Files
swift-mirror/lib/SILGen/SILGenFunction.h

3140 lines
138 KiB
C++

//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILGEN_SILGENFUNCTION_H
#define SWIFT_SILGEN_SILGENFUNCTION_H
#include "FormalEvaluation.h"
#include "Initialization.h"
#include "InitializeDistActorIdentity.h"
#include "JumpDest.h"
#include "RValue.h"
#include "SGFContext.h"
#include "SILGen.h"
#include "SILGenBuilder.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/NoDiscard.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/Statistic.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/PointerIntPair.h"
namespace swift {
class ParameterList;
class ProfileCounterRef;
namespace Lowering {
class ArgumentSource;
class Condition;
class Conversion;
class ConsumableManagedValue;
class LogicalPathComponent;
class LValue;
class ManagedValue;
class PreparedArguments;
class RValue;
class CalleeTypeInfo;
class ResultPlan;
using ResultPlanPtr = std::unique_ptr<ResultPlan>;
class ArgumentScope;
class Scope;
class ExecutorBreadcrumb;
struct LValueOptions {
bool IsNonAccessing = false;
/// Derive options for accessing the base of an l-value, given that
/// applying the derived component might touch the memory.
LValueOptions forComputedBaseLValue() const {
auto copy = *this;
// Assume we're going to access the base.
copy.IsNonAccessing = false;
return copy;
}
/// Derive options for accessing the base of an l-value, given that
/// applying the derived component will not touch the memory.
LValueOptions forProjectedBaseLValue() const {
auto copy = *this;
return copy;
}
};
class PatternMatchContext;
/// A formal section of the function. This is a SILGen-only concept,
/// meant to improve locality. It's only reflected in the generated
/// SIL implicitly.
enum class FunctionSection : bool {
/// The section of the function dedicated to ordinary control flow.
Ordinary,
/// The section of the function dedicated to error-handling and
/// similar things.
Postmatter,
};
/// Parameter to \c SILGenFunction::emitCaptures that indicates what the
/// capture parameters are being emitted for.
enum class CaptureEmission {
/// Captures are being emitted for immediate application to a local function.
ImmediateApplication,
/// Captures are being emitted for partial application to form a closure
/// value.
PartialApplication,
/// Captures are being emitted for partial application of a local property
/// wrapper setter for assign_by_wrapper. Captures are guaranteed to not
/// escape, because assign_by_wrapper will not use the setter if the captured
/// variable is not initialized.
AssignByWrapper,
};
/// Different ways in which an l-value can be emitted.
enum class SGFAccessKind : uint8_t {
/// The access is a read whose result will be ignored.
IgnoredRead,
/// The access is a read that would prefer the address of a borrowed value.
/// This should only be used when it is semantically acceptable to borrow
/// the value, not just because the caller would benefit from a borrowed
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
///
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
/// on the l-value. The latter may be less efficient than an access
/// would be if the l-value had been emitted with an owned-read kind.
BorrowedAddressRead,
/// The access is a read that would prefer a loaded borrowed value.
/// This should only be used when it is semantically acceptable to borrow
/// the value, not just because the caller would benefit from a borrowed
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
///
/// There isn't yet a way to emit the access that takes advantage of this.
BorrowedObjectRead,
/// The access is a read that would prefer the address of an owned value.
///
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
/// on the l-value.
OwnedAddressRead,
/// The access is a read that would prefer a loaded owned value.
///
/// The caller will be calling emitLoadOfLValue on the l-value.
OwnedObjectRead,
/// The access is an assignment (or maybe an initialization).
///
/// The caller will be calling emitAssignToLValue on the l-value.
Write,
/// The access is a read-modify-write.
///
/// The caller will be calling emitAddressOfLValue on the l-value.
ReadWrite,
/// The access is a consuming operation that would prefer a loaded address
/// value. The lvalue will subsequently be left in an uninitialized state.
///
/// The caller will be calling emitAddressOfLValue and then load from the
/// l-value.
OwnedAddressConsume,
/// The access is a consuming operation that would prefer a loaded owned
/// value. The lvalue will subsequently be left in an uninitialized state.
///
/// The caller will be calling emitAddressOfLValue and then load from the
/// l-value.
OwnedObjectConsume,
};
static inline bool isBorrowAccess(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
return true;
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
return false;
}
}
static inline bool isReadAccess(SGFAccessKind kind) {
return uint8_t(kind) <= uint8_t(SGFAccessKind::OwnedObjectRead);
}
static inline bool isConsumeAccess(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
return false;
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
return true;
}
}
/// Given a read access kind, does it require an owned result?
static inline bool isReadAccessResultOwned(SGFAccessKind kind) {
assert(isReadAccess(kind));
return uint8_t(kind) >= uint8_t(SGFAccessKind::OwnedAddressRead);
}
/// Given a read access kind, does it require an address result?
static inline bool isReadAccessResultAddress(SGFAccessKind kind) {
assert(isReadAccess(kind));
return kind == SGFAccessKind::BorrowedAddressRead ||
kind == SGFAccessKind::OwnedAddressRead;
}
/// Return an address-preferring version of the given access kind.
static inline SGFAccessKind getAddressAccessKind(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::BorrowedObjectRead:
return SGFAccessKind::BorrowedAddressRead;
case SGFAccessKind::OwnedObjectRead:
return SGFAccessKind::OwnedAddressRead;
case SGFAccessKind::OwnedObjectConsume:
return SGFAccessKind::OwnedAddressConsume;
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::Write:
case SGFAccessKind::ReadWrite:
return kind;
}
llvm_unreachable("bad kind");
}
static inline AccessKind getFormalAccessKind(SGFAccessKind kind) {
switch (kind) {
case SGFAccessKind::IgnoredRead:
case SGFAccessKind::BorrowedAddressRead:
case SGFAccessKind::BorrowedObjectRead:
case SGFAccessKind::OwnedAddressRead:
case SGFAccessKind::OwnedObjectRead:
return AccessKind::Read;
case SGFAccessKind::Write:
return AccessKind::Write;
// TODO: Do we need our own AccessKind here?
case SGFAccessKind::OwnedAddressConsume:
case SGFAccessKind::OwnedObjectConsume:
case SGFAccessKind::ReadWrite:
return AccessKind::ReadWrite;
}
llvm_unreachable("bad kind");
}
/// Parameter to \c SILGenFunction::emitAddressOfLValue that indicates
/// what kind of instrumentation should be emitted when compiling under
/// Thread Sanitizer.
enum class TSanKind : bool {
None = 0,
/// Instrument the LValue access as an inout access.
InoutAccess
};
/// Represents an LValue opened for mutating access.
///
/// This is used by LogicalPathComponent::projectAsBase().
struct MaterializedLValue {
ManagedValue temporary;
// Only set if a callback is required
CanType origSelfType;
CanGenericSignature genericSig;
SILValue callback;
SILValue callbackStorage;
MaterializedLValue() {}
explicit MaterializedLValue(ManagedValue temporary)
: temporary(temporary) {}
MaterializedLValue(ManagedValue temporary,
CanType origSelfType,
CanGenericSignature genericSig,
SILValue callback,
SILValue callbackStorage)
: temporary(temporary),
origSelfType(origSelfType),
genericSig(genericSig),
callback(callback),
callbackStorage(callbackStorage) {}
};
/// The kind of operation under which we are querying a storage reference.
enum class StorageReferenceOperationKind {
Borrow,
Consume
};
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
class LLVM_LIBRARY_VISIBILITY SILGenFunction
: public ASTVisitor<SILGenFunction>
{ // style violation because Xcode <rdar://problem/13065676>
public:
/// The SILGenModule this function belongs to.
SILGenModule &SGM;
/// The SILFunction being constructed.
SILFunction &F;
/// The SILModuleConventions for this SIL module.
SILModuleConventions silConv;
bool useLoweredAddresses() const { return silConv.useLoweredAddresses(); }
/// The DeclContext corresponding to the function currently being emitted.
DeclContext * const FunctionDC;
/// The name of the function currently being emitted, as presented to user
/// code by #function.
DeclName MagicFunctionName;
std::string MagicFunctionString;
/// The specialized type context in which the function is being emitted.
/// Only applies to closures.
std::optional<FunctionTypeInfo> TypeContext;
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
/// The first block in the postmatter section of the function, if
/// anything has been built there.
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
SILFunction::iterator StartOfPostmatter;
/// The current section of the function that we're emitting code in.
///
/// The postmatter section is a part of the function intended for
/// things like error-handling that don't need to be mixed into the
/// normal code sequence.
///
/// If the current function section is Ordinary, and
/// StartOfPostmatter does not point to the function end, the current
/// insertion block should be ordered before that.
///
/// If the current function section is Postmatter, StartOfPostmatter
/// does not point to the function end and the current insertion block is
/// ordered after that (inclusive).
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
FunctionSection CurFunctionSection = FunctionSection::Ordinary;
/// Does this function require a non-void direct return?
bool NeedsReturn = false;
/// Is emission currently within a formal modification?
bool isInFormalEvaluationScope() const {
return FormalEvalContext.isInFormalEvaluationScope();
}
/// Is emission currently within an inout conversion?
bool InInOutConversionScope = false;
/// The SILGenBuilder used to construct the SILFunction. It is what maintains
/// the notion of the current block being emitted into.
SILGenBuilder B;
struct BreakContinueDest {
LabeledStmt *Target;
JumpDest BreakDest;
JumpDest ContinueDest;
};
std::vector<BreakContinueDest> BreakContinueDestStack;
std::vector<PatternMatchContext*> SwitchStack;
/// Information for a parent SingleValueStmtExpr initialization.
struct SingleValueStmtInitialization {
/// The target expressions to be used for initialization.
SmallPtrSet<Expr *, 4> Exprs;
SILValue InitializationBuffer;
SingleValueStmtInitialization(SILValue buffer)
: InitializationBuffer(buffer) {}
};
/// A stack of active SingleValueStmtExpr initializations that may be
/// initialized by the branches of a statement.
std::vector<SingleValueStmtInitialization> SingleValueStmtInitStack;
SourceFile *SF;
SourceLoc LastSourceLoc;
using ASTScopeTy = ast_scope::ASTScopeImpl;
const ASTScopeTy *FnASTScope = nullptr;
using VarDeclScopeMapTy =
llvm::SmallDenseMap<ValueDecl *, const ASTScopeTy *, 8>;
/// The ASTScope each variable declaration belongs to.
VarDeclScopeMapTy VarDeclScopeMap;
/// Caches one SILDebugScope for each ASTScope.
llvm::SmallDenseMap<std::pair<const ASTScopeTy *, const SILDebugScope *>,
const SILDebugScope *, 16>
ScopeMap;
/// Caches one toplevel inline SILDebugScope for each macro BufferID.
llvm::SmallDenseMap<unsigned, const SILDebugScope *, 16> InlinedScopeMap;
/// The cleanup depth and BB for when the operand of a
/// BindOptionalExpr is a missing value.
SmallVector<JumpDest, 2> BindOptionalFailureDests;
/// The cleanup depth and epilog BB for "return" statements.
JumpDest ReturnDest = JumpDest::invalid();
/// The cleanup depth and epilog BB for "fail" statements.
JumpDest FailDest = JumpDest::invalid();
/// The destination for throws. The block will always be in the
/// postmatter. For a direct error return, it takes a BB argument
/// of the exception type.
JumpDest ThrowDest = JumpDest::invalid();
/// Support for typed throws.
SILArgument *IndirectErrorResult = nullptr;
/// The destination for coroutine unwinds. The block will always
/// be in the postmatter.
JumpDest CoroutineUnwindDest = JumpDest::invalid();
/// This records information about the currently active cleanups.
CleanupManager Cleanups;
/// The current context where formal evaluation cleanups are managed.
FormalEvaluationContext FormalEvalContext;
/// VarLoc - representation of an emitted local variable or constant. There
/// are four scenarios here:
///
/// 1) This could be a simple copyable "var" or "let" emitted into an
/// alloc_box. In this case, 'value' contains a pointer (it is always an
/// address) to the value, and 'box' contains a pointer to the retain
/// count for the box.
/// 2) This could be a simple non-address-only "let" represented directly. In
/// this case, 'value' is the value of the let and is never of address
/// type. 'box' is always nil.
/// 3) This could be an address-only "let" emitted into an alloc_stack, or
/// passed in from somewhere else that has guaranteed lifetime (e.g. an
/// incoming argument of 'in_guaranteed' convention). In this case,
/// 'value' is a pointer to the memory (and thus, its type is always an
/// address) and the 'box' is nil.
