Files
swift-mirror/lib/SILOptimizer/Transforms/DestroyAddrHoisting.cpp
Nate Chandler 74c4bc9c55 [DAH] Bail on pointer use if ignoring barriers.
Unknown uses of raw pointers should not result in bailing out when an
address is lexical--the destroy of the address will already not be
hoisted over any instructions which may access pointers.  If the address
is not lexical however (such as any address when lexical lifetimes are
disabled), that rationale does not apply, so unknown uses of raw
pointers must cause hoisting to bail.

rdar://133969821
2024-08-27 16:18:39 -07:00

1119 lines
42 KiB
C++

//===--- DestroyAddrHoisting.cpp - SSA-based destroy_addr hoisting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This is a light-weight utility for hoisting destroy instructions for unique
/// storage--typically alloc_stack or owned incoming arguments. Shrinking an
/// object's memory lifetime can allow removal of copy_addr and other
/// optimization.
///
/// This algorithm is:
/// - Incremental
/// - SSA-based
/// - Canonical
/// - Free from alias analysis
///
/// Incremental: Handle a single in-memory value at a time. The value's address
/// typically originates from an alloc_stack or owned function argument
/// (@in). It does not depend on any analysis result, which would need to be
/// preserved by a pass.
///
/// SSA-based: Starting with uniquely identified (exclusive) storage,
/// discovers all known uses based on recognizable SIL patterns. Bails-out on
/// unknown uses. Derivation of a raw pointer is considered a "known use".
///
/// Canonical: Assumes that aggregate values, which are allocated in a single
/// operation, are also destroyed in a single operation. This canonical form is
/// not fully enforced, so violations result in a bail-out.
///
/// Free from alias analysis: this only handles exclusively identified
/// addresses to owned values, which cannot be derived from object references.
///
/// ----------------------------------------------------------------------------
///
/// DestroyAddr hoisting stops at either a direct use, or a deinitialization
/// barrier. Direct uses are checked by guaranteeing that all storage uses are
/// known.
///
/// Deinitialization barriers:
///
/// Case #1. Weak reference loads: Any load of a weak or unowned referenceto an
/// object that may be deallocated when this variable is destroyed. Any use of
/// the weak reference is considered a barrier, even if the referenced object is
/// not accessed. This only applies to loads within the current lexical
/// scope. Programmers must properly check escaping weak references for null.
///
/// Case #2. Derived pointers: Any memory access based on a raw pointer to
/// memory that may be deallocated when this variable is destroyed. This only
/// applies to pointer access within this variable's lexical scope. Programmers
/// must manage escaping pointers explicitly via Builtin.fixLifetime.
///
/// Case #3. Synchronization points: If the object potentially has a custom
/// deinitializer with side effects, then any external function call, which may
/// contain a memory barrier or system call, prevents hoisting. If the external
/// function call is annotated as "read-only", then it is safe. Since Swift does
/// not directly support atomics, no SIL instructions are currently considered
/// synchronization points.
///
/// ----------------------------------------------------------------------------
///
/// TODO: replace the destroy hoisting in CopyForwarding::forwardCopiesOf and
/// ensure related tests still pass. This requires hoisting over certain
/// calls. We can do this as long as the call takes a copy of the storage value
/// as an argument. The copy will be guarded by the callee's lexical scope, so
/// the deinits cannot be invoked by the hoisted destroy (in fact it should be
/// possible to eliminate the destroy).
///
/// TODO: As a utility, hoistDestroys should be repeatable. Subsequent runs
/// without changing input should have no effect, including putting new
/// instructions on a worklist. MergeDestroys currently breaks this because the
/// destroys are inserted first before they are merged. This will trigger the
/// createdNewInst callback and cause hadCallbackInvocation() to return true
/// even when the merged result is identical to the input. Fix this by keeping
/// track of the newly created destroys, defer calling createdNewInst, and defer
/// deleting dead instructions. When merging, check if the merged destroy is
/// inserted at the old destroy to reuse it and bypass triggering callbacks.
///
/// TODO: enforce an invariant that destroy_addrs jointly post-dominate any
/// exclusive owned address, that would simplify the algorithm.
///
/// ===--------------------------------------------------------------------===//
#define DEBUG_TYPE "destroy-addr-hoisting"
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/Reachability.h"
#include "swift/SILOptimizer/Analysis/VisitBarrierAccessScopes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
using namespace swift;
namespace {
/// Step #1: Find all known uses of the unique storage object.
struct KnownStorageUses : UniqueStorageUseVisitor {
bool preserveDebugInfo;
bool ignoreDeinitBarriers;
SmallPtrSet<SILInstruction *, 16> storageUsers;
llvm::SmallSetVector<SILInstruction *, 4> originalDestroys;
SmallPtrSet<SILInstruction *, 4> debugInsts;
KnownStorageUses(AccessStorage storage, SILFunction *function,
bool ignoreDeinitBarriers)
: UniqueStorageUseVisitor(storage, function),
preserveDebugInfo(function->preserveDebugInfo()),
ignoreDeinitBarriers(ignoreDeinitBarriers) {}
bool empty() const {
return storageUsers.empty() && originalDestroys.empty() &&
debugInsts.empty();
}
SILFunction *getFunction() const { return function; }
AccessStorage getStorage() const { return storage; }
// Return true if all leaf users of the root address are recognized.
