTy->getAs<DynamicSelfType>())
instTy = selfType->getSelfType();
auto *cl = instTy->getClassOrBoundGenericClass();
bool isForeign = cl && (cl->getObjectModel() == ReferenceCounting::ObjC ||
cl->isForeign());
if (isForeign || instTy->isAnyObject())
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC;
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
}
case SILInstructionKind::ExistentialMetatypeInst: {
SILType opType = cast<ExistentialMetatypeInst>(inst)->getOperand()->getType();
impactType = opType;
switch (opType.getPreferredExistentialRepresentation()) {
case ExistentialRepresentation::Metatype:
case ExistentialRepresentation::Boxed:
case ExistentialRepresentation::Opaque:
return RuntimeEffect::MetaData;
case ExistentialRepresentation::Class: {
if (opType.isAnyObject()) {
if (inst->getModule().getASTContext().LangOpts.EnableObjCInterop) {
return RuntimeEffect::MetaData | RuntimeEffect::Existential |
RuntimeEffect::ObjectiveC;
} else {
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
}
auto *cl = opType.getClassOrBoundGenericClass();
bool usesObjCModel =
cl && cl->getObjectModel() == ReferenceCounting::ObjC;
if (usesObjCModel)
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC |
RuntimeEffect::Existential;
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
case ExistentialRepresentation::None:
return RuntimeEffect::NoEffect;
}
llvm_unreachable("Bad existential representation");
}
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::UnmanagedRetainValueInst:
case SILInstructionKind::RetainValueAddrInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::ExplicitCopyValueInst:
case SILInstructionKind::BeginDeallocRefInst:
case SILInstructionKind::EndInitLetRefInst:
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::IsEscapingClosureInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
return ifNonTrivial(inst->getOperand(0)->getType(),
RuntimeEffect::RefCounting);
case SILInstructionKind::InitBlockStorageHeaderInst:
return RuntimeEffect::Releasing;
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::UnmanagedReleaseValueInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::ReleaseValueAddrInst:
case SILInstructionKind::DestroyValueInst:
impactType = inst->getOperand(0)->getType();
if (impactType.isBlockPointerCompatible())
return RuntimeEffect::ObjectiveC | RuntimeEffect::Releasing;
if (impactType.isMoveOnly() &&
!isa<DropDeinitInst>(lookThroughOwnershipInsts(inst->getOperand(0)))) {
// Not de-virtualized value type deinits can require metatype in case the
// deinit needs to be called via the value witness table.
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
}
return ifNonTrivial(inst->getOperand(0)->getType(),
RuntimeEffect::Releasing);
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::Name##RetainInst: \
return RuntimeEffect::RefCounting; \
case SILInstructionKind::Name##ReleaseInst: \
return RuntimeEffect::Releasing;
#include "swift/AST/ReferenceStorage.def"
#undef ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
case SILInstructionKind::UnownedCopyValueInst:
case SILInstructionKind::WeakCopyValueInst:
return RuntimeEffect::RefCounting;
#define REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst: \
return RuntimeEffect::RefCounting;
#include "swift/AST/ReferenceStorage.def"
#undef UNCHECKED_REF_STORAGE
#undef ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return RuntimeEffect::Releasing;
#include "swift/AST/ReferenceStorage.def"
#undef NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
case SILInstructionKind::Load##Name##Inst: \
return RuntimeEffect::RefCounting;
#include "swift/AST/ReferenceStorage.def"
#undef NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
case SILInstructionKind::GlobalValueInst:
return RuntimeEffect::Locking | RuntimeEffect::MetaData;
case SILInstructionKind::DynamicMethodBranchInst:
return RuntimeEffect::ObjectiveC;
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::BeginApplyInst: {
RuntimeEffect rt = RuntimeEffect::NoEffect;
auto as = ApplySite(inst);
switch (as.getSubstCalleeType()->getRepresentation()) {