/// 4) This could be a noncopyable "var" or "let" emitted into an
/// alloc_box. In this case, 'value' is nil and the 'box' contains the box
/// itself. The user must always reproject from the box and insert an
/// access marker/must_must_check as appropriate.
///
/// Generally, code shouldn't be written to enumerate these four cases, it
/// should just handle the case of "box or not" or "address or not", depending
/// on what the code cares about.
struct VarLoc {
/// value - the value of the variable, or the address the variable is
/// stored at (if "value.getType().isAddress()" is true).
///
/// It may be invalid if we are supposed to lazily project out an address
/// from a box.
SILValue value;
/// box - This is the retainable box for something emitted to an alloc_box.
/// It may be invalid if no box was made for the value (e.g., because it was
/// an inout value, or constant emitted to an alloc_stack).
SILValue box;
/// True if the `value` represents the memory location of a value that is
/// stable for the lifetimes of any dependencies on that value.
bool addressable;
static VarLoc get(SILValue value, SILValue box = SILValue(),
bool addressable = false) {
VarLoc Result;
Result.value = value;
Result.box = box;
Result.addressable = addressable;
return Result;
}
};
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
/// a local variable.
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
/// The local auxiliary declarations for the parameters of this function that
/// need to be emitted inside the next brace statement.
llvm::SmallVector<VarDecl *, 2> LocalAuxiliaryDecls;
/// The mappings between instance properties referenced by this init
/// accessor (via initializes/accesses attributes) and and argument
/// declarations synthesized to access them in the body.
llvm::DenseMap<VarDecl *, ParamDecl *> InitAccessorArgumentMappings;
// Context information for tracking an `async let` child task.
struct AsyncLetChildTask {
SILValue asyncLet; // RawPointer to the async let state
SILValue resultBuf; // RawPointer to the result buffer
bool isThrowing; // true if task can throw
};
/// Mapping from each async let clause to the AsyncLet repr that contains the
/// AsyncTask that will produce the initializer value for that clause and a
/// Boolean value indicating whether the task can throw.
llvm::SmallDenseMap<std::pair<PatternBindingDecl *, unsigned>,
AsyncLetChildTask>
AsyncLetChildTasks;
/// Indicates whether this function is a distributed actor's designated
/// initializer, providing the needed clean-up to emit an identity
/// assignment after initializing the actorSystem property.
std::optional<InitializeDistActorIdentity> DistActorCtorContext;
/// When rebinding 'self' during an initializer delegation, we have to be
/// careful to preserve the object at 1 retain count during the delegation
/// because of assumptions in framework code. This enum tracks the state of
/// 'self' during the delegation.
enum SelfInitDelegationStates {
// 'self' is a normal variable.
NormalSelf,
/// 'self' needs to be shared borrowed next time self is used.
///
/// At this point we do not know if:
///
/// 1. 'self' is used at all. In such a case, the borrow scope for self will
/// end before the delegating init call and we will overwrite the value
/// in
/// the self box.
///
/// 2. If there is a consuming self use, will self be borrowed in an
/// exclusive manner or a shared manner. If we need to perform an
/// exclusive borrow, we will transition to WillExclusiveBorrowSelf in
/// SILGenApply.
WillSharedBorrowSelf,
/// 'self' needs to be exclusively borrowed next time self is used.
///
/// We only advance to this state in SILGenApply when we know that we are
/// going to be passing self to a delegating initializer that will consume
/// it. We will always evaluate self before any other uses of self in the
/// self.init call, so we know that we will never move from
/// WillExclusiveBorrowSelf to WillSharedBorrowSelf.
///
/// Once we are in this point, all other uses of self must be borrows until
/// we use self in the delegating init call. All of the borrow scopes /must/
/// end before the delegating init call.
WillExclusiveBorrowSelf,
/// 'self' was shared borrowed to compute the self argument of the
/// delegating init call.
///
/// This means that the delegating init uses a metatype or the like as its
/// self argument instead of 'self'. Thus we are able to perform a shared
/// borrow of self to compute that value and end the shared borrow scope
/// before the delegating initializer apply.
DidSharedBorrowSelf,
// 'self' was exclusively borrowed for the delegating init call. All further
// uses of self until the actual delegating init must be done via shared
// borrows that end strictly before the delegating init call.
DidExclusiveBorrowSelf,
};
SelfInitDelegationStates SelfInitDelegationState = NormalSelf;
ManagedValue InitDelegationSelf;
SILValue InitDelegationSelfBox;
std::optional<SILLocation> InitDelegationLoc;
ManagedValue SuperInitDelegationSelf;
RValue emitRValueForSelfInDelegationInit(SILLocation loc, CanType refType,
SILValue result, SGFContext C);
/// A version of emitRValueForSelfInDelegationInit that uses formal evaluation
/// operations instead of normal scoped operations.
RValue emitFormalEvaluationRValueForSelfInDelegationInit(SILLocation loc,
CanType refType,
SILValue addr,
SGFContext C);
/// The metatype argument to an allocating constructor, if we're emitting one.
SILValue AllocatorMetatype;
class ExpectedExecutorStorage {
static ValueBase *invalid() {
return reinterpret_cast<ValueBase*>(uintptr_t(0));
}
static ValueBase *unnecessary() {
return reinterpret_cast<ValueBase*>(uintptr_t(1));
}
static ValueBase *lazy() {
return reinterpret_cast<ValueBase*>(uintptr_t(2));
}
ValueBase *Value;
public:
ExpectedExecutorStorage() : Value(invalid()) {}
bool isValid() const { return Value != invalid(); }
bool isNecessary() const {
assert(isValid());
return Value != unnecessary();
}
void setUnnecessary() {
assert(Value == invalid());
Value = unnecessary();
}
bool isEager() const {
assert(Value != invalid() && Value != unnecessary());
return Value != lazy();
}
SILValue getEager() const {
assert(isEager());
return Value;
}
void set(SILValue value) {
assert(Value == invalid());
assert(value != nullptr);
Value = value;
}
void setLazy() {
assert(Value == invalid());
Value = lazy();
}
};
/// If set, the current function is an async function which is formally
/// isolated to the given executor, and hop_to_executor instructions must
/// be inserted at the begin of the function and after all suspension
/// points.
ExpectedExecutorStorage ExpectedExecutor;
struct ActivePackExpansion {
GenericEnvironment *OpenedElementEnv;
SILValue ExpansionIndex;
/// Mapping from temporary pack expressions to their values. These
/// are evaluated once, with their elements projected in a dynamic
/// pack loop.
llvm::SmallDenseMap<MaterializePackExpr *, SILValue>
MaterializedPacks;
ActivePackExpansion(GenericEnvironment *OpenedElementEnv)
: OpenedElementEnv(OpenedElementEnv) {}
};
/// The innermost active pack expansion.
ActivePackExpansion *InnermostPackExpansion = nullptr;
ActivePackExpansion *getInnermostPackExpansion() const {
assert(InnermostPackExpansion && "not inside a pack expansion!");
return InnermostPackExpansion;
}
/// True if 'return' without an operand or falling off the end of the current
/// function is valid.
bool allowsVoidReturn() const { return ReturnDest.getBlock()->args_empty(); }
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ASTNode Node);
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ProfileCounterRef Ref);
/// Load the profiled execution count corresponding to \p Node, if one is
/// available.
ProfileCounter loadProfilerCount(ASTNode Node) const;
/// Get the PGO node's parent.
std::optional<ASTNode> getPGOParent(ASTNode Node) const;
/// Tracer object for counting SIL (and other events) caused by this instance.
FrontendStatsTracer StatsTracer;
SILGenFunction(SILGenModule &SGM, SILFunction &F, DeclContext *DC,
bool IsEmittingTopLevelCode = false);
~SILGenFunction();
/// Return a stable reference to the current cleanup.
CleanupsDepth getCleanupsDepth() const {
return Cleanups.getCleanupsDepth();
}
CleanupHandle getTopCleanup() const {
return Cleanups.getTopCleanup();
}
SILFunction &getFunction() { return F; }
const SILFunction &getFunction() const { return F; }
SILModule &getModule() { return F.getModule(); }
SILGenBuilder &getBuilder() { return B; }
const SILOptions &getOptions() { return getModule().getOptions(); }
// Returns the type expansion context for types in this function.
TypeExpansionContext getTypeExpansionContext() const {
return TypeExpansionContext(getFunction());
}
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst) {
return F.getTypeLowering(orig, subst);
}
const TypeLowering &getTypeLowering(Type t) {
return F.getTypeLowering(t);
}
CanSILFunctionType getSILFunctionType(TypeExpansionContext context,
AbstractionPattern orig,
CanFunctionType substFnType) {
return SGM.Types.getSILFunctionType(context, orig, substFnType);
}
SILType getLoweredType(AbstractionPattern orig,
Type subst) {
return F.getLoweredType(orig, subst);
}
SILType getLoweredType(Type t) {
return F.getLoweredType(t);
}
SILType getLoweredType(AbstractionPattern orig, Type subst,
SILValueCategory category) {
return SILType::getPrimitiveType(F.getLoweredRValueType(orig, subst),
category);
}
SILType getLoweredType(Type t, SILValueCategory category) {
return SILType::getPrimitiveType(F.getLoweredRValueType(t), category);
}
CanType getLoweredRValueType(AbstractionPattern orig,
Type subst) {
return F.getLoweredRValueType(orig, subst);
}
CanType getLoweredRValueType(Type t) {
return F.getLoweredRValueType(t);
}
SILType getLoweredTypeForFunctionArgument(Type t) {
auto typeForConv =
SGM.Types.getLoweredType(t, TypeExpansionContext::minimal());
return getLoweredType(t).getCategoryType(typeForConv.getCategory());
}
SILType getLoweredLoadableType(Type t) {
return F.getLoweredLoadableType(t);
}
const TypeLowering &getTypeLowering(SILType type) {
return F.getTypeLowering(type);
}
SILType getSILInterfaceType(SILParameterInfo param) const {
return silConv.getSILType(param, CanSILFunctionType(),
getTypeExpansionContext());
}
SILType getSILInterfaceType(SILResultInfo result) const {
return silConv.getSILType(result, CanSILFunctionType(),
getTypeExpansionContext());
}
SILType getSILType(SILParameterInfo param, CanSILFunctionType fnTy) const {
return silConv.getSILType(param, fnTy, getTypeExpansionContext());
}
SILType getSILType(SILResultInfo result, CanSILFunctionType fnTy) const {
return silConv.getSILType(result, fnTy, getTypeExpansionContext());
}
SILType getSILTypeInContext(SILResultInfo result, CanSILFunctionType fnTy) {
auto t = F.mapTypeIntoContext(getSILType(result, fnTy));
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
}
SILType getSILTypeInContext(SILParameterInfo param, CanSILFunctionType fnTy) {
auto t = F.mapTypeIntoContext(getSILType(param, fnTy));
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
}
const SILConstantInfo &getConstantInfo(TypeExpansionContext context,
SILDeclRef constant) {
return SGM.Types.getConstantInfo(context, constant);
}
/// Return the normal local type-lowering information for the given
/// formal function type without any special abstraction pattern applied.
/// This matches the type that `emitRValue` etc. are expected to produce
/// without any contextual overrides.
FunctionTypeInfo getFunctionTypeInfo(CanAnyFunctionType fnType);
/// A helper method that calls getFunctionTypeInfo that also marks global
/// actor isolated async closures that are not sendable as sendable.
FunctionTypeInfo getClosureTypeInfo(AbstractClosureExpr *expr);
bool isEmittingTopLevelCode() { return IsEmittingTopLevelCode; }
void stopEmittingTopLevelCode() { IsEmittingTopLevelCode = false; }
std::optional<SILAccessEnforcement>
getStaticEnforcement(VarDecl *var = nullptr);
std::optional<SILAccessEnforcement>
getDynamicEnforcement(VarDecl *var = nullptr);
std::optional<SILAccessEnforcement>
getUnknownEnforcement(VarDecl *var = nullptr);
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
std::string getMagicFileIDString(SourceLoc loc);
StringRef getMagicFilePathString(SourceLoc loc);
StringRef getMagicFunctionString();
SILDebugLocation
getSILDebugLocation(SILBuilder &B, SILLocation Loc,
std::optional<SILLocation> CurDebugLocOverride,
bool ForMetaInstruction);
const SILDebugScope *getScopeOrNull(SILLocation Loc,
bool ForMetaInstruction = false);
private:
bool IsEmittingTopLevelCode;
const SILDebugScope *getOrCreateScope(SourceLoc SLoc);
const SILDebugScope *getMacroScope(SourceLoc SLoc);
const SILDebugScope *
getOrCreateScope(const ast_scope::ASTScopeImpl *ASTScope,
const SILDebugScope *FnScope,
const SILDebugScope *InlinedAt = nullptr);
public:
/// Enter the debug scope for \p Loc, creating it if necessary.