//
// Populate addressUsers, originalDestroys, and debugInsts.
bool findUses() {
assert(empty() && "already initialized");
return UniqueStorageUseVisitor::findUses(*this);
}
protected:
KnownStorageUses(KnownStorageUses const &) = delete;
KnownStorageUses &operator=(KnownStorageUses const &) = delete;
bool recordUser(SILInstruction *user) {
storageUsers.insert(user);
return true;
}
bool visitBeginAccess(Operand *use) override {
auto *bai = cast<BeginAccessInst>(use->getUser());
for (auto *eai : bai->getEndAccesses()) {
storageUsers.insert(eai);
}
return true;
}
bool visitLoad(Operand *use) override { return recordUser(use->getUser()); }
bool visitStore(Operand *use) override { return recordUser(use->getUser()); }
bool visitDestroy(Operand *use) override {
originalDestroys.insert(use->getUser());
return true;
}
bool visitDealloc(Operand *use) override { return true; }
bool visitDebugUse(Operand *use) override {
if (preserveDebugInfo) {
storageUsers.insert(use->getUser());
} else {
debugInsts.insert(use->getUser());
}
return true;
}
bool visitUnknownUse(Operand *use) override {
auto *user = use->getUser();
if (isa<BuiltinRawPointerType>(use->get()->getType().getASTType()) &&
!ignoreDeinitBarriers) {
// When respecting deinit barriers, destroy hoisting considers
// address_to_pointer to be a leaf use because any potential pointer
// access is already considered to be a barrier to hoisting (because as a
// pointer access it's a deinitialization barrier). Consequently, any
// instruction that uses a value produced by address_to_pointer isn't
// regarded as a storage use.
//
// On the other hand, when _not_ respecting deinit barriers, potential
// pointer accesses are _not_ already considered to be barriers to
// hoisting (deinit barriers being ignored); so uses of the pointer must
// obstruct all hoisting.
return true;
}
LLVM_DEBUG(llvm::dbgs() << "Unknown user " << *user);
return false;
}
};
class DestroyReachability;
/// Step #2: Perform backward dataflow from KnownStorageUses.originalDestroys to
/// KnownStorageUses.storageUsers to find deinitialization barriers.
class DeinitBarriers final {
BasicCalleeAnalysis *calleeAnalysis;
public:
// Instructions beyond which a destroy_addr cannot be hoisted, reachable from
// a destroy_addr. Deinit barriers or storage uses.
llvm::SmallSetVector<SILInstruction *, 4> barrierInstructions;
// Phis beyond which a destroy_addr cannot be hoisted, reachable from a
// destroy_addr.
llvm::SmallSetVector<SILBasicBlock *, 4> barrierPhis;
// Blocks beyond the end of which a destroy_addr cannot be hoisted.
llvm::SmallSetVector<SILBasicBlock *, 4> barrierBlocks;
// Debug instructions that are no longer within this lifetime after shrinking.
llvm::SmallSetVector<SILInstruction *, 4> deadUsers;
// The access scopes which are hoisting barriers.
//
// They are hoisting barriers if they include any barriers. We need to be
// sure not to hoist a destroy_addr into an access scope and by doing so cause
// a deinit which had previously executed outside an access scope to start
// executing within it--that could violate exclusivity.
SmallPtrSet<BeginAccessInst *, 8> barrierAccessScopes;
explicit DeinitBarriers(bool ignoreDeinitBarriers,
const KnownStorageUses &knownUses,
SILFunction *function,
BasicCalleeAnalysis *calleeAnalysis)
: calleeAnalysis(calleeAnalysis),
ignoreDeinitBarriers(ignoreDeinitBarriers), knownUses(knownUses) {
auto rootValue = knownUses.getStorage().getRoot();
assert(rootValue && "HoistDestroys requires a single storage root");
// null for function args
storageDefInst = rootValue->getDefiningInstruction();
}
void compute() { DestroyReachability(*this).solve(); }
bool isBarrier(SILInstruction *instruction) const {
return classificationIsBarrier(classifyInstruction(instruction));
};
friend class DestroyReachability;
private:
DeinitBarriers(DeinitBarriers const &) = delete;
DeinitBarriers &operator=(DeinitBarriers const &) = delete;
bool ignoreDeinitBarriers;
const KnownStorageUses &knownUses;
SILInstruction *storageDefInst = nullptr;
enum class Classification { DeadUser, Barrier, Other };
Classification classifyInstruction(SILInstruction *inst) const;
static bool classificationIsBarrier(Classification classification);
/// Operates backward reachability and access scope visitor. Implements the
/// interfaces involved.