case SILFunctionTypeRepresentation::ObjCMethod:
if (auto *callee = as.getCalleeFunction()) {
if (auto *clangDecl = callee->getClangDecl()) {
if (auto clangMethodDecl = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
if (clangMethodDecl->isDirectMethod()) {
break;
}
}
}
}
LLVM_FALLTHROUGH;
case SILFunctionTypeRepresentation::Block:
rt |= RuntimeEffect::ObjectiveC | RuntimeEffect::MetaData;
break;
case SILFunctionTypeRepresentation::WitnessMethod: {
auto conformance =
as.getOrigCalleeType()->getWitnessMethodConformanceOrInvalid();
if (conformance.getRequirement()->requiresClass()) {
rt |= RuntimeEffect::MetaData | RuntimeEffect::ExistentialClassBound;
} else {
rt |= RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
break;
}
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::CXXMethod:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
break;
}
if (isa<BeginApplyInst>(inst))
rt |= RuntimeEffect::Allocating;
if (auto *pa = dyn_cast<PartialApplyInst>(inst)) {
if (pa->isOnStack()) {
for (SILValue arg : pa->getArguments()) {
if (!arg->getType().isTrivial(*pa->getFunction()))
rt |= ifNonTrivial(arg->getType(), RuntimeEffect::RefCounting);
}
} else {
rt |= RuntimeEffect::Allocating | RuntimeEffect::Releasing;
}
}
if (!as.getSubstitutionMap().empty() && !knownToNotUseGenericMetadata(as))
rt |= RuntimeEffect::MetaData;
if (auto *pa = dyn_cast<PartialApplyInst>(inst)) {
if (!pa->isOnStack())
rt |= RuntimeEffect::MetaData;
}
return rt;
}
case SILInstructionKind::ThunkInst: {
// For now be conservative since we may lower to a partial_apply.
return RuntimeEffect::Allocating | RuntimeEffect::Releasing;
}
case SILInstructionKind::WitnessMethodInst: {
return RuntimeEffect::MetaData;
}
case SILInstructionKind::SuperMethodInst: {
auto method = cast<SuperMethodInst>(inst)->getMember().getOverriddenVTableEntry();
auto *classDecl = cast<ClassDecl>(method.getDecl()->getDeclContext());
if (classDecl->hasResilientMetadata())
return RuntimeEffect::MetaData;
return RuntimeEffect::NoEffect;
}
case SILInstructionKind::BuiltinInst:
switch (cast<BuiltinInst>(inst)->getBuiltinInfo().ID) {
case BuiltinValueKind::Once:
case BuiltinValueKind::OnceWithContext:
return RuntimeEffect::Locking;
case BuiltinValueKind::IsUnique:
return RuntimeEffect::RefCounting;
case BuiltinValueKind::IsOptionalType:
return RuntimeEffect::Casting;
case BuiltinValueKind::AllocRaw:
return RuntimeEffect::Allocating;
case BuiltinValueKind::DeallocRaw:
return RuntimeEffect::Deallocating;
case BuiltinValueKind::Fence:
case BuiltinValueKind::CmpXChg:
case BuiltinValueKind::AtomicLoad:
case BuiltinValueKind::AtomicStore:
case BuiltinValueKind::AtomicRMW:
return RuntimeEffect::NoEffect;
case BuiltinValueKind::DestroyArray:
return RuntimeEffect::Releasing;
case BuiltinValueKind::CopyArray:
return RuntimeEffect::RefCounting;
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
case BuiltinValueKind::AssignTakeArray:
return RuntimeEffect::RefCounting | RuntimeEffect::Deallocating;
case BuiltinValueKind::BuildOrdinaryTaskExecutorRef:
case BuiltinValueKind::BuildOrdinarySerialExecutorRef:
case BuiltinValueKind::BuildComplexEqualitySerialExecutorRef:
case BuiltinValueKind::BuildDefaultActorExecutorRef:
case BuiltinValueKind::BuildMainActorExecutorRef:
case BuiltinValueKind::StartAsyncLet:
case BuiltinValueKind::StartAsyncLetWithLocalBuffer:
return RuntimeEffect::MetaData;
default:
break;
}
return RuntimeEffect::NoEffect;
}
}
/// Given a block used as a noescape function argument, attempt to find all
/// Swift closures that invoking the block will call. The StoredClosures may not
/// actually be partial_apply instructions. They may be copied, block arguments,
/// or conversions. The caller must continue searching up the use-def chain.
static SILValue findClosureStoredIntoBlock(SILValue V) {
auto FnType = V->getType().castTo<SILFunctionType>();
assert(FnType->getRepresentation() == SILFunctionTypeRepresentation::Block);
(void)FnType;
// Given a no escape block argument to a function,
// pattern match to find the noescape closure that invoking the block
// will call:
// %noescape_closure = ...