///
/// \param isBindingScope If true, this is a scope for the bindings introduced
/// by a let expression. This scope ends when the next innermost BraceStmt
/// ends.
void enterDebugScope(SILLocation Loc, bool isBindingScope = false);
/// Return to the previous debug scope.
void leaveDebugScope();
std::unique_ptr<Initialization>
prepareIndirectResultInit(SILLocation loc,
AbstractionPattern origResultType,
CanType formalResultType,
SmallVectorImpl<SILValue> &directResultsBuffer,
SmallVectorImpl<CleanupHandle> &cleanups);
/// Check to see if an initalization for a SingleValueStmtExpr is active, and
/// if the provided expression is for one of its branches. If so, returns the
/// initialization to use for the expression. Otherwise returns \c nullptr.
std::unique_ptr<Initialization> getSingleValueStmtInit(Expr *E);
//===--------------------------------------------------------------------===//
// Entry points for codegen
//===--------------------------------------------------------------------===//
/// Generates code for a FuncDecl.
void emitFunction(FuncDecl *fd);
/// Emits code for a ClosureExpr.
void emitClosure(AbstractClosureExpr *ce);
/// Generates code for a class destroying destructor. This
/// emits the body code from the DestructorDecl, calls the base class
/// destructor, then implicitly releases the elements of the class.
void emitDestroyingDestructor(DestructorDecl *dd);
/// Generates code for an artificial top-level function that starts an
/// application based on a main type and optionally a main type.
void emitArtificialTopLevel(Decl *mainDecl);
/// Generate code for calling the given main function.
void emitCallToMain(FuncDecl *mainDecl);
/// Generate code into @main for starting the async main on the main thread.
void emitAsyncMainThreadStart(SILDeclRef entryPoint);
/// Generates code for class/move only deallocating destructor. This calls the
/// destroying destructor and then deallocates 'self'.
void emitDeallocatingDestructor(DestructorDecl *dd, bool isIsolated);
/// Generates code for a class (isolated-)deallocating destructor. This
/// calls the destroying destructor and then deallocates 'self'.
void emitDeallocatingClassDestructor(DestructorDecl *dd, bool isIsolated);
/// Generates code for the deinit of the move only type and destroys all of
/// the fields.
void emitDeallocatingMoveOnlyDestructor(DestructorDecl *dd);
/// Generates code for a class deallocating destructor that switches executor
/// and calls isolated deallocating destuctor on the right executor.
void emitIsolatingDestructor(DestructorDecl *dd);
/// Whether we are inside a constructor whose hops are injected by
/// definite initialization.
bool isCtorWithHopsInjectedByDefiniteInit();
/// Generates code for a struct constructor.
/// This allocates the new 'self' value, emits the
/// body code, then returns the final initialized 'self'.
void emitValueConstructor(ConstructorDecl *ctor);
/// Generates code for an enum case constructor.
/// This allocates the new 'self' value, injects the enum case,
/// then returns the final initialized 'self'.
void emitEnumConstructor(EnumElementDecl *element);
/// Generates code for a class constructor's
/// allocating entry point. This allocates the new 'self' value, passes it to
/// the initializer entry point, then returns the initialized 'self'.
void emitClassConstructorAllocator(ConstructorDecl *ctor);
/// Generates code for a class constructor's
/// initializing entry point. This takes 'self' and the constructor arguments
/// as parameters and executes the constructor body to initialize 'self'.
void emitClassConstructorInitializer(ConstructorDecl *ctor);
/// Generates code to initialize instance variables from their
/// initializers.
///
/// \param dc The DeclContext containing the current function.
/// \param selfDecl The 'self' declaration within the current function.
/// \param nominal The type whose members are being initialized.
void emitMemberInitializers(DeclContext *dc, VarDecl *selfDecl,
NominalTypeDecl *nominal);
/// Generates code to initialize stored property from its
/// initializer.
///
/// \param dc The DeclContext containing the current function.
/// \param selfDecl The 'self' declaration within the current function.
/// \param field The stored property that has to be initialized.
/// \param substitutions The substitutions to apply to initializer and setter.
void emitMemberInitializer(DeclContext *dc, VarDecl *selfDecl,
PatternBindingDecl *field,
SubstitutionMap substitutions);
void emitMemberInitializationViaInitAccessor(DeclContext *dc,
VarDecl *selfDecl,
PatternBindingDecl *member,
SubstitutionMap subs);
/// Emit a method that initializes the ivars of a class.
void emitIVarInitializer(SILDeclRef ivarInitializer);
/// Emit a method that destroys the ivars of a class.
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
/// Generates code for the given init accessor represented by AccessorDecl.
/// This emits the body code and replaces all `self.<property>` references
/// with either argument (if property appears in `acesses` list`) or result
/// value assignment.
void emitInitAccessor(AccessorDecl *accessor);
/// Generates code to emit the given setter reference to the given base value.
SILValue emitApplyOfSetterToBase(SILLocation loc, SILDeclRef setter,
ManagedValue base,
SubstitutionMap substitutions);
/// Emit `assign_or_init` instruction that is going to either initialize
/// or assign the given value to the given field.
///
/// \param loc The location to use for the instruction.
/// \param selfValue The 'self' value.
/// \param field The field to assign or initialize.
/// \param newValue the value to assign/initialize the field with.
/// \param substitutions The substitutions to apply to initializer and setter.
void emitAssignOrInit(SILLocation loc, ManagedValue selfValue, VarDecl *field,
ManagedValue newValue, SubstitutionMap substitutions);
/// Generates code to destroy the instance variables of a class.
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
void emitClassMemberDestruction(ManagedValue selfValue, ClassDecl *cd,
CleanupLocation cleanupLoc);
/// Generates code to destroy the instance variables of a move only non-class
/// nominal type.
///
/// \param selfValue The 'self' value.
/// \param nd The nominal declaration whose members are being destroyed.
void emitMoveOnlyMemberDestruction(SILValue selfValue, NominalTypeDecl *nd,
CleanupLocation cleanupLoc);
/// Generates code to destroy linearly recursive data structures, without
/// building up the call stack.
///
/// E.x.: In the following we want to deinit next without recursing into next.
///
/// class Node<A> {
/// let value: A
/// let next: Node<A>?
/// }
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
/// \param recursiveLink The property that forms the recursive structure.
void emitRecursiveChainDestruction(ManagedValue selfValue,
ClassDecl *cd,
VarDecl* recursiveLink,
CleanupLocation cleanupLoc);
/// Generates a thunk from a foreign function to the native Swift convention.
void emitForeignToNativeThunk(SILDeclRef thunk);
/// Generates a thunk from a native function to foreign conventions.
void emitNativeToForeignThunk(SILDeclRef thunk);
/// Generates a stub that launches a detached task for running the NativeToForeignThunk of an
/// async native method.
///
/// Returns the SILFunction created for the closure implementation function that is enqueued on the
/// new task.
SILFunction *emitNativeAsyncToForeignThunk(SILDeclRef thunk);
/// Generates a thunk that contains a runtime precondition that
/// the given function is called on the expected executor.
ManagedValue emitActorIsolationErasureThunk(SILLocation loc,
ManagedValue func,
CanAnyFunctionType isolatedType,
CanAnyFunctionType nonIsolatedType);
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
ArgumentSource &&fnSource,
SGFContext C);
ManagedValue emitDistributedActorAsAnyActor(SILLocation loc,
SubstitutionMap distributedActorSubs,
ManagedValue actor);
/// Generate a nullary function that returns the given value.
/// If \p emitProfilerIncrement is set, emit a profiler increment for
/// \p value.
void emitGeneratorFunction(SILDeclRef function, Expr *value,
bool emitProfilerIncrement = false);
/// Generate a nullary function that returns the value of the given variable's
/// expression initializer.
void emitGeneratorFunction(SILDeclRef function, VarDecl *var);
/// Generate a nullary function that has the given result interface type and
/// body.
void emitGeneratorFunction(
SILDeclRef function, Type resultInterfaceType, BraceStmt *body);
/// Generate an ObjC-compatible destructor (-dealloc).
void emitObjCDestructor(SILDeclRef dtor);
/// Generate code to obtain the address of the given global variable.
ManagedValue emitGlobalVariableRef(SILLocation loc, VarDecl *var,
std::optional<ActorIsolation> actorIso);
void emitMarkFunctionEscapeForTopLevelCodeGlobals(SILLocation Loc,
CaptureInfo CaptureInfo);
/// Generate a lazy global initializer.
void emitLazyGlobalInitializer(PatternBindingDecl *binding,
unsigned pbdEntry);
/// Generate a global accessor, using the given initializer token and
/// function
void emitGlobalAccessor(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
/// Generate a protocol witness entry point, invoking 'witness' at the
/// abstraction level of 'requirement'.
///
/// This is used for both concrete witness thunks and default witness
/// thunks.
///
/// \param isPreconcurrency If the conformance is marked as `@preconcurrency`
/// instead of a hop (when entering isolation) emit a dynamic check to make
/// sure that witness has been unsed in the expected context.
void emitProtocolWitness(AbstractionPattern reqtOrigTy,
CanAnyFunctionType reqtSubstTy,
SILDeclRef requirement, SubstitutionMap reqtSubs,
SILDeclRef witness, SubstitutionMap witnessSubs,
IsFreeFunctionWitness_t isFree,
bool isSelfConformance, bool isPreconcurrency,
std::optional<ActorIsolation> enterIsolation);
/// Generates subscript arguments for keypath. This function handles lowering
/// of all index expressions including default arguments.
///
/// \returns Lowered index arguments.
/// \param subscript - The subscript decl who's arguments are being lowered.
/// \param subs - Used to get subscript function type and to substitute generic args.
/// \param argList - The argument list of the subscript.
SmallVector<ManagedValue, 4>
emitKeyPathSubscriptOperands(SILLocation loc,
SubscriptDecl *subscript,
SubstitutionMap subs,
ArgumentList *argList);
/// Convert a block to a native function with a thunk.
ManagedValue emitBlockToFunc(SILLocation loc,
ManagedValue block,
CanAnyFunctionType blockTy,
CanAnyFunctionType funcTy,
CanSILFunctionType loweredFuncTy);
/// Convert a native function to a block with a thunk.
ManagedValue emitFuncToBlock(SILLocation loc,
ManagedValue block,
CanAnyFunctionType funcTy,
CanAnyFunctionType blockTy,
CanSILFunctionType loweredBlockTy);
/// Thunk with the signature of a base class method calling a derived class
/// method.
///
/// \param inputOrigType Abstraction pattern of base class method
/// \param inputSubstType Formal AST type of base class method
/// \param outputSubstType Formal AST type of derived class method
/// \param baseLessVisibleThanDerived If true, the thunk does a
/// double dispatch to the derived method's vtable entry, so that if
/// the derived method has an override that cannot access the base,
/// calls to the base dispatch to the correct method.
void emitVTableThunk(SILDeclRef base,
SILDeclRef derived,
SILFunction *implFn,
AbstractionPattern inputOrigType,
CanAnyFunctionType inputSubstType,
CanAnyFunctionType outputSubstType,
bool baseLessVisibleThanDerived);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// emitCondition - Emit a boolean expression as a control-flow condition.
///
/// \param E - The expression to be evaluated as a condition.
/// \param invertValue - true if this routine should invert the value before
/// testing true/false.
/// \param contArgs - the types of the arguments to the continuation BB.
/// Matching argument values must be passed to exitTrue and exitFalse
/// of the resulting Condition object.
/// \param NumTrueTaken - The number of times the condition evaluates to true.
/// \param NumFalseTaken - The number of times the condition evaluates to
/// false.
///
/// If `contArgs` is nonempty, then both Condition::exitTrue() and
/// Condition::exitFalse() must be called.
Condition emitCondition(Expr *E, bool invertValue = false,
ArrayRef<SILType> contArgs = {},
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
Condition emitCondition(SILValue V, SILLocation Loc, bool invertValue = false,
ArrayRef<SILType> contArgs = {},
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
/// Create a new basic block.