///
/// Implements IterativeBackwardReachability::findBarriers::Visitor
/// Implements VisitBarrierAccessScopes::Visitor
/// Implements IterativeBackwardReachability::Effects
/// Implements VisitBarrierAccessScopes::Effects
class DestroyReachability final {
using Dataflow = IterativeBackwardReachability<DestroyReachability>;
using Effect = Dataflow::Effect;
using ScopeVisitor =
VisitBarrierAccessScopes<DestroyReachability, DestroyReachability>;
DeinitBarriers &result;
Dataflow::Result reachability;
Dataflow dataflow;
std::optional<SmallVector<SILBasicBlock *, 16>> cachedRoots;
bool recordDeadUsers = false;
public:
DestroyReachability(DeinitBarriers &result)
: result(result), reachability(result.knownUses.getFunction()),
dataflow(Dataflow::untilInitialBlock(
result.knownUses.getFunction(),
result.storageDefInst ? result.storageDefInst->getParent()
: nullptr,
*this, reachability)) {}
void solve();
private:
friend Dataflow;
friend ScopeVisitor;
/// IterativeBackwardReachability::Effects
/// VisitBarrierAccessScopes::Effects
auto gens() { return result.knownUses.originalDestroys; }
Effect effectForInstruction(SILInstruction *instruction);
Effect effectForPhi(SILBasicBlock *block);
/// VisitBarrierAccessScopes::Effects
bool isLocalGen(SILInstruction *instruction) {
return reachability.localGens.contains(instruction);
}
auto localGens() { return reachability.localGens; }
/// IterativeBackwardReachability::findBarriers::Visitor:
void visitBarrierInstruction(SILInstruction *instruction) {
result.barrierInstructions.insert(instruction);
}
void visitBarrierPhi(SILBasicBlock *block) {
result.barrierPhis.insert(block);
}
void visitBarrierBlock(SILBasicBlock *block) {
result.barrierBlocks.insert(block);
}
void visitInitialBlock(SILBasicBlock *block) {
result.barrierBlocks.insert(block);
}
/// VisitBarrierAccessScopes::Visitor
ArrayRef<SILBasicBlock *> roots();
bool isInRegion(SILBasicBlock *block) {
return reachability.discoveredBlocks.contains(block);
}
void visitBarrierAccessScope(BeginAccessInst *bai) {
result.barrierAccessScopes.insert(bai);
for (auto *eai : bai->getEndAccesses()) {
dataflow.addKill(eai);
}
}
};
};
DeinitBarriers::Classification
DeinitBarriers::classifyInstruction(SILInstruction *inst) const {
if (knownUses.debugInsts.contains(inst)) {
return Classification::DeadUser;
}
if (inst == storageDefInst) {
return Classification::Barrier;
}
if (knownUses.storageUsers.contains(inst)) {
return Classification::Barrier;
}
if (!ignoreDeinitBarriers && isDeinitBarrier(inst, calleeAnalysis)) {
return Classification::Barrier;
}
if (auto *eai = dyn_cast<EndAccessInst>(inst)) {
if (barrierAccessScopes.contains(eai->getBeginAccess())) {
return Classification::Barrier;
}
}
return Classification::Other;
}
bool DeinitBarriers::classificationIsBarrier(Classification classification) {
switch (classification) {
case Classification::DeadUser:
case Classification::Other:
return false;
case Classification::Barrier:
return true;
}
llvm_unreachable("exhaustive switch is not exhaustive?!");
}
DeinitBarriers::DestroyReachability::Effect
DeinitBarriers::DestroyReachability::effectForInstruction(
SILInstruction *instruction) {
if (result.knownUses.originalDestroys.contains(instruction))
return Effect::Gen();
auto classification = result.classifyInstruction(instruction);
if (recordDeadUsers && classification == Classification::DeadUser)
result.deadUsers.insert(instruction);
return result.classificationIsBarrier(classification) ? Effect::Kill()
: Effect::NoEffect();
}
DeinitBarriers::DestroyReachability::Effect
DeinitBarriers::DestroyReachability::effectForPhi(SILBasicBlock *block) {
bool isBarrier =
llvm::any_of(block->getPredecessorBlocks(), [&](auto *predecessor) {
return result.isBarrier(predecessor->getTerminator());
});
return isBarrier ? Effect::Kill() : Effect::NoEffect();
}
void DeinitBarriers::DestroyReachability::solve() {
dataflow.initialize();
ScopeVisitor visitor(result.knownUses.getFunction(), *this, *this);
visitor.visit();
dataflow.solve();
recordDeadUsers = true;
dataflow.findBarriers(*this);
}
/// Algorithm for hoisting the destroys of a single uniquely identified storage
/// object.
class HoistDestroys {
SILValue storageRoot;
SILFunction *function;
SILModule &module;
TypeExpansionContext typeExpansionContext;
bool ignoreDeinitBarriers;
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs;
InstructionDeleter &deleter;
BasicCalleeAnalysis *calleeAnalysis;
// Book-keeping for the rewriting stage.