// %wae_Thunk = function_ref @$withoutActuallyEscapingThunk
// %sentinel =
// partial_apply [callee_guaranteed] %wae_thunk(%noescape_closure)
// %noescaped_wrapped = mark_dependence %sentinel on %noescape_closure
// %storage = alloc_stack
// %storage_address = project_block_storage %storage
// store %noescaped_wrapped to [init] %storage_address
// %block = init_block_storage_header %storage invoke %thunk
// %arg = copy_block %block
InitBlockStorageHeaderInst *IBSHI = dyn_cast<InitBlockStorageHeaderInst>(V);
if (!IBSHI)
return nullptr;
SILValue BlockStorage = IBSHI->getBlockStorage();
auto *PBSI = BlockStorage->getSingleUserOfType<ProjectBlockStorageInst>();
assert(PBSI && "Couldn't find block storage projection");
auto *SI = PBSI->getSingleUserOfType<StoreInst>();
assert(SI && "Couldn't find single store of function into block storage");
auto *CV = dyn_cast<CopyValueInst>(SI->getSrc());
if (!CV)
return nullptr;
auto *WrappedNoEscape = dyn_cast<MarkDependenceInst>(CV->getOperand());
if (!WrappedNoEscape)
return nullptr;
auto Sentinel = dyn_cast<PartialApplyInst>(WrappedNoEscape->getValue());
if (!Sentinel)
return nullptr;
auto NoEscapeClosure = isPartialApplyOfReabstractionThunk(Sentinel);
if (WrappedNoEscape->getBase() != NoEscapeClosure)
return nullptr;
// This is the value of the closure to be invoked. To find the partial_apply
// itself, the caller must search the use-def chain.
return NoEscapeClosure;
}
/// Find all closures that may be propagated into the given function-type value.
///
/// Searches the use-def chain from the given value upward until a partial_apply
/// is reached. Populates `results` with the set of partial_apply instructions.
///
/// `funcVal` may be either a function type or an Optional function type. This
/// might be called on a directly applied value or on a call argument, which may
/// in turn be applied within the callee.
void swift::findClosuresForFunctionValue(
SILValue funcVal, TinyPtrVector<PartialApplyInst *> &results) {
SILType funcTy = funcVal->getType();
// Handle `Optional<@convention(block) @noescape (_)->(_)>`
if (auto optionalObjTy = funcTy.getOptionalObjectType())
funcTy = optionalObjTy;
assert(funcTy.is<SILFunctionType>());
SmallVector<SILValue, 4> worklist;
// Avoid exponential path exploration and prevent duplicate results.
llvm::SmallDenseSet<SILValue, 8> visited;
auto worklistInsert = [&](SILValue V) {
if (visited.insert(V).second)
worklist.push_back(V);
};
worklistInsert(funcVal);
while (!worklist.empty()) {
SILValue V = worklist.pop_back_val();
if (auto *I = V->getDefiningInstruction()) {
// Look through copies, borrows, and conversions.
//
// Handle copy_block and copy_block_without_actually_escaping before
// calling findClosureStoredIntoBlock.
if (SingleValueInstruction *SVI = getSingleValueCopyOrCast(I)) {
worklistInsert(SVI->getOperand(0));
continue;
}
// Look through `differentiable_function` operands, which are all
// function-typed.
if (auto *DFI = dyn_cast<DifferentiableFunctionInst>(I)) {
for (auto &fn : DFI->getAllOperands())
worklistInsert(fn.get());
continue;
}
}
// Look through Optionals.
if (V->getType().getOptionalObjectType()) {
auto *EI = dyn_cast<EnumInst>(V);
if (EI && EI->hasOperand()) {
worklistInsert(EI->getOperand());
}
// Ignore the .None case.
continue;
}
// Look through Phis.