///
/// The block can be explicitly placed after a particular block.
/// Otherwise, if the current insertion point is valid, it will be
/// placed immediately after it. Otherwise, it will be placed at the
/// end of the current function section.
///
/// Because basic blocks are generally constructed with an insertion
/// point active, users should be aware that this behavior leads to
/// an emergent LIFO ordering: if code generation requires multiple
/// blocks, the second block created will be positioned before the
/// first block. (This is clearly desirable behavior when blocks
/// are created by different emissions; it's just a little
/// counter-intuitive within a single emission.)
SILBasicBlock *createBasicBlock();
SILBasicBlock *createBasicBlock(llvm::StringRef debugName);
SILBasicBlock *createBasicBlockAfter(SILBasicBlock *afterBB);
SILBasicBlock *createBasicBlockBefore(SILBasicBlock *beforeBB);
/// Create a new basic block at the end of the given function
/// section.
SILBasicBlock *createBasicBlock(FunctionSection section);
SILBasicBlock *createBasicBlockAndBranch(SILLocation loc,
SILBasicBlock *destBB);
/// Erase a basic block that was speculatively created and turned
/// out to be unneeded.
///
/// This should be called instead of eraseFromParent() in order to
/// keep SILGen's internal bookkeeping consistent.
///
/// The block should be empty and have no predecessors.
void eraseBasicBlock(SILBasicBlock *block);
void mergeCleanupBlocks();
//===--------------------------------------------------------------------===//
// Concurrency
//===--------------------------------------------------------------------===//
/// Generates code to obtain the executor for the given actor isolation,
/// as-needed, and emits a \c hop_to_executor to that executor.
///
/// \returns an \c ExecutorBreadcrumb that saves the information necessary to hop
/// back to what was previously the current executor after the actor-isolated
/// region ends. Invoke \c emit on the breadcrumb to
/// restore the previously-active executor.
ExecutorBreadcrumb
emitHopToTargetActor(SILLocation loc, std::optional<ActorIsolation> actorIso,
std::optional<ManagedValue> actorSelf);
/// Emit a hop to the target executor, returning a breadcrumb with enough
/// enough information to hop back.
///
/// This hop instruction may take into account current tasks' executor
/// preference.
ExecutorBreadcrumb emitHopToTargetExecutor(SILLocation loc,
SILValue executor);
/// Generate a hop directly to a dynamic actor instance. This can only be done
/// inside an async actor-independent function. No hop-back is expected.
void emitHopToActorValue(SILLocation loc, ManagedValue actor);
/// Return true if the function being emitted is an async function
/// that unsafely inherits its executor.
bool unsafelyInheritsExecutor();
/// Set the given global actor as the isolation for this function
/// (generally a thunk) and hop to it.
void emitPrologGlobalActorHop(SILLocation loc, Type globalActor);
/// Emit the executor for the given actor isolation.
std::optional<SILValue> emitExecutor(SILLocation loc,
ActorIsolation isolation,
std::optional<ManagedValue> maybeSelf);
/// Emit a precondition check to ensure that the function is executing in
/// the expected isolation context.
void
emitPreconditionCheckExpectedExecutor(SILLocation loc,
ActorIsolation isolation,
std::optional<ManagedValue> actorSelf);
/// Emit a precondition check to ensure that the function is executing in
/// the expected isolation context.
void emitPreconditionCheckExpectedExecutor(
SILLocation loc, SILValue executor);
/// Emit the expected executor value at the current position.
/// Returns a reference of some actor type, possibly optional,
/// possibly borrowed.
ManagedValue emitExpectedExecutor(SILLocation loc);
/// Emit a "hoppable" reference to the executor value for the generic
/// (concurrent) executor.
SILValue emitGenericExecutor(SILLocation loc);
/// Emit the opaque isolation value for a non-isolated context
/// (`Optional<any Actor>.none`).
ManagedValue emitNonIsolatedIsolation(SILLocation loc);
/// Emit a "hoppable" reference to an actor's executor given a
/// reference to the actor.
SILValue emitLoadActorExecutor(SILLocation loc, ManagedValue actor);
/// Transform an actor reference into an opaque isolation value.
/// This supports optional actor references.
/// The actor reference must be +1.
ManagedValue emitActorInstanceIsolation(SILLocation loc,
ManagedValue actor,
CanType actorType);
/// Emit a "hoppable" reference to the executor value for the MainActor
/// global executor.
SILValue emitMainExecutor(SILLocation loc);
/// Emits a "hoppable" reference to the executor for the shared instance
/// of \p globalActor based on the type.
SILValue emitLoadGlobalActorExecutor(Type globalActor);
/// Call `.shared` on the given global actor type.
///
/// Returns the value of the property and the formal instance type.
std::pair<ManagedValue, CanType>
emitLoadOfGlobalActorShared(SILLocation loc, CanType globalActorType);
/// Emit a reference to the given global actor as an opaque isolation.
ManagedValue emitGlobalActorIsolation(SILLocation loc,
CanType globalActorType);
/// Emit a "hoppable" reference to an executor for the opaque isolation
/// stored in an @isolated(any) function value.
SILValue emitLoadErasedExecutor(SILLocation loc, ManagedValue fn);
/// Load the opaque isolation value from an @isolated(any) function
/// value.
ManagedValue emitLoadErasedIsolation(SILLocation loc, ManagedValue fn);
/// Emit the opaque isolation value for a function value with the given
/// formal type isolation.
ManagedValue emitFunctionTypeIsolation(SILLocation loc,
FunctionTypeIsolation isolation,
ManagedValue fn);
/// Emit the opaque isolation value for a concrete closure,
/// given its captures.
ManagedValue emitClosureIsolation(SILLocation loc, SILDeclRef constant,
ArrayRef<ManagedValue> captures);
/// Emit the opaque isolation value for the current point of a function
/// with flow-sensitive isolation.
ManagedValue emitFlowSensitiveSelfIsolation(SILLocation loc,
ActorIsolation isolation);
//===--------------------------------------------------------------------===//
// Memory management
//===--------------------------------------------------------------------===//
/// Emit debug info for the artificial error inout argument.
void emitErrorArgument(SILLocation Loc, unsigned ArgNo);
/// emitProlog - Generates prolog code to allocate and clean up mutable
/// storage for closure captures and local arguments.
void
emitProlog(DeclContext *DC, CaptureInfo captureInfo, ParameterList *paramList,
ParamDecl *selfParam, Type resultType,
std::optional<Type> errorType, SourceLoc throwsLoc);
/// A simpler version of emitProlog
/// \returns the number of variables in paramPatterns.
uint16_t emitBasicProlog(
DeclContext *DC, ParameterList *paramList, ParamDecl *selfParam,
Type resultType, std::optional<Type> errorType, SourceLoc throwsLoc,
unsigned numIgnoredTrailingParameters);
/// Set up the ExpectedExecutor field for the current function and emit
/// whatever hops or assertions are locally expected.
void emitExpectedExecutorProlog();
void emitConstructorExpectedExecutorProlog();
/// Create SILArguments in the entry block that bind a single value
/// of the given parameter suitably for being forwarded.
void bindParameterForForwarding(ParamDecl *param,
SmallVectorImpl<SILValue> &parameters);
/// Create SILArguments in the entry block that bind all the values
/// of the given parameter list suitably for being forwarded.
void bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters);
/// Create (but do not emit) the epilog branch, and save the
/// current cleanups depth as the destination for return statement branches.
///
/// \param dc The declaration context whose generic signature to use for
/// interpreting interface types.
/// \param directResultType If given a value, the epilog block will be
/// created with arguments for each direct result of this
/// function, corresponding to the formal return type.
/// \param errorType If not None, create an error epilog block with the given
/// thrown error type.
/// \param L The SILLocation which should be associated with
/// cleanup instructions.
void prepareEpilog(
DeclContext *dc, std::optional<Type> directResultType,
std::optional<Type> errorType, CleanupLocation L);
void prepareRethrowEpilog(DeclContext *dc,
AbstractionPattern origErrorType,
Type errorType, CleanupLocation l);
void prepareCoroutineUnwindEpilog(CleanupLocation l);
/// Branch to and emit the epilog basic block. This will fuse
/// the epilog to the current basic block if the epilog bb has no predecessor.
/// The insertion point will be moved into the epilog block if it is
/// reachable.
///
/// \param TopLevelLoc The location of the top level AST node for which we are
/// constructing the epilog, such as a AbstractClosureExpr.
/// \returns None if the epilog block is unreachable. Otherwise, returns
/// the epilog block's return value argument, or a null SILValue if
/// the epilog doesn't take a return value. Also returns the location
/// of the return instruction if the epilog block is supposed to host
/// the ReturnLocation (This happens in case the predecessor block is
/// merged with the epilog block.)
std::pair<std::optional<SILValue>, SILLocation>
emitEpilogBB(SILLocation TopLevelLoc);
/// Emits a standard epilog which runs top-level cleanups then returns
/// the function return value, if any. This can be customized by clients, who
/// set UsesCustomEpilog to true, and optionally inject their own code into
/// the epilog block before calling this. If they do this, their code is run
/// before the top-level cleanups, and the epilog block to continue is
/// returned as the insertion point of this function. They must provide the
/// final exit sequence for the block as well.
///
/// \param TopLevelLoc The location of the top-level expression during whose
/// evaluation the epilog is being produced, for example, the
/// AbstractClosureExpr.
/// \param UsesCustomEpilog True if the client wants to manage its own epilog
/// logic.
SILLocation emitEpilog(SILLocation TopLevelLoc,bool UsesCustomEpilog = false);
/// Emits the standard rethrow epilog using a Swift error result.
void emitRethrowEpilog(SILLocation topLevelLoc);
/// Emits the coroutine-unwind epilog.
void emitCoroutineUnwindEpilog(SILLocation topLevelLoc);
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
/// up debug info, etc. This returns the 'self' value.
///
/// This is intended to only be used for destructors.
SILValue emitSelfDeclForDestructor(VarDecl *selfDecl);
/// Emits a temporary allocation that will be deallocated automatically at the
/// end of the current scope. Returns the address of the allocation.
///
/// \p isLexical if set to true, this is a temporary that we are using for a
/// local let that we need to mark with the lexical flag.
SILValue emitTemporaryAllocation(
SILLocation loc, SILType ty,
HasDynamicLifetime_t hasDynamicLifetime = DoesNotHaveDynamicLifetime,
IsLexical_t isLexical = IsNotLexical,
IsFromVarDecl_t isFromVarDecl = IsNotFromVarDecl,
bool generateDebugInfo = true);
/// Emits a temporary allocation for a pack that will be deallocated
/// automatically at the end of the current scope. Returns the address
/// of the allocation.
SILValue emitTemporaryPackAllocation(SILLocation loc, SILType packTy);
/// Prepares a buffer to receive the result of an expression, either using the
/// 'emit into' initialization buffer if available, or allocating a temporary
/// allocation if not.
///
/// The caller should call manageBufferForExprResult at the instant
/// that the buffer has been initialized.
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
/// Flag that the buffer for an expression result has been properly
/// initialized.
///
/// Returns an empty value if the buffer was taken from the context.
ManagedValue manageBufferForExprResult(SILValue buffer,
const TypeLowering &bufferTL,
SGFContext C);
/// Tries to emit an argument referring to an addressable parameter as the
/// stable address of the parameter.
///
/// Returns a null ManagedValue if the argument is not a parameter reference,
/// the referenced parameter is not addressable, or the requested
/// \c ownership is not compatible with the parameter's ownership. \c arg
/// is consumed only if the operation succeeds.
ManagedValue tryEmitAddressableParameterAsAddress(ArgumentSource &&arg,
ValueOwnership ownership);
//===--------------------------------------------------------------------===//
// Type conversions for expr emission and thunks
//===--------------------------------------------------------------------===//
ManagedValue emitInjectEnum(SILLocation loc,
MutableArrayRef<ArgumentSource> payload,
SILType enumTy,
EnumElementDecl *element,
SGFContext C);
ManagedValue emitInjectOptional(SILLocation loc,
const TypeLowering &expectedTL,
SGFContext ctxt,
llvm::function_ref<ManagedValue(SGFContext)> generator);
/// Initialize a memory location with an optional value.
///
/// \param loc The location to use for the resulting optional.
/// \param value The value to inject into an optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL);
/// Initialize a memory location with an optional "nothing"
/// value.