SmallPtrSet<SILInstruction *, 4> reusedDestroys;
BasicBlockSetVector destroyMergeBlocks;
public:
HoistDestroys(SILValue storageRoot, bool ignoreDeinitBarriers,
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
InstructionDeleter &deleter,
BasicCalleeAnalysis *calleeAnalysis)
: storageRoot(storageRoot), function(storageRoot->getFunction()),
module(function->getModule()), typeExpansionContext(*function),
ignoreDeinitBarriers(ignoreDeinitBarriers),
remainingDestroyAddrs(remainingDestroyAddrs), deleter(deleter),
calleeAnalysis(calleeAnalysis), destroyMergeBlocks(getFunction()) {}
bool perform();
protected:
SILFunction *getFunction() const { return storageRoot->getFunction(); }
bool foldBarrier(SILInstruction *barrier, const AccessStorage &storage,
const DeinitBarriers &deinitBarriers);
bool foldBarrier(SILInstruction *barrier, const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers);
bool checkFoldingBarrier(SILInstruction *instruction,
SmallVectorImpl<LoadInst *> &loads,
SmallVectorImpl<CopyAddrInst *> &copies,
SmallPtrSetImpl<AccessPath::PathNode> &leaves,
SmallPtrSetImpl<AccessPath::PathNode> &trivialLeaves,
const AccessStorage &storage,
const DeinitBarriers &deinitBarriers);
void insertDestroy(SILInstruction *barrier, SILInstruction *insertBefore,
const KnownStorageUses &knownUses);
void createDestroy(SILInstruction *insertBefore, const SILDebugScope *scope);
void createSuccessorDestroys(SILBasicBlock *barrierBlock);
bool rewriteDestroys(const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers);
void mergeDestroys(SILBasicBlock *mergeBlock);
};
} // namespace
bool HoistDestroys::perform() {
auto storage = AccessStorage::computeInScope(storageRoot);
if (!storage.isUniquelyIdentified() &&
storage.getKind() != AccessStorage::Kind::Nested)
return false;
KnownStorageUses knownUses(storage, getFunction(), ignoreDeinitBarriers);
if (!knownUses.findUses())
return false;
DeinitBarriers deinitBarriers(ignoreDeinitBarriers, knownUses, getFunction(),
calleeAnalysis);
deinitBarriers.compute();
// No SIL changes happen before rewriting.
return rewriteDestroys(storage, knownUses, deinitBarriers);
}
bool HoistDestroys::rewriteDestroys(const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers) {
// Place a new destroy after each barrier instruction.
for (SILInstruction *barrier : deinitBarriers.barrierInstructions) {
auto *barrierBlock = barrier->getParent();
if (barrier != barrierBlock->getTerminator()) {
if (!foldBarrier(barrier, storage, knownUses, deinitBarriers))
insertDestroy(barrier, barrier->getNextInstruction(), knownUses);
continue;
}
for (auto *successor : barrierBlock->getSuccessorBlocks()) {
insertDestroy(barrier, &successor->front(), knownUses);
}
}
// Place a new destroy at each CFG edge in which the successor's beginning is
// reached but the predecessors end is not reached.
for (auto *block : deinitBarriers.barrierPhis) {
// The destroy does not reach above the block's phi.
insertDestroy(nullptr, &block->front(), knownUses);
}
for (auto *block : deinitBarriers.barrierBlocks) {
// The destroy does not reach the end of any predecessors.
insertDestroy(nullptr, &block->front(), knownUses);
}
// Delete dead users before merging destroys.
for (auto *deadInst : deinitBarriers.deadUsers) {
deleter.forceDelete(deadInst);
}
for (auto *destroyInst : knownUses.originalDestroys) {
if (reusedDestroys.contains(destroyInst))
continue;
remainingDestroyAddrs.erase(destroyInst);
deleter.forceDelete(destroyInst);
}
deleter.cleanupDeadInstructions();
for (auto *mergeBlock : destroyMergeBlocks) {
mergeDestroys(mergeBlock);
}
return deleter.hadCallbackInvocation();
}
/// Try to fold the destroy_addr with the specified barrier, or a backwards
/// sequence of instructions that it begins.
///
/// Do the following kinds of folds:
///
/// - loads:
/// given: load [copy] %addr
/// destroy_addr %addr
/// yield: load [take]
/// - copy_addrs:
/// given: copy_addr %addr to ...
/// destroy_addr %addr
/// yield: copy_addr [take] %addr
///
/// Additionally, generalize this to subobjects. If there is a sequence of
/// copy_addrs and loads that covers all the subobjects of %addr. Given
/// projections %subobject_1 and %subobject_2 out of %addr which fully cover all
/// the non-trivial fields of the recursive type-tree of %addr, fold
///
/// load [copy] %subobject_1
/// copy_addr %subobject_2 to ...
/// destroy_addr %addr
///
/// into
///
/// load [take] %subobject_1
/// copy_addr [take] %subobject_2 to ...