//
// This should be done before calling findClosureStoredIntoBlock.
if (auto *arg = dyn_cast<SILPhiArgument>(V)) {
SmallVector<std::pair<SILBasicBlock *, SILValue>, 2> blockArgs;
arg->getIncomingPhiValues(blockArgs);
for (auto &blockAndArg : blockArgs)
worklistInsert(blockAndArg.second);
continue;
}
// Look through ObjC closures.
auto fnType = V->getType().getAs<SILFunctionType>();
if (fnType
&& fnType->getRepresentation() == SILFunctionTypeRepresentation::Block) {
if (SILValue storedClosure = findClosureStoredIntoBlock(V))
worklistInsert(storedClosure);
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(V)) {
SILValue thunkArg = isPartialApplyOfReabstractionThunk(PAI);
if (thunkArg) {
// Handle reabstraction thunks recursively. This may reabstract over
// @convention(block).
worklistInsert(thunkArg);
continue;
}
results.push_back(PAI);
continue;
}
// Ignore other unrecognized values that feed this applied argument.
}
}
bool PolymorphicBuiltinSpecializedOverloadInfo::init(
SILFunction *fn, BuiltinValueKind builtinKind,
ArrayRef<SILType> oldOperandTypes, SILType oldResultType) {
assert(!isInitialized && "Expected uninitialized info");
SWIFT_DEFER { isInitialized = true; };
if (!isPolymorphicBuiltin(builtinKind))
return false;
// Ok, at this point we know that we have a true polymorphic builtin. See if
// we have an overload for its current operand type.
StringRef name = getBuiltinName(builtinKind);
StringRef prefix = "generic_";
assert(name.starts_with(prefix) &&
"Invalid polymorphic builtin name! Prefix should be Generic$OP?!");
SmallString<32> staticOverloadName;
staticOverloadName.append(name.drop_front(prefix.size()));
// If our first argument is an address, we know we have an indirect @out
// parameter by convention since all of these polymorphic builtins today never
// take indirect parameters without an indirect out result parameter. We stash
// this information and validate that if we have an out param, that our result
// is equal to the empty tuple type.
if (oldOperandTypes[0].isAddress()) {
if (oldResultType != fn->getModule().Types.getEmptyTupleType())
return false;
hasOutParam = true;
SILType firstType = oldOperandTypes.front();
// We only handle polymorphic builtins with trivial types today.
if (!firstType.is<BuiltinType>() || !firstType.isTrivial(*fn)) {
return false;
}
resultType = firstType.getObjectType();
oldOperandTypes = oldOperandTypes.drop_front();
} else {
resultType = oldResultType;
}
// Then go through all of our values and bail if any after substitution are
// not concrete builtin types. Otherwise, stash each of them in the argTypes
// array as objects. We will convert them as appropriate.
for (SILType ty : oldOperandTypes) {
// If after specialization, we do not have a trivial builtin type, bail.
if (!ty.is<BuiltinType>() || !ty.isTrivial(*fn)) {
return false;
}
// Otherwise, we have an object builtin type ready to go.
argTypes.push_back(ty.getObjectType());
}
// Ok, we have all builtin types. Infer the underlying polymorphic builtin
// name form our first argument.
CanBuiltinType builtinType = argTypes.front().getAs<BuiltinType>();
SmallString<32> builtinTypeNameStorage;
StringRef typeName = builtinType->getTypeName(builtinTypeNameStorage, false);
staticOverloadName.append("_");
staticOverloadName.append(typeName);
auto &ctx = fn->getASTContext();
staticOverloadIdentifier = ctx.getIdentifier(staticOverloadName);
// Ok, we have our overload identifier. Grab the builtin info from the
// cache. If we did not actually found a valid builtin value kind for our
// overload, then we do not have a static overload for the passed in types, so
// return false.
builtinInfo = &fn->getModule().getBuiltinInfo(staticOverloadIdentifier);
return true;
}
bool PolymorphicBuiltinSpecializedOverloadInfo::init(BuiltinInst *bi) {
assert(!isInitialized && "Can not init twice?!");
SWIFT_DEFER { isInitialized = true; };
// First quickly make sure we have a /real/ BuiltinValueKind, not an intrinsic
// or None.