///
/// \param loc The location to use for the resulting optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL);
/// Return a value for an optional ".None" of the specified type. This only
/// works for loadable enum types.
SILValue getOptionalNoneValue(SILLocation loc, const TypeLowering &optTL);
/// Return a value for an optional ".Some(x)" of the specified type. This only
/// works for loadable enum types.
ManagedValue getOptionalSomeValue(SILLocation loc, ManagedValue value,
const TypeLowering &optTL);
struct SourceLocArgs {
ManagedValue filenameStartPointer,
filenameLength,
filenameIsAscii,
line,
column;
};
/// Emit raw lowered arguments for a runtime diagnostic to report the given
/// source location:
/// - The first three arguments are the components necessary to construct
/// a StaticString for the filename: start pointer, length, and
/// "is ascii" bit.
/// - The fourth argument is the line number.
SourceLocArgs
emitSourceLocationArgs(SourceLoc loc, SILLocation emitLoc);
/// Emit a 'String' literal for the passed 'text'.
///
/// See also: 'emitLiteral' which works with various types of literals,
/// however requires an expression to base the creation on.
ManagedValue
emitStringLiteral(SILLocation loc,
StringRef text,
StringLiteralExpr::Encoding encoding = StringLiteralExpr::Encoding::UTF8,
SGFContext ctx = SGFContext());
/// Emit a call to the library intrinsic _doesOptionalHaveValue.
///
/// The result is a Builtin.Int1.
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addrOrValue);
/// Emit a switch_enum to call the library intrinsic
/// _diagnoseUnexpectedNilOptional if the optional has no value. Return the
/// MangedValue resulting from the success case.
ManagedValue emitPreconditionOptionalHasValue(SILLocation loc,
ManagedValue optional,
bool isImplicitUnwrap);
/// Emit a call to the library intrinsic _getOptionalValue
/// given the address of the optional, which checks that an optional contains
/// some value and either returns the value or traps if there is none.
ManagedValue emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addr,
bool isImplicitUnwrap,
const TypeLowering &optTL,
SGFContext C);
/// Extract the value from an optional, which must be known to contain
/// a value.
ManagedValue emitUncheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addrOrValue,
const TypeLowering &optTL,
SGFContext C = SGFContext());
typedef llvm::function_ref<ManagedValue(SILGenFunction &SGF,
SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
SGFContext context)> ValueTransformRef;
/// Emit a transformation on the value of an optional type.
ManagedValue emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
ValueTransformRef transform,
SGFContext C = SGFContext());
ManagedValue emitOptionalSome(SILLocation loc, SILType optionalTy,
ValueProducerRef injector,
SGFContext C = SGFContext());
/// Emit a reinterpret-cast from one pointer type to another, using a library
/// intrinsic.
RValue emitPointerToPointer(SILLocation loc,
ManagedValue input,
CanType inputTy,
CanType outputTy,
SGFContext C = SGFContext());
ManagedValue emitClassMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitExistentialMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitProtocolMetatypeToObject(SILLocation loc,
CanType inputTy,
SILType resultTy);
ManagedValue manageOpaqueValue(ManagedValue value,
SILLocation loc,
SGFContext C);
/// Open up the given existential value and project its payload.
///
/// \param existentialValue The existential value.
/// \param loweredOpenedType The lowered type of the projection, which in
/// practice will be the openedArchetype, possibly wrapped in a metatype.
ManagedValue emitOpenExistential(SILLocation loc,
ManagedValue existentialValue,
SILType loweredOpenedType,
AccessKind accessKind);
/// Wrap the given value in an existential container.
///
/// \param concreteFormalType AST type of value.
/// \param concreteTL Type lowering of value.
/// \param existentialTL Type lowering of existential type.
/// \param F Function reference to emit the existential contents with the
/// given context.
ManagedValue emitExistentialErasure(
SILLocation loc,
CanType concreteFormalType,
const TypeLowering &concreteTL,
const TypeLowering &existentialTL,
ArrayRef<ProtocolConformanceRef> conformances,
SGFContext C,
llvm::function_ref<ManagedValue (SGFContext)> F,
bool allowEmbeddedNSError = true);
/// Transform a value of concrete or existential type into an
/// existential type. The input and existential types must be
/// different.
ManagedValue emitTransformExistential(
SILLocation loc,
ManagedValue input,
CanType inputType,
CanType existentialType,
SGFContext C = SGFContext());
RValue emitCollectionConversion(SILLocation loc,
FuncDecl *fn,
CanType fromCollection,
CanType toCollection,
ManagedValue mv,
SGFContext C);
//===--------------------------------------------------------------------===//
// Recursive entry points
//===--------------------------------------------------------------------===//
using ASTVisitorType::visit;
//===--------------------------------------------------------------------===//
// Statements
//===--------------------------------------------------------------------===//
void visit(Stmt *S) = delete;
void emitStmt(Stmt *S);
void emitBreakOutOf(SILLocation loc, Stmt *S);
void emitCatchDispatch(DoCatchStmt *S, ManagedValue exn,
ArrayRef<CaseStmt *> clauses,
JumpDest catchFallthroughDest);
/// Emit code for the throw expr. If \p emitWillThrow is set then emit a
/// call to swift_willThrow, that will allow the debugger to place a
/// breakpoint on throw sites.
void emitThrow(SILLocation loc, ManagedValue exn, bool emitWillThrow = false);
//===--------------------------------------------------------------------===//
// Patterns
//===--------------------------------------------------------------------===//
SILValue emitOSVersionRangeCheck(SILLocation loc, const VersionRange &range,
bool forTargetVariant = false);
SILValue
emitOSVersionOrVariantVersionRangeCheck(SILLocation loc,
const VersionRange &targetRange,
const VersionRange &variantRange);
/// Emits either a single OS version range check or an OS version & variant
/// version range check automatically, depending on the active target triple
/// and requested versions.
SILValue emitZipperedOSVersionRangeCheck(SILLocation loc,
const VersionRange &targetRange,
const VersionRange &variantRange);
void emitStmtCondition(StmtCondition Cond, JumpDest FalseDest, SILLocation loc,
ProfileCounter NumTrueTaken = ProfileCounter(),
ProfileCounter NumFalseTaken = ProfileCounter());
void emitConditionalPBD(PatternBindingDecl *PBD, SILBasicBlock *FailBB);
void usingImplicitVariablesForPattern(Pattern *pattern, CaseStmt *stmt,
const llvm::function_ref<void(void)> &f);
void emitSwitchStmt(SwitchStmt *S);
void emitSwitchFallthrough(FallthroughStmt *S);
//===--------------------------------------------------------------------===//
// Expressions
//===--------------------------------------------------------------------===//
RValue visit(Expr *E) = delete;
/// Generate SIL for the given expression, storing the final result into the
/// specified Initialization buffer(s). This avoids an allocation and copy if
/// the result would be allocated into temporary memory normally.
/// The location defaults to \c E.
void emitExprInto(Expr *E, Initialization *I,
std::optional<SILLocation> L = std::nullopt);
/// Emit the given expression as an r-value.
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
/// Given an expression, find the subexpression that can be emitted as a borrow formal access, if
/// any.
Expr *findStorageReferenceExprForMoveOnly(Expr *argExpr,
StorageReferenceOperationKind kind);
Expr *findStorageReferenceExprForBorrowExpr(Expr *argExpr);
/// Emit the given expression as a +1 r-value.
///
/// *NOTE* This creates the +1 r-value and then pushes that +1 r-value through
/// a scope. So all temporaries resulting will be cleaned up.
///
/// *NOTE* +0 vs +1 is ignored by this function. The only reason to use the
/// SGFContext argument is to pass in an initialization.
RValue emitPlusOneRValue(Expr *E, SGFContext C = SGFContext());
/// Emit the given expression as a +0 r-value.
///
/// *NOTE* This does not scope the creation of the +0 r-value. The reason why
/// this is done is that +0 r-values can not be pushed through scopes.
RValue emitPlusZeroRValue(Expr *E);
/// Emit the given expression as an r-value with the given conversion
/// context. This may be more efficient --- and, in some cases,
/// semantically different --- than emitting the expression and then
/// converting the result.
///
/// \param C a context into which to emit the converted result
ManagedValue emitConvertedRValue(Expr *E, const Conversion &conversion,
SGFContext C = SGFContext());
ManagedValue emitConvertedRValue(SILLocation loc,
const Conversion &conversion,
SGFContext C,
ValueProducerRef produceValue);
/// Call the produceValue function and convert the result to the given
/// original abstraction pattern.
///
/// The SGFContext provided to the produceValue function includes the
/// conversion, if it's non-trivial, and thus permits it to be peepholed
/// and combined with other conversions. This can result in substantially
/// more efficient code than just emitting the value and reabstracting
/// it afterwards.
///
/// If the provided SGFContext includes an initialization, the result
/// will always be ManagedValue::forInContext().
ManagedValue emitAsOrig(SILLocation loc, AbstractionPattern origType,
CanType substType, SILType expectedTy,
SGFContext C,
ValueProducerRef produceValue);
/// Emit the given expression as an r-value that follows the
/// abstraction patterns of the original type.
ManagedValue emitRValueAsOrig(Expr *E, AbstractionPattern origPattern,
const TypeLowering &origTL,
SGFContext C = SGFContext());
/// Emit an r-value into temporary memory and return the managed address.
ManagedValue
emitMaterializedRValueAsOrig(Expr *E, AbstractionPattern origPattern);
/// Emit the given expression, ignoring its result.
void emitIgnoredExpr(Expr *E);
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
/// Emit 'undef' in a particular formal type.
ManagedValue emitUndef(Type type);
ManagedValue emitUndef(SILType type);
RValue emitUndefRValue(SILLocation loc, Type type);
std::pair<ManagedValue, SILValue>
emitUninitializedArrayAllocation(Type ArrayTy,
SILValue Length,
SILLocation Loc);
CleanupHandle enterDeallocateUninitializedArrayCleanup(SILValue array);
void emitUninitializedArrayDeallocation(SILLocation loc, SILValue array);
ManagedValue emitUninitializedArrayFinalization(SILLocation loc,
ManagedValue array);
/// Emit a cleanup for an owned value that should be written back at end of
/// scope if the value is not forwarded.
CleanupHandle enterOwnedValueWritebackCleanup(SILLocation loc,
SILValue address,
SILValue newValue);
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
const TypeLowering &valueTL);
ManagedValue emitConversionToSemanticRValue(SILLocation loc,
ManagedValue value,
const TypeLowering &valueTL);
/// Emit the empty tuple value by emitting
SILValue emitEmptyTuple(SILLocation loc);
/// "Emit" an RValue representing an empty tuple.
RValue emitEmptyTupleRValue(SILLocation loc, SGFContext C);
/// Returns a reference to a constant in global context. For local func decls
/// this returns the function constant with unapplied closure context.
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
return emitGlobalFunctionRef(
loc, constant, getConstantInfo(getTypeExpansionContext(), constant));
}
SILValue
emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo,
bool callPreviousDynamicReplaceableImpl = false);
/// Returns a reference to a function value that dynamically dispatches
/// the function in a runtime-modifiable way.
ManagedValue emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
CanSILFunctionType constantTy);
/// Returns a reference to a vtable-dispatched method.
SILValue emitClassMethodRef(SILLocation loc, SILValue selfPtr,
SILDeclRef constant,
CanSILFunctionType constantTy);
/// Given that a variable is a local stored variable, return its address.
ManagedValue emitAddressOfLocalVarDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
SGFAccessKind accessKind);
// FIXME: demote this to private state.
ManagedValue maybeEmitValueOfLocalVarDecl(
VarDecl *var, AccessKind accessKind);
/// Produce an RValue for a reference to the specified declaration,
/// with the given type and in response to the specified expression. Try to
/// emit into the specified SGFContext to avoid copies (when provided).
RValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
AccessSemantics semantics,
SGFContext C = SGFContext());
/// Produce a singular RValue for a load from the specified property.
///
/// This is designed to work with RValue ManagedValue bases that are either +0
/// or +1.
///
/// \arg isBaseGuaranteed This should /only/ be set to true if we know that
/// the base value will stay alive as long as the returned RValue implying
/// that it is safe to load/use values as +0.