///
/// so long as all the loads and copy_addrs occur within the same block.
bool HoistDestroys::foldBarrier(SILInstruction *barrier,
const AccessStorage &storage,
const DeinitBarriers &deinitBarriers) {
// The load [copy]s which will be folded into load [take]s if folding is
// possible.
llvm::SmallVector<LoadInst *, 4> loads;
// The copy_addrs which will be folded into copy_addr [take]s if folding is
// possible.
llvm::SmallVector<CopyAddrInst *, 4> copies;
// The non-trivial storage leaves of the root storage all of which must be
// destroyed exactly once in the sequence of instructions prior to the
// destroy_addr in order for folding to occur.
llvm::SmallPtrSet<AccessPath::PathNode, 16> leaves;
// The trivial storage leaves of the root storage. They needn't be destroyed
// in the sequence prior to the destroy_addr, but their uses may obstruct
// folding. For example, given an %object and %triv a trivial subobject
//
// load [copy] %object
// load [trivial] %triv
// destroy_addr %object
//
// it isn't legal to fold the destroy_addr into the load of %object like
//
// load [take] %object
// load [trivial] %triv
//
// because the memory location %triv is no longer valid. In general, it would
// be fine to support folding over accesses of trivial subobjects so long as
// they occur prior to the access to some nontrivial subobject that contains
// it.
SmallPtrSet<AccessPath::PathNode, 16> trivialLeaves;
bool succeeded = visitProductLeafAccessPathNodes(
storageRoot, typeExpansionContext, module,
[&](AccessPath::PathNode node, SILType ty) {
if (ty.isTrivial(*function))
return;
leaves.insert(node);
});
if (!succeeded) {
// [invalid_access_path] The access path to storageRoot isn't understood.
// It can't be determined whether all of its leaves have been visited, so
// foldability can't be determined. Bail.
return false;
}
for (auto *instruction = barrier; instruction != nullptr;
instruction = instruction->getPreviousInstruction()) {
if (checkFoldingBarrier(instruction, loads, copies, leaves, trivialLeaves,
storage, deinitBarriers))
return false;
// If we have load [copy]s or copy_addrs of projections out of the root
// storage that cover all non-trivial product leaves, then we can fold!
//
// Stop looking for instructions to fold.
if (leaves.empty())
break;
}
if (!leaves.empty())
return false;
for (auto *load : loads) {
assert(load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy);
load->setOwnershipQualifier(LoadOwnershipQualifier::Take);
}
for (auto *copy : copies) {
assert(!copy->isTakeOfSrc());
copy->setIsTakeOfSrc(IsTake);
}
return true;
}
/// Whether the specified instruction is a barrier to folding.
///
/// TODO: This is a bit more conservative that it needs to be in a couple of
/// ways:
///
/// (1) even if we've already seen a leaf, we could still fold, in certain
/// cases, we should be able to fold anyway. For example, given projections
/// %p1 and %p2 of some root storage %a, in the following scenario:
///
/// %p1 = <PROJECT> %a
/// %p2 = <PROJECT> %a
/// %v1 = load [copy] %p1
/// %v2_1 = load [copy] %p2
/// %v2_1 = load [copy] %p2
/// destroy_addr %a
///
/// we could fold destroy_addr %a into the first load [copy] %p2 and the
/// load [copy] %p1:
///
/// %v1 = load [take] %p1
/// %v2_1 = load [copy] %p2
/// %v2_2 = load [take] %p1
///
/// And indeed we can do that for loads from a subprojection %p2_sub of
/// %p2; the following
///
/// %v1 = load [copy] %p1
/// %v2_sub = load [copy] %p2_sub
/// %v2 = load [copy] %p2
///
/// could be folded to
///
/// %v1 = load [take] %p1
/// %v2_sub = load [copy] %p2_sub
/// %v2 = load [take] %p2
///
/// (2) We should be able to continue folding over a load [trivial] so long as
/// the instructions that we're folding with don't destroy an aggregate that
/// contains the projection which is the target of the load [trivial]. For
/// example, given
///
/// %addr = alloc_stack %(X, I)
/// %x_addr = tuple_element_addr %addr : $*(X, I), 0
/// %i_addr = tuple_element_addr %addr : $*(X, I), 1
/// %x = load [copy] %x_addr : $*X
/// %i = load [trivial] %i_addr : $*I
/// destroy_addr %addr
///
/// we should be able to fold the destroy_addr of the tuple with the load [copy]
/// and ignore the load [trivial].