auto kind = bi->getBuiltinKind();
if (!kind)
return false;
SmallVector<SILType, 8> oldOperandTypes;
copy(bi->getOperandTypes(), std::back_inserter(oldOperandTypes));
assert(bi->getNumResults() == 1 &&
"We expect a tuple here instead of real args");
SILType oldResultType = bi->getResult(0)->getType();
return init(bi->getFunction(), *kind, oldOperandTypes, oldResultType);
}
SILValue
swift::getStaticOverloadForSpecializedPolymorphicBuiltin(BuiltinInst *bi) {
PolymorphicBuiltinSpecializedOverloadInfo info;
if (!info.init(bi))
return SILValue();
SmallVector<SILValue, 8> rawArgsData;
copy(bi->getOperandValues(), std::back_inserter(rawArgsData));
SILValue result = bi->getResult(0);
MutableArrayRef<SILValue> rawArgs = rawArgsData;
if (info.hasOutParam) {
result = rawArgs.front();
rawArgs = rawArgs.drop_front();
}
assert(bi->getNumResults() == 1 &&
"We assume that builtins have a single result today. If/when this "
"changes, this code needs to be updated");
SILBuilderWithScope builder(bi);
// Ok, now we know that we can convert this to our specialized
// builtin. Prepare the arguments for the specialized value, loading the
// values if needed and storing the result into an out parameter if needed.
//
// NOTE: We only support polymorphic builtins with trivial types today, so we
// use load/store trivial as a result.
SmallVector<SILValue, 8> newArgs;
for (SILValue arg : rawArgs) {
if (arg->getType().isObject()) {
newArgs.push_back(arg);
continue;
}
SILValue load = builder.emitLoadValueOperation(
bi->getLoc(), arg, LoadOwnershipQualifier::Trivial);
newArgs.push_back(load);
}
BuiltinInst *newBI =
builder.createBuiltin(bi->getLoc(), info.staticOverloadIdentifier,
info.resultType, {}, newArgs);
// If we have an out parameter initialize it now.
if (info.hasOutParam) {
builder.emitStoreValueOperation(newBI->getLoc(), newBI->getResult(0),
result, StoreOwnershipQualifier::Trivial);
}
return newBI;
}
//===----------------------------------------------------------------------===//
// Exploded Tuple Visitors
//===----------------------------------------------------------------------===//
bool swift::visitExplodedTupleType(SILType inputType,
llvm::function_ref<bool(SILType)> callback) {
auto tupType = inputType.getAs<TupleType>();
if (!tupType || tupType.containsPackExpansionType()) {
return callback(inputType);
}
for (auto elt : tupType->getElementTypes()) {
auto eltSILTy = SILType::getPrimitiveType(elt->getCanonicalType(),
inputType.getCategory());
if (!visitExplodedTupleType(eltSILTy, callback))
return false;
}
return true;
}
bool swift::visitExplodedTupleValue(
SILValue inputValue,
llvm::function_ref<SILValue(SILValue, std::optional<unsigned>)> callback) {
SILType inputType = inputValue->getType();
auto tupType = inputType.getAs<TupleType>();
if (!tupType || tupType.containsPackExpansionType()) {
return callback(inputValue, {});
}
for (auto eltIndex : range(tupType->getNumElements())) {
auto elt = callback(inputValue, eltIndex);
if (!visitExplodedTupleValue(elt, callback))
return false;
}
return true;
}
std::pair<SILFunction *, SILWitnessTable *>
swift::lookUpFunctionInWitnessTable(WitnessMethodInst *wmi,
SILModule::LinkingMode linkingMode) {
SILModule &mod = wmi->getModule();
return mod.lookUpFunctionInWitnessTable(wmi->getConformance(), wmi->getMember(),
wmi->isSpecialized(), linkingMode);
}
// True if a type can be expanded without a significant increase to code size.
//
// False if expanding a type is invalid. For example, expanding a
// struct-with-deinit drops the deinit.
bool swift::shouldExpand(SILModule &module, SILType ty) {
// FIXME: Expansion
auto expansion = TypeExpansionContext::minimal();
if (module.Types.getTypeLowering(ty, expansion).isAddressOnly()) {
return false;
}
// A move-only-with-deinit type cannot be SROA.
//
// TODO: we could loosen this requirement if all paths lead to a drop_deinit.
if (auto *nominalTy = ty.getNominalOrBoundGenericNominal()) {
if (nominalTy->getValueTypeDestructor())
return false;
}
if (EnableExpandAll) {
return true;
}
unsigned numFields = module.Types.countNumberOfFields(ty, expansion);
return (numFields <= 6);
}