RValue emitRValueForStorageLoad(SILLocation loc,
ManagedValue base,
CanType baseFormalType,
bool isSuper, AbstractStorageDecl *storage,
PreparedArguments &&indices,
SubstitutionMap substitutions,
AccessSemantics semantics, Type propTy,
SGFContext C,
bool isBaseGuaranteed = false);
void emitCaptures(SILLocation loc,
SILDeclRef closure,
CaptureEmission purpose,
SmallVectorImpl<ManagedValue> &captures);
/// Produce a reference to a function, which may be a local function
/// with captures. If the function is generic, substitutions must be
/// given. The result is re-abstracted to the given expected type.
ManagedValue emitClosureValue(SILLocation loc,
SILDeclRef function,
const FunctionTypeInfo &typeContext,
SubstitutionMap subs);
PreparedArguments prepareSubscriptIndices(SILLocation loc,
SubscriptDecl *subscript,
SubstitutionMap subs,
AccessStrategy strategy,
ArgumentList *argList);
ArgumentSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
CanType baseFormalType,
SILDeclRef accessor);
RValue emitGetAccessor(
SILLocation loc, SILDeclRef getter, SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue, bool isSuper,
bool isDirectAccessorUse, PreparedArguments &&optionalSubscripts,
SGFContext C, bool isOnSelfParameter,
std::optional<ActorIsolation> implicitActorHopTarget = std::nullopt);
void emitSetAccessor(SILLocation loc, SILDeclRef setter,
SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
ArgumentSource &&value,
bool isOnSelfParameter);
ManagedValue emitAsyncLetStart(SILLocation loc,
SILValue taskOptions,
AbstractClosureExpr *asyncLetEntryPoint,
SILValue resultBuf);
void emitFinishAsyncLet(SILLocation loc, SILValue asyncLet, SILValue resultBuf);
ManagedValue emitReadAsyncLetBinding(SILLocation loc, VarDecl *var);
ManagedValue emitCancelAsyncTask(SILLocation loc, SILValue task);
ManagedValue emitCreateAsyncMainTask(SILLocation loc, SubstitutionMap subs,
ManagedValue flags,
ManagedValue mainFunctionRef);
bool maybeEmitMaterializeForSetThunk(ProtocolConformanceRef conformance,
SILLinkage linkage,
Type selfInterfaceType, Type selfType,
GenericEnvironment *genericEnv,
AccessorDecl *requirement,
AccessorDecl *witness,
SubstitutionMap witnessSubs);
ManagedValue emitAddressorAccessor(
SILLocation loc, SILDeclRef addressor, SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue, bool isSuper,
bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
SILType addressType, bool isOnSelfParameter);
CleanupHandle emitCoroutineAccessor(SILLocation loc, SILDeclRef accessor,
SubstitutionMap substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
PreparedArguments &&optionalSubscripts,
SmallVectorImpl<ManagedValue> &yields,
bool isOnSelfParameter);
RValue emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand);
ManagedValue emitManagedCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr,
const TypeLowering &lowering);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v);
ManagedValue
emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue,
const TypeLowering &lowering);
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue);
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue original,
SILValue borrowedValue);
ManagedValue emitManagedBorrowedRValueWithCleanup(
SILValue original, SILValue borrowedValue, const TypeLowering &lowering);
ManagedValue emitManagedBorrowedArgumentWithCleanup(SILPhiArgument *arg);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue,
const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
SILValue v);
ManagedValue
emitFormalEvaluationManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedStoreBorrow(SILLocation loc,
SILValue v,
SILValue addr);
ManagedValue emitManagedRValueWithCleanup(SILValue v);
ManagedValue emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
const TypeLowering &lowering);
ManagedValue emitManagedPackWithCleanup(SILValue addr,
CanPackType formalPackType
= CanPackType());
ManagedValue emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
SILValue value);
ManagedValue emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
SILValue addr);
void emitSemanticLoadInto(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
SILValue dest,
const TypeLowering &destLowering,
IsTake_t isTake, IsInitialization_t isInit);
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
const TypeLowering &rvalueLowering,
IsTake_t isTake);
void emitSemanticStore(SILLocation loc, SILValue value,
SILValue dest, const TypeLowering &destTL,
IsInitialization_t isInit);
SILValue emitConversionFromSemanticValue(SILLocation loc,
SILValue semanticValue,
SILType storageType);
SILValue emitUnwrapIntegerResult(SILLocation loc, SILValue value);
SILValue emitWrapIntegerLiteral(SILLocation loc, SILType ty,
unsigned value);
/// Load an r-value out of the given address. This does not handle
/// reabstraction or bridging. If that is needed, use the other emit load
/// entry point.
///
/// \param rvalueTL - the type lowering for the type-of-rvalue
/// of the address
/// \param isAddrGuaranteed - true if the value in this address
/// is guaranteed to be valid for the duration of the current
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
ManagedValue emitLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isAddrGuaranteed = false);
/// Load an r-value out of the given address handling re-abstraction and
/// bridging if required.
///
/// \param rvalueTL - the type lowering for the type-of-rvalue
/// of the address
/// \param isAddrGuaranteed - true if the value in this address
/// is guaranteed to be valid for the duration of the current
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
ManagedValue emitLoad(SILLocation loc, SILValue addr,
AbstractionPattern origFormalType,
CanType substFormalType,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isAddrGuaranteed = false);
ManagedValue emitFormalAccessLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL, SGFContext C,
IsTake_t isTake,
bool isAddrGuaranteed = false);
void emitAssignToLValue(SILLocation loc, ArgumentSource &&src, LValue &&dest);
void emitAssignToLValue(SILLocation loc, RValue &&src, LValue &&dest);
void emitAssignLValueToLValue(SILLocation loc,
LValue &&src, LValue &&dest);
void emitCopyLValueInto(SILLocation loc, LValue &&src,
Initialization *dest);
/// Emit an assignment to the variables in the destination pattern, given
/// an rvalue source that has the same type as the pattern.
void emitAssignToPatternVars(
SILLocation loc, Pattern *destPattern, RValue &&src);
ManagedValue emitAddressOfLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
ManagedValue emitBorrowedLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
ManagedValue emitConsumedLValue(SILLocation loc, LValue &&src,
TSanKind tsanKind = TSanKind::None);
LValue emitOpenExistentialLValue(SILLocation loc,
LValue &&existentialLV,
CanArchetypeType openedArchetype,
CanType formalRValueType,
SGFAccessKind accessKind);
RValue emitLoadOfLValue(SILLocation loc, LValue &&src, SGFContext C,
bool isBaseLValueGuaranteed = false);
/// Emit a reference to a method from within another method of the type.
std::tuple<ManagedValue, SILType>
emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
SubstitutionMap subMap);
SILValue emitMetatypeOfValue(SILLocation loc, Expr *baseExpr);
void emitReturnExpr(SILLocation loc, Expr *ret);
void emitYield(SILLocation loc, MutableArrayRef<ArgumentSource> yieldValues,
ArrayRef<AbstractionPattern> origTypes,
JumpDest unwindDest);
void emitRawYield(SILLocation loc, ArrayRef<ManagedValue> yieldArgs,
JumpDest unwindDest, bool isUniqueYield);
RValue emitAnyHashableErasure(SILLocation loc,
ManagedValue value,
Type type,
ProtocolConformanceRef conformance,
SGFContext C);
/// Turn a consumable managed value into a +1 managed value.
ManagedValue getManagedValue(SILLocation loc,
ConsumableManagedValue value);
/// Do the initial work common to all emissions of a pack
/// expansion expression. This is a placeholder meant to mark
/// places that will need to support any sort of future feature
/// where e.g. certain `each` operands need to be evaluated once
/// for the entire expansion.
void prepareToEmitPackExpansionExpr(PackExpansionExpr *E);
//
// Helpers for emitting ApplyExpr chains.
//
RValue emitApplyExpr(ApplyExpr *e, SGFContext c);
/// Emit a function application, assuming that the arguments have been
/// lowered appropriately for the abstraction level but that the
/// result does need to be turned back into something matching a
/// formal type.
RValue emitApply(ResultPlanPtr &&resultPlan, ArgumentScope &&argScope,
SILLocation loc, ManagedValue fn, SubstitutionMap subs,
ArrayRef<ManagedValue> args,
const CalleeTypeInfo &calleeTypeInfo, ApplyOptions options,
SGFContext evalContext,
std::optional<ActorIsolation> implicitActorHopTarget);
RValue emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
bool implicitlyAsync,
SGFContext C = SGFContext());
RValue emitApplyOfStoredPropertyInitializer(
SILLocation loc,
VarDecl *anchoringVar,
SubstitutionMap subs,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C);
RValue emitApplyOfPropertyWrapperBackingInitializer(
SILLocation loc,
VarDecl *var,
SubstitutionMap subs,
RValue &&originalValue,
SILDeclRef::Kind initKind = SILDeclRef::Kind::PropertyWrapperBackingInitializer,
SGFContext C = SGFContext());
/// A convenience method for emitApply that just handles monomorphic
/// applications.
RValue emitMonomorphicApply(
SILLocation loc, ManagedValue fn, ArrayRef<ManagedValue> args,
CanType foreignResultType, CanType nativeResultType, ApplyOptions options,
std::optional<SILFunctionTypeRepresentation> overrideRep,
const std::optional<ForeignErrorConvention> &foreignError,
SGFContext ctx = SGFContext());
RValue emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
SubstitutionMap subMap,
ArrayRef<ManagedValue> args,
SGFContext ctx);
RValue emitApplyOfLibraryIntrinsic(SILLocation loc, SILDeclRef declRef,
SubstitutionMap subMap,
ArrayRef<ManagedValue> args,
SGFContext ctx);
/// Emits a call to the `_diagnoseUnavailableCodeReached()` function in the
/// standard library.
void emitApplyOfUnavailableCodeReached();
RValue emitApplyAllocatingInitializer(SILLocation loc, ConcreteDeclRef init,
PreparedArguments &&args, Type overriddenSelfType,
SGFContext ctx);
CleanupHandle emitBeginApply(SILLocation loc, ManagedValue fn,
SubstitutionMap subs, ArrayRef<ManagedValue> args,
CanSILFunctionType substFnType,
ApplyOptions options,
SmallVectorImpl<ManagedValue> &yields);
SILValue emitApplyWithRethrow(SILLocation loc, SILValue fn,
SILType substFnType,
SubstitutionMap subs,
ArrayRef<SILValue> args);
std::tuple<MultipleValueInstructionResult *, CleanupHandle, SILValue,
CleanupHandle>
emitBeginApplyWithRethrow(SILLocation loc, SILValue fn, SILType substFnType,
SubstitutionMap subs, ArrayRef<SILValue> args,
SmallVectorImpl<SILValue> &yields);
void emitEndApplyWithRethrow(SILLocation loc,
MultipleValueInstructionResult *token,
SILValue allocation);
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
ArgumentSource &&fnValue);
/// Emit a literal that applies the various initializers.
RValue emitLiteral(LiteralExpr *literal, SGFContext C);
SILBasicBlock *getTryApplyErrorDest(SILLocation loc,
CanSILFunctionType fnTy,
ExecutorBreadcrumb prevExecutor,
SILResultInfo errorResult,
SILValue indirectErrorAddr,
bool isSuppressed);
/// Emit a dynamic member reference.
RValue emitDynamicMemberRef(SILLocation loc, SILValue operand,
ConcreteDeclRef memberRef, CanType refTy,
SGFContext C);
/// Emit a dynamic subscript getter application.
RValue emitDynamicSubscriptGetterApply(SILLocation loc, SILValue operand,
ConcreteDeclRef subscriptRef,
PreparedArguments &&indexArgs,
CanType resultTy, SGFContext C);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
void emitOpenExistentialExprImpl(OpenExistentialExpr *e,
llvm::function_ref<void(Expr *)> emitSubExpr);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename R, typename F>
R emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
std::optional<R> result;
emitOpenExistentialExprImpl(e,
[&](Expr *subExpr) {
result.emplace(emitSubExpr(subExpr));
});
return std::move(*result);
}
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename F>
void emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
emitOpenExistentialExprImpl(e, emitSubExpr);
}
/// Mapping from OpaqueValueExpr/PackElementExpr to their values.
llvm::SmallDenseMap<Expr *, ManagedValue> OpaqueValues;
/// A mapping from opaque value expressions to the open-existential
/// expression that determines them, used while lowering lvalues.
llvm::SmallDenseMap<OpaqueValueExpr *, OpenExistentialExpr *>
OpaqueValueExprs;
/// RAII object that introduces a temporary binding for an opaque value.