///
/// Doing this is complicated by the fact that we can't ignore the load
/// [trivial] if the load [copy] is of the whole tuple. If we have instead
///
/// %addr = alloc_stack %(X, I)
/// %x_addr = tuple_element_addr %addr : $*(X, I), 0
/// %i_addr = tuple_element_addr %addr : $*(X, I), 1
/// %x = load [copy] %addr : $*(X, I)
/// %i = load [trivial] %i_addr : $*I
/// destroy_addr %addr
///
/// then we cannot fold. If we did, we would end up with invalid SIL:
///
/// %x = load [take] %addr
/// %i = load [trivial] %i_addr
bool HoistDestroys::checkFoldingBarrier(
SILInstruction *instruction, SmallVectorImpl<LoadInst *> &loads,
SmallVectorImpl<CopyAddrInst *> &copies,
SmallPtrSetImpl<AccessPath::PathNode> &leaves,
SmallPtrSetImpl<AccessPath::PathNode> &trivialLeaves,
const AccessStorage &storage, const DeinitBarriers &deinitBarriers) {
// The address of a projection out of the root storage which would be
// folded if folding is possible.
//
// If no such address is found, we need to check whether the instruction
// is a barrier.
SILValue address;
if (auto *load = dyn_cast<LoadInst>(instruction)) {
auto loadee = load->getOperand();
auto relativeAccessStorage = RelativeAccessStorageWithBase::compute(loadee);
if (relativeAccessStorage.getStorage().hasIdenticalStorage(storage)) {
// If the access path from the loaded address to its root storage involves
// a (layout non-equivalent) typecast--a load [take] of the casted address
// would not be equivalent to a load [copy] followed by a destroy_addr of
// the corresponding uncast projection--the truncated portion might have
// refcounted components.
if (relativeAccessStorage.cast == AccessStorageCast::Type)
return true;
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
address = loadee;
loads.push_back(load);
} else {
assert(loadee->getType().isTrivial(*load->getFunction()));
return true;
}
}
} else if (auto *copy = dyn_cast<CopyAddrInst>(instruction)) {
auto source = copy->getSrc();
auto relativeAccessStorage = RelativeAccessStorageWithBase::compute(source);
if (relativeAccessStorage.getStorage().hasIdenticalStorage(storage)) {
// If the access path from the copy_addr'd address to its root storage
// involves a (layout non-equivalent) typecast--a copy_addr [take] of the
// casted address would not be equivalent to a copy_addr followed by a
// destroy_addr of the corresponding uncast projection--the truncated
// portion might have refcounted components.
if (relativeAccessStorage.cast == AccessStorageCast::Type)
return true;
address = source;
copies.push_back(copy);
}
}
if (address) {
// We found a relevant instruction that is operating on a projection out
// of the root storage which would be folded if folding were possible.
// Find its nontrivial product leaves and remove them from the set of
// leaves of the root storage which we're wating to see.
bool alreadySawLeaf = false;
bool alreadySawTrivialSubleaf = false;
auto succeeded = visitProductLeafAccessPathNodes(
address, typeExpansionContext, module,
[&](AccessPath::PathNode node, SILType ty) {
if (ty.isTrivial(*function)) {
bool inserted = !trivialLeaves.insert(node).second;
alreadySawTrivialSubleaf = alreadySawTrivialSubleaf || inserted;
return;
}
bool erased = leaves.erase(node);
alreadySawLeaf = alreadySawLeaf || !erased;
});
(void)succeeded;
// [invalid_access_path] The access path to storageRoot was understood, and
// address has identical storage to its storage. The access path to address
// must be valid.
assert(succeeded);
if (alreadySawLeaf) {
// We saw this non-trivial product leaf already. That means there are
// multiple load [copy]s or copy_addrs of at least one product leaf
// before (walking backwards from the hoisting point) there are
// instructions that load or copy from all the non-trivial leaves.
// Give up on folding.
return true;
}
if (alreadySawTrivialSubleaf) {
// We saw this trivial leaf already. That means there was some later
// load [copy] or copy_addr of it. Give up on folding.
return true;
}
} else if (deinitBarriers.isBarrier(instruction)) {
// We didn't find an instruction that was both
// - relevant (i.e. a copy_addr or a load [take])
// - operating on a projection of the root storage
// Additionally:
// - we can't ignore whether it's a barrier
// - and it IS a barrier.
// We can't fold.
return true;
}
return false;
}
bool HoistDestroys::foldBarrier(SILInstruction *barrier,
const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers) {
if (auto *eai = dyn_cast<EndAccessInst>(barrier)) {
auto *bai = eai->getBeginAccess();
// Don't hoist a destroy into an unrelated access scope.
if (stripAccessMarkers(bai) != stripAccessMarkers(storageRoot))
return false;
SILInstruction *instruction = eai;
while ((instruction = instruction->getPreviousInstruction())) {
if (instruction == bai)
return false;
if (foldBarrier(instruction, storage, deinitBarriers))
return true;
if (deinitBarriers.isBarrier(instruction))
return false;
}
}
return foldBarrier(barrier, storage, deinitBarriers);
}
// \p barrier may be null if the destroy is at function entry.
void HoistDestroys::insertDestroy(SILInstruction *barrier,
SILInstruction *insertBefore,
const KnownStorageUses &knownUses) {
if (auto *branch = dyn_cast<BranchInst>(insertBefore)) {
destroyMergeBlocks.insert(branch->getDestBB());
}
// Avoid mutating SIL for no reason. This could lead to infinite loops.
if (isa<DestroyAddrInst>(insertBefore) ||
isa<DestroyValueInst>(insertBefore)) {
if (llvm::find(knownUses.originalDestroys, insertBefore) !=
knownUses.originalDestroys.end()) {
reusedDestroys.insert(insertBefore);
return;
}
}
const SILDebugScope *scope =
barrier ? barrier->getDebugScope() : getFunction()->getDebugScope();
createDestroy(insertBefore, scope);
}
void HoistDestroys::createDestroy(SILInstruction *insertBefore,
const SILDebugScope *scope) {
auto loc = RegularLocation::getAutoGeneratedLocation();
SILInstruction *newDestroy;
if (storageRoot->getType().isAddress()) {
newDestroy =
SILBuilder(insertBefore, scope).createDestroyAddr(loc, storageRoot);
} else {
newDestroy =
SILBuilder(insertBefore, scope).createDestroyValue(loc, storageRoot);
}
deleter.getCallbacks().createdNewInst(newDestroy);
}
void HoistDestroys::mergeDestroys(SILBasicBlock *mergeBlock) {
SmallVector<SILInstruction *, 4> deadDestroys;
for (auto *predecessors : mergeBlock->getPredecessorBlocks()) {
auto *tailDestroy = predecessors->getTerminator()->getPreviousInstruction();
if (!tailDestroy || (!isa<DestroyAddrInst>(tailDestroy) &&
!isa<DestroyValueInst>(tailDestroy))) {
return;
}
if (tailDestroy->getOperand(0) != storageRoot)
return;
deadDestroys.push_back(tailDestroy);
}
if (deadDestroys.size() < 2) // ignore trivial fall-thru
return;
createDestroy(&mergeBlock->front(), deadDestroys[0]->getDebugScope());
for (auto *deadDestroy : deadDestroys) {
remainingDestroyAddrs.erase(deadDestroy);
deleter.forceDelete(deadDestroy);
}
}
// =============================================================================
// Top-Level API
// =============================================================================
bool hoistDestroys(SILValue root, bool ignoreDeinitBarriers,
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
InstructionDeleter &deleter,
BasicCalleeAnalysis *calleeAnalysis) {
LLVM_DEBUG(llvm::dbgs() << "Performing destroy hoisting on " << root);
// Don't canonicalize the lifetimes of addresses of move-only type.
// According to language rules, they are fixed.
if (root->getType().isMoveOnly())
return false;
SILFunction *function = root->getFunction();
if (!function)
return false;
// The algorithm assumes no critical edges.
assert(function->hasOwnership() && "requires OSSA");
// If lexical lifetimes aren't enabled, then deinit barriers aren't respected.
auto &module = function->getModule();
auto enableLexicalLifetimes =
module.getASTContext().SILOpts.supportsLexicalLifetimes(module);
ignoreDeinitBarriers = ignoreDeinitBarriers || !enableLexicalLifetimes;
return HoistDestroys(root, ignoreDeinitBarriers, remainingDestroyAddrs,
deleter, calleeAnalysis)
.perform();
}
// =============================================================================
// Pipeline Pass
// =============================================================================
namespace {
class DestroyAddrHoisting : public swift::SILFunctionTransform {
void run() override;
};
} // end anonymous namespace
// TODO: Handle alloc_box the same way, as long as the box doesn't escape.
//
// TODO: Handle address and boxes that are captured in no-escape closures.
void DestroyAddrHoisting::run() {
if (!getFunction()->hasOwnership())
return;
InstructionDeleter deleter;
bool changed = false;
llvm::SmallVector<AllocStackInst *, 4> asis;
llvm::SmallVector<BeginAccessInst *, 4> bais;
llvm::SmallVector<StoreInst *, 4> sis;
llvm::SmallVector<CopyAddrInst *, 4> cais;
// Collect the instructions that we'll be transforming.
for (auto &block : *getFunction()) {
for (auto &inst : block) {
if (auto *asi = dyn_cast<AllocStackInst>(&inst)) {
asis.push_back(asi);
} else if (auto *bai = dyn_cast<BeginAccessInst>(&inst)) {
if (bai->getAccessKind() == SILAccessKind::Modify) {
bais.push_back(bai);
}
} else if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
sis.push_back(si);
}
} else if (auto *cai = dyn_cast<CopyAddrInst>(&inst)) {
if (cai->isInitializationOfDest() == IsNotInitialization) {
cais.push_back(cai);
}
}
}
}
// Before hoisting, expand all
//
// store [assign]
//
// instructions into
//
// destroy_addr
// store [init]
//
// sequences to create more destroy_addrs to hoist.
//
// Record the newly created destroy_addrs and the stores they were split off
// of. After hoisting, if they have not been hoisted away from the store
// instruction, we will merge them back together.
llvm::SmallVector<std::pair<DestroyAddrInst *, StoreInst *>, 8>
splitDestroysAndStores;
// The destroy_addrs that were created that have not been deleted. Items are
// erased from the set as the destroy_addrs are deleted.