///
/// Each time the opaque value expression is referenced, it will be
/// retained/released separately. When this RAII object goes out of
/// scope, the value will be destroyed if requested.
class OpaqueValueRAII {
SILGenFunction &Self;
OpaqueValueExpr *OpaqueValue;
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
public:
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
ManagedValue value)
: Self(self), OpaqueValue(opaqueValue) {
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
"Opaque value already has a binding");
Self.OpaqueValues[OpaqueValue] = value;
}
~OpaqueValueRAII();
};
/// Emit a conditional checked cast branch. Does not
/// re-abstract the argument to the success branch. Terminates the
/// current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src The abstract value to cast.
/// \param sourceType The formal source type.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, ConsumableManagedValue src, Type sourceType,
CanType targetType, SGFContext C,
llvm::function_ref<void(ManagedValue)> handleTrue,
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
ProfileCounter TrueCount = ProfileCounter(),
ProfileCounter FalseCount = ProfileCounter());
/// Emit a conditional checked cast branch, starting from an
/// expression. Terminates the current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src An expression which will generate the value to cast.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, Expr *src, Type targetType, SGFContext C,
llvm::function_ref<void(ManagedValue)> handleTrue,
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
ProfileCounter TrueCount = ProfileCounter(),
ProfileCounter FalseCount = ProfileCounter());
/// Emit the control flow for an optional 'bind' operation, branching to the
/// active failure destination if the optional value addressed by optionalAddr
/// is nil, and leaving the insertion point on the success branch.
///
/// NOTE: This operation does consume the managed value.
ManagedValue emitBindOptional(SILLocation loc,
ManagedValue optionalAddrOrValue,
unsigned depth);
void emitOptionalEvaluation(SILLocation loc, Type optionalType,
SmallVectorImpl<ManagedValue> &results,
SGFContext C,
llvm::function_ref<void(SmallVectorImpl<ManagedValue> &,
SGFContext primaryC)>
generateNormalResults);
//===--------------------------------------------------------------------===//
// Bridging thunks
//===--------------------------------------------------------------------===//
/// Convert a native Swift value to a value that can be passed as an argument
/// to or returned as the result of a function with the given calling
/// convention.
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
CanType nativeType,
CanType bridgedType,
SILType loweredBridgedType,
SGFContext C = SGFContext());
/// Convert a value received as the result or argument of a function with
/// the given calling convention to a native Swift value of the given type.
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
CanType bridgedType,
CanType nativeType,
SILType loweredNativeType,
SGFContext C = SGFContext(),
bool isCallResult = false);
/// Convert a bridged error type to the native Swift Error
/// representation. The value may be optional.
ManagedValue emitBridgedToNativeError(SILLocation loc, ManagedValue v);
/// Convert a value in the native Swift Error representation to
/// a bridged error type representation.
ManagedValue emitNativeToBridgedError(SILLocation loc, ManagedValue v,
CanType nativeType,
CanType bridgedType);
SILValue emitBridgeErrorForForeignError(SILLocation loc,
SILValue nativeError,
SILType bridgedResultType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
SILValue
emitBridgeReturnValueForForeignError(SILLocation loc,
SILValue result,
CanType formalNativeType,
CanType formalBridgedType,
SILType bridgedType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
SILValue
emitForeignErrorBlock(SILLocation loc, SILBasicBlock *errorBB,
std::optional<ManagedValue> errorSlot,
std::optional<ForeignAsyncConvention> foreignAsync);
SILValue
emitForeignErrorCheck(SILLocation loc,
SmallVectorImpl<ManagedValue> &directResults,
ManagedValue errorSlot, bool suppressErrorCheck,
const ForeignErrorConvention &foreignError,
std::optional<ForeignAsyncConvention> foreignAsync);
//===--------------------------------------------------------------------===//
// Re-abstraction thunks
//===--------------------------------------------------------------------===//
/// Convert a value with the abstraction patterns of the original type
/// to a value with the abstraction patterns of the substituted type.
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Convert a value with the abstraction patterns of the substituted
/// type to a value with the abstraction patterns of the original type.
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Transform the AST-level types in the function signature without an
/// abstraction or representation change.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
CanType inputType,
CanType outputType,
SGFContext ctx = SGFContext());
/// Most general form of the above.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
RValue emitTransformedValue(SILLocation loc, RValue &&input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SILType loweredResultTy,
SGFContext ctx = SGFContext());
/// Used for emitting SILArguments of bare functions, such as thunks.
void collectThunkParams(
SILLocation loc, SmallVectorImpl<ManagedValue> &params,
SmallVectorImpl<ManagedValue> *indirectResultParams = nullptr,
SmallVectorImpl<ManagedValue> *indirectErrorParams = nullptr);
/// Build the type of a function transformation thunk.
CanSILFunctionType buildThunkType(CanSILFunctionType &sourceType,
CanSILFunctionType &expectedType,
CanType &inputSubstType,
CanType &outputSubstType,
GenericEnvironment *&genericEnv,
SubstitutionMap &interfaceSubs,
CanType &dynamicSelfType,
bool withoutActuallyEscaping=false);
//===--------------------------------------------------------------------===//
// NoEscaping to Escaping closure thunk
//===--------------------------------------------------------------------===//
ManagedValue
createWithoutActuallyEscapingClosure(SILLocation loc,
ManagedValue noEscapingFunctionValue,
SILType escapingFnTy);
//===--------------------------------------------------------------------===//
// Differentiation thunks
//===--------------------------------------------------------------------===//
/// Get or create a thunk for reabstracting and self-reordering
/// differentials/pullbacks returned by user-defined JVP/VJP functions, and
/// apply it to the given differential/pullback.
///
/// If `reorderSelf` is true, reorder self so that it appears as:
/// - The last parameter, for differentials.
/// - The last result, for pullbacks.
ManagedValue getThunkedAutoDiffLinearMap(ManagedValue linearMap,
AutoDiffLinearMapKind linearMapKind,
CanSILFunctionType fromType,
CanSILFunctionType toType,
bool reorderSelf);
//===--------------------------------------------------------------------===//
// Back Deployment thunks
//===--------------------------------------------------------------------===//
/// Invokes an original function if it is available at runtime. Otherwise,
/// invokes a fallback copy of the function emitted into the client.
void emitBackDeploymentThunk(SILDeclRef thunk);
//===---------------------------------------------------------------------===//
// Distributed Actors
//===---------------------------------------------------------------------===//
/// Determine if the target `func` should be replaced with a
/// 'distributed thunk'.
///
/// This only applies to distributed functions when calls are made cross-actor
/// isolation. One notable exception is a distributed thunk calling the "real
/// underlying method", in which case (to avoid the thunk calling into itself,
/// the real method must be called).
///
/// Witness calls which may need to be replaced with a distributed thunk call
/// happen either when the target type is generic, or if we are inside an
/// extension on a protocol. This method checks if we are in a context
/// where we should be calling the distributed thunk of the `func` or not.
/// Notably, if we are inside a distributed thunk already and are trying to
/// apply distributed method calls, all those must be to the "real" method,
/// because the thunks' responsibility is to call the real method, so this
/// replacement cannot be applied (or we'd recursively keep calling the same
/// thunk via witness).
///
/// In situations which do not use a witness call, distributed methods are always
/// invoked Direct, and never ClassMethod, because distributed are effectively
/// final.
///
/// \param func the target func that we are trying to "apply"
/// \return true when the function should be considered for replacement
/// with distributed thunk when applying it
bool
shouldReplaceConstantForApplyWithDistributedThunk(FuncDecl *func) const;
/// Initializes the implicit stored properties of a distributed actor that correspond to
/// its transport and identity.
void emitDistributedActorImplicitPropertyInits(
ConstructorDecl *ctor, ManagedValue selfArg);
/// Initializes just the implicit identity property of a distributed actor.
/// \param selfVal a value corresponding to the actor's self
/// \param actorSystemVal a value corresponding to the actorSystem, to be used
/// to invoke its \p assignIdentity method.
void emitDistActorIdentityInit(ConstructorDecl *ctor,
SILLocation loc,
SILValue selfVal,
SILValue actorSystemVal);
/// Given a function representing a distributed actor factory, emits the
/// corresponding SIL function for it.
void emitDistributedActorFactory(FuncDecl *fd); // TODO(distributed): this is the "resolve"
void emitDistributedIfRemoteBranch(SILLocation Loc, SILValue selfValue,
Type selfTy, SILBasicBlock *isRemoteBB,
SILBasicBlock *isLocalBB);
/// Notify transport that actor has initialized successfully,
/// and is ready to receive messages.
void emitDistributedActorReady(
SILLocation loc, ConstructorDecl *ctor, ManagedValue actorSelf);
/// For a distributed actor, emits code to invoke the system's
/// resignID function.
///
/// Specifically, this code emits SIL that performs the call
///
/// \verbatim
/// self.actorSystem.resignID(self.id)
/// \endverbatim
///
/// using the current builder's state as the injection point.
///
/// \param actorDecl the declaration corresponding to the actor
/// \param actorSelf the SIL value representing the distributed actor instance
void emitDistributedActorSystemResignIDCall(SILLocation loc,
ClassDecl *actorDecl, ManagedValue actorSelf);
/// Emits check for remote actor and a branch that implements deallocating
/// deinit for remote proxy. Calls \p emitLocalDeinit to generate branch for
/// local actor.
void
emitDistributedRemoteActorDeinit(SILValue selfValue, DestructorDecl *dd,
bool isIsolated,
llvm::function_ref<void()> emitLocalDeinit);
//===--------------------------------------------------------------------===//
// Declarations
//===--------------------------------------------------------------------===//
void visitDecl(Decl *D) {
llvm_unreachable("Not yet implemented");
}
// Emitted as part of its storage.
void visitAccessorDecl(AccessorDecl *D) {}
void visitFuncDecl(FuncDecl *D);
/// \param generateDebugInfo Pattern bindings inside of capture list
/// expressions should not introduce new variables into the debug info.
void visitPatternBindingDecl(PatternBindingDecl *D,
bool generateDebugInfo = true);
void emitPatternBinding(PatternBindingDecl *D, unsigned entry,
bool generateDebugInfo);
std::unique_ptr<Initialization>
emitPatternBindingInitialization(Pattern *P, JumpDest failureDest,
bool generateDebugInfo = true);
void visitNominalTypeDecl(NominalTypeDecl *D) {
// No lowering support needed.
}
void visitTypeAliasDecl(TypeAliasDecl *D) {
// No lowering support needed.
}
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
// No lowering support needed.
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
// No lowering support needed.
}
void visitPoundDiagnosticDecl(PoundDiagnosticDecl *D) {
// No lowering support needed.
}
void visitVarDecl(VarDecl *D);
void visitMacroExpansionDecl(MacroExpansionDecl *D);
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
std::unique_ptr<Initialization>
emitInitializationForVarDecl(VarDecl *vd, bool immutable,
bool generateDebugInfo = true);
/// Emit the allocation for a local variable, provides an Initialization
/// that can be used to initialize it, and registers cleanups in the active
/// scope.
/// \param ArgNo optionally describes this function argument's
/// position for debug info.
std::unique_ptr<Initialization> emitLocalVariableWithCleanup(
VarDecl *D, std::optional<MarkUninitializedInst::Kind> kind,
unsigned ArgNo = 0, bool generateDebugInfo = true);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the current active formal evaluation scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitFormalAccessTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Provides an Initialization that can be used to initialize an already-
/// allocated temporary, and registers cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
useBufferAsTemporary(SILValue addr, const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
const TypeLowering &tempTL);
CleanupHandle enterDeallocBoxCleanup(SILValue box);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle
enterDormantFormalAccessTemporaryCleanup(SILValue temp, SILLocation loc,
const TypeLowering &tempTL);
/// Destroy and deallocate an initialized local variable.
void destroyLocalVariable(SILLocation L, VarDecl *D);
/// Destroy the class member.
void destroyClassMember(SILLocation L, ManagedValue selfValue, VarDecl *D);
/// Destroy the default actor implementation.
void emitDestroyDefaultActor(CleanupLocation cleanupLoc, SILValue selfValue);
/// Enter a cleanup to deallocate a stack variable.
CleanupHandle enterDeallocStackCleanup(SILValue address);
/// Enter a cleanup to deallocate a pack.
CleanupHandle enterDeallocPackCleanup(SILValue address);
/// Enter a cleanup to emit a ReleaseValue/DestroyAddr of the specified value.
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
/// Enter a cleanup to destroy all of the values in the given pack.
CleanupHandle enterDestroyPackCleanup(SILValue addr,
CanPackType formalPackType);
/// Enter a cleanup to destroy the preceding values in a pack-expansion
/// component of a pack.
///
/// \param limitWithinComponent - if non-null, the number of elements
/// to destroy in the pack expansion component; defaults to the
/// dynamic length of the expansion component
CleanupHandle enterPartialDestroyPackCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Enter a cleanup to destroy the following values in a
/// pack-expansion component of a pack. Note that this only destroys
/// the values *in that specific component*, not all the other values
/// in the pack.
///
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; any elements in the component that
/// *follow* this component will be destroyed. If nil, all the
/// elements in the component will be destroyed
CleanupHandle
enterPartialDestroyRemainingPackCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Enter a cleanup to destroy all of the components in a pack starting
/// at a particular component index.
CleanupHandle
enterDestroyRemainingPackComponentsCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex);
/// Enter a cleanup to destroy the preceding components of a pack,
/// leading up to (but not including) a particular component index.
CleanupHandle
enterDestroyPrecedingPackComponentsCleanup(SILValue addr,
CanPackType formalPackType,
unsigned componentIndex);
/// Enter a cleanup to destroy the preceding values in a pack-expansion
/// component of a tuple.
///
/// \param limitWithinComponent - if non-null, the number of elements
/// to destroy in the pack expansion component; defaults to the
/// dynamic length of the expansion component
CleanupHandle enterPartialDestroyTupleCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Enter a cleanup to destroy the following values in a
/// pack-expansion component of a tuple. Note that this only destroys
/// the values *in that specific component*, not all the other values
/// in the tuple.
///
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; any elements in the component that
/// *follow* this component will be destroyed. If nil, all the
/// elements in the component will be destroyed
CleanupHandle
enterPartialDestroyRemainingTupleCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Enter a cleanup to destroy all of the components in a tuple starting
/// at a particular component index.
CleanupHandle
enterDestroyRemainingTupleElementsCleanup(SILValue addr,
CanPackType inducedPackType,
unsigned componentIndex);
/// Copy the elements of a pack, which must consist of a single pack expansion,
/// into a tuple value having the same pack expansion and its sole element type.
void copyPackElementsToTuple(SILLocation loc, SILValue tupleAddr, SILValue pack,
CanPackType formalPackType);
/// Initialize a pack with the addresses of the elements of a tuple, which must
/// consist of a single pack expansion.
void projectTupleElementsToPack(SILLocation loc, SILValue tupleAddr, SILValue pack,
CanPackType formalPackType);
/// Return an owned managed value for \p value that is cleaned up using an end_lifetime instruction.
///
/// The end_lifetime cleanup is not placed into the ManagedValue itself and
/// thus can not be forwarded. This means that the ManagedValue is treated
/// as a +0 value. This means that the owned value will be copied by SILGen
/// if it is ever needed as a +1 value (meaning any time that the value
/// escapes).
///
/// DISCUSSION: end_lifetime ends the lifetime of an owned value in OSSA
/// without resulting in a destroy being emitted. This cleanup should only
/// be used for owned values that do not need to be destroyed if they do not
/// escape the current call frame but need to be copied if they escape.
ManagedValue emitManagedRValueWithEndLifetimeCleanup(SILValue value);
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle enterDeinitExistentialCleanup(CleanupState state,
SILValue addr,
CanType concreteFormalType,
ExistentialRepresentation repr);
/// Enter a cleanup to cancel the given task.
CleanupHandle enterCancelAsyncTaskCleanup(SILValue task);
// Enter a cleanup to cancel and destroy an AsyncLet as it leaves the scope.
CleanupHandle enterAsyncLetCleanup(SILValue alet, SILValue resultBuf);
/// Evaluate an Expr as an lvalue.
LValue emitLValue(Expr *E, SGFAccessKind accessKind,
LValueOptions options = LValueOptions());
RValue emitRValueForNonMemberVarDecl(SILLocation loc,
ConcreteDeclRef declRef,
CanType formalRValueType,
AccessSemantics semantics,
SGFContext C);
/// Emit an lvalue that directly refers to the given instance variable
/// (without going through getters or setters).
LValue emitPropertyLValue(SILLocation loc, ManagedValue base,
CanType baseFormalType, VarDecl *var,
LValueOptions options,
SGFAccessKind accessKind,
AccessSemantics semantics);
struct PointerAccessInfo {
CanType PointerType;
PointerTypeKind PointerKind;
SGFAccessKind AccessKind;
};
PointerAccessInfo getPointerAccessInfo(Type pointerType);
ManagedValue emitLValueToPointer(SILLocation loc, LValue &&lvalue,
PointerAccessInfo accessInfo);
struct ArrayAccessInfo {
Type PointerType;
Type ArrayType;
SGFAccessKind AccessKind;
};
ArrayAccessInfo getArrayAccessInfo(Type pointerType, Type arrayType);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, LValue &&lvalue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, ManagedValue arrayValue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitStringToPointer(SILLocation loc, ManagedValue stringValue,
Type pointerType);
class ForceTryEmission {
SILGenFunction &SGF;
ForceTryExpr *Loc;
JumpDest OldThrowDest;
public:
ForceTryEmission(SILGenFunction &SGF, ForceTryExpr *loc);
ForceTryEmission(const ForceTryEmission &) = delete;
ForceTryEmission &operator=(const ForceTryEmission &) = delete;
void finish();
~ForceTryEmission() {
if (Loc) finish();
}
};
/// Return forwarding substitutions for the archetypes in the current
/// function.
SubstitutionMap getForwardingSubstitutionMap();
/// Get the _Pointer protocol used for pointer argument operations.
ProtocolDecl *getPointerProtocol();
/// Returns the SILDeclRef to use for references to the given accessor.
SILDeclRef getAccessorDeclRef(AccessorDecl *accessor) {
return SGM.getAccessorDeclRef(accessor, F.getResilienceExpansion());
}
/// Given a lowered pack expansion type, produce a generic environment
/// sufficient for doing value operations on it and map the type into
/// the environment.
std::pair<GenericEnvironment*, SILType>
createOpenedElementValueEnvironment(SILType packExpansionTy);
GenericEnvironment *
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
ArrayRef<SILType*> eltTys);
GenericEnvironment *
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
ArrayRef<SILType*> eltTys,
ArrayRef<CanType> formalPackExpansionTys,
ArrayRef<CanType*> formalEltTys);
/// Emit a dynamic loop over a single pack-expansion component of a pack.
///
/// \param formalPackType - a pack type with the right shape for the
/// overall pack being iterated over
/// \param componentIndex - the index of the pack expansion component
/// within the formal pack type
/// \param startingAfterIndexWithinComponent - the index prior to the
/// first index within the component to dynamically visit; if null,
/// visitation will start at 0
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to dynamically visit; if null, all elements
/// will be visited
/// \param openedElementEnv - a set of opened element archetypes to bind
/// within the loop; can be null to bind no elements
/// \param reverse - if true, iterate the elements in reverse order,
/// starting at index limitWithinComponent - 1
/// \param emitBody - a function that will be called to emit the body of
/// the loop. It's okay if this has paths that exit the body of the loop,
/// but it should leave the insertion point set at the end.
///
/// The first parameter is the current index within the expansion
/// component, a value of type Builtin.Word. The second parameter is
/// that index as a pack indexing instruction that indexes into packs
/// with the shape of the pack expasion. The third parameter is the
/// current pack index within the overall pack, a pack indexing instruction
/// that indexes into packs with the shape of formalPackType.
///
/// This function will be called within a cleanups scope and with
/// InnermostPackExpansion set up properly for the context.
void emitDynamicPackLoop(
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
SILValue startingAfterIndexWithinComponent, SILValue limitWithinComponent,
GenericEnvironment *openedElementEnv, bool reverse,
llvm::function_ref<void(SILValue indexWithinComponent,
SILValue packExpansionIndex, SILValue packIndex)>
emitBody,
SILBasicBlock *loopLatch = nullptr);
/// A convenience version of dynamic pack loop that visits an entire
/// pack expansion component in forward order.
void emitDynamicPackLoop(
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
GenericEnvironment *openedElementEnv,
llvm::function_ref<void(SILValue indexWithinComponent,
SILValue packExpansionIndex, SILValue packIndex)>
emitBody,
SILBasicBlock *loopLatch = nullptr);
/// Emit a transform on each element of a pack-expansion component
/// of a pack, write the result into a pack-expansion component of
/// another pack.
///
/// \param inputPackAddr - the address of the input pack; the cleanup
/// on this pack should be a cleanup for just the pack component,
/// not for the entire pack
ManagedValue emitPackTransform(SILLocation loc,
ManagedValue inputPackAddr,
CanPackType inputFormalPackType,
unsigned inputComponentIndex,
SILValue outputPackAddr,
CanPackType outputFormalPackType,
unsigned outputComponentIndex,
bool isSimpleProjection,
bool outputIsPlusOne,
llvm::function_ref<ManagedValue(ManagedValue input,
SILType outputTy,
SGFContext context)> emitBody);
/// Emit a loop which destroys a prefix of a pack expansion component
/// of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// overall pack value
/// \param componentIndex - the index of the pack expansion component
/// within the formal pack type
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to destroy; if null, all elements in the
/// component will be destroyed
void emitPartialDestroyPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Emit a loop which destroys all the elements of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// overall pack value
void emitDestroyPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned beginIndex,
unsigned endIndex);
/// Emit instructions to destroy a suffix of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value; can be null if the
/// tuple type doesn't contain pack expansions
/// \param componentIndex - the index of the first component to
/// destroy in the tuple
void emitDestroyRemainingTupleElements(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex);
/// Emit a loop which destroys a prefix of a pack expansion component
/// of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value
/// \param componentIndex - the index of the pack expansion component
/// within the tuple
/// \param limitWithinComponent - the number of elements in a prefix of
/// the expansion component to destroy; if null, all elements in the
/// component will be destroyed
void emitPartialDestroyTuple(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue limitWithinComponent);
/// Emit a loop which destroys a suffix of a pack expansion component
/// of a tuple value.
///
/// \param tupleAddr - the address of the overall tuple value
/// \param inducedPackType - a pack type with the same shape as the
/// element types of the overall tuple value
/// \param componentIndex - the index of the pack expansion component
/// within the tuple
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; all elements *following* this index will
/// be destroyed
void emitPartialDestroyRemainingTuple(SILLocation loc,
SILValue tupleAddr,
CanPackType inducedPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// Emit a loop which destroys a suffix of a pack expansion component
/// of a pack value.
///
/// \param packAddr - the address of the overall pack value
/// \param formalPackType - a pack type with the same shape as the
/// component types of the overall pack value
/// \param componentIndex - the index of the pack expansion component
/// within the pack
/// \param currentIndexWithinComponent - the current index in the
/// pack expansion component; all elements *following* this index will
/// be destroyed
void emitPartialDestroyRemainingPack(SILLocation loc,
SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
SILValue currentIndexWithinComponent);
/// If context is init accessor, find a mapping between the given type
/// property and argument declaration synthesized for it.
ParamDecl *isMappedToInitAccessorArgument(VarDecl *property);
};
/// A utility class for saving and restoring the insertion point.
class SILGenSavedInsertionPoint {
SILGenFunction &SGF;
SILBasicBlock *SavedIP;
FunctionSection SavedSection;
public:
SILGenSavedInsertionPoint(
SILGenFunction &SGF, SILBasicBlock *newIP,
std::optional<FunctionSection> optSection = std::nullopt)
: SGF(SGF), SavedIP(SGF.B.getInsertionBB()),
SavedSection(SGF.CurFunctionSection) {
FunctionSection section = (optSection ? *optSection : SavedSection);
assert((section != FunctionSection::Postmatter ||
SGF.StartOfPostmatter != SGF.F.end()) &&
"trying to move to postmatter without a registered start "
"of postmatter?");
SGF.B.setInsertionPoint(newIP);
SGF.CurFunctionSection = section;
}
SILGenSavedInsertionPoint(const SILGenSavedInsertionPoint &) = delete;
SILGenSavedInsertionPoint &
operator=(const SILGenSavedInsertionPoint &) = delete;
~SILGenSavedInsertionPoint() {
if (SavedIP) {
SGF.B.setInsertionPoint(SavedIP);
} else {
SGF.B.clearInsertionPoint();
}
SGF.CurFunctionSection = SavedSection;
}
};
} // end namespace Lowering
} // end namespace swift
#endif