SmallPtrSet<SILInstruction *, 8> remainingDestroyAddrs;
// The number of destroys that were split off of store [init]s and not
// recombined.
int splitDestroys = 0;
for (auto *si : sis) {
auto builder = SILBuilderWithScope(si);
auto *dai = builder.createDestroyAddr(
RegularLocation::getAutoGeneratedLocation(si->getLoc()),
si->getOperand(1));
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
splitDestroysAndStores.push_back({dai, si});
remainingDestroyAddrs.insert(dai);
++splitDestroys;
}
// Similarly, also expand each
//
// copy_addr to
//
// instruction into
//
// destroy_addr
// copy_addr to [init]
//
// sequences to create still more destroy_addrs to hoist.
//
// As above, record the newly created destroy_addrs and copy_addrs off of
// which they were split. After hoisting, we'll merge them back together when
// possible.
llvm::SmallVector<std::pair<DestroyAddrInst *, CopyAddrInst *>, 8>
splitDestroysAndCopies;
for (auto *cai : cais) {
auto builder = SILBuilderWithScope(cai);
auto *dai = builder.createDestroyAddr(
RegularLocation::getAutoGeneratedLocation(cai->getLoc()),
cai->getOperand(1));
cai->setIsInitializationOfDest(IsInitialization);
splitDestroysAndCopies.push_back({dai, cai});
remainingDestroyAddrs.insert(dai);
++splitDestroys;
}
auto *calleeAnalysis = getAnalysis<BasicCalleeAnalysis>();
// We assume that the function is in reverse post order so visiting the
// blocks and pushing begin_access as we see them and then popping them off
// the end will result in hoisting inner begin_access' destroy_addrs first.
for (auto *bai : llvm::reverse(bais)) {
// [exclusive_modify_scope_hoisting] Hoisting within modify access scopes
// doesn't respect deinit barriers because
//
// Mutable variable lifetimes that are formally modified in the middle of
// a lexical scope are anchored to the beginning of the lexical scope
// rather than to the end.
//
// TODO: If the performance issues associated with failing to hoist
// destroys within an exclusive modify scope are otherwise addressed,
// it may be less confusing not to make use of the above rule and
// respect deinit barriers here also ( rdar://116335154 ).
changed |= hoistDestroys(bai, /*ignoreDeinitBarriers=*/true,
remainingDestroyAddrs, deleter, calleeAnalysis);
}
// Alloc stacks always enclose their accesses.
for (auto *asi : asis) {
changed |= hoistDestroys(asi,
/*ignoreDeinitBarriers=*/!asi->isLexical(),
remainingDestroyAddrs, deleter, calleeAnalysis);
}
// Arguments enclose everything.
for (auto *uncastArg : getFunction()->getArguments()) {
auto *arg = cast<SILFunctionArgument>(uncastArg);
if (arg->getType().isAddress()) {
auto convention = arg->getArgumentConvention();
// This is equivalent to writing
//
// convention == SILArgumentConvention::Indirect_Inout
//
// but communicates the rationale: in order to ignore deinit barriers, the
// address must be exclusively accessed and be a modification.
//
// The situation with inout parameters is analogous to that with
// mutable exclusive access scopes [exclusive_modify_scope_hoisting], so
// deinit barriers are not respected.
bool ignoredByConvention = convention.isInoutConvention() &&
convention.isExclusiveIndirectParameter();
auto lifetime = arg->getLifetime();
bool ignoreDeinitBarriers = ignoredByConvention || lifetime.isEagerMove();
changed |= hoistDestroys(arg, ignoreDeinitBarriers, remainingDestroyAddrs,
deleter, calleeAnalysis);
}
}
for (auto pair : splitDestroysAndStores) {
auto *dai = pair.first;
if (!remainingDestroyAddrs.contains(dai))
continue;
auto *si = pair.second;
if (dai->getNextInstruction() != si)
continue;
// No stores should have been rewritten during hoisting. Their ownership
// qualifiers were set to [init] when splitting off the destroy_addrs.
assert(si->getOwnershipQualifier() == StoreOwnershipQualifier::Init);
// If a newly created destroy_addr has not been hoisted from its previous
// location, combine it back together with the store [init] which it was
// split off from.
deleter.forceDelete(dai);
si->setOwnershipQualifier(StoreOwnershipQualifier::Assign);
--splitDestroys;
}
for (auto pair : splitDestroysAndCopies) {
auto *dai = pair.first;
if (!remainingDestroyAddrs.contains(dai))
continue;
auto *cai = pair.second;
if (dai->getNextInstruction() != cai)
continue;
assert(cai->isInitializationOfDest() == IsInitialization);
deleter.forceDelete(dai);
cai->setIsInitializationOfDest(IsNotInitialization);
--splitDestroys;
}
// If there were any destroy_addrs split off of stores and not recombined
// with them, then the function has changed.
changed |= splitDestroys > 0;
if (changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
SILTransform *swift::createDestroyAddrHoisting() {
return new DestroyAddrHoisting();
}