Files
swift-mirror/lib/AST/Module.cpp
Mon Ping Wang 00467ba953 Reintroduce "Add support for Axle library." from 9292. Added an dependency to prevent building the
core and axle core at the same time.


Swift SVN r9309
2013-10-14 07:51:19 +00:00

1161 lines
41 KiB
C++

//===--- Module.cpp - Swift Language Module Implementation ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/PrintOptions.h"
#include "swift/Basic/SourceManager.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Builtin Module Name lookup
//===----------------------------------------------------------------------===//
class BuiltinModule::LookupCache {
/// The cache of identifiers we've already looked up. We use a
/// single hashtable for both types and values as a minor
/// optimization; this prevents us from having both a builtin type
/// and a builtin value with the same name, but that's okay.
llvm::DenseMap<Identifier, ValueDecl*> Cache;
public:
void lookupValue(Identifier Name, NLKind LookupKind, BuiltinModule &M,
SmallVectorImpl<ValueDecl*> &Result);
};
static BuiltinModule::LookupCache &
getBuiltinCachePimpl(BuiltinModule::LookupCache *&Ptr) {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (Ptr == 0)
Ptr = new BuiltinModule::LookupCache();
return *Ptr;
}
void
BuiltinModule::LookupCache::lookupValue(Identifier Name, NLKind LookupKind,
BuiltinModule &M,
SmallVectorImpl<ValueDecl*> &Result) {
// Only qualified lookup ever finds anything in the builtin module.
if (LookupKind != NLKind::QualifiedLookup) return;
ValueDecl *&Entry = Cache[Name];
if (Entry == 0)
if (Type Ty = getBuiltinType(M.Ctx, Name.str()))
Entry = new (M.Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(),
TypeLoc::withoutLoc(Ty),
M.Ctx.TheBuiltinModule,
MutableArrayRef<TypeLoc>());
if (Entry == 0)
Entry = getBuiltinValue(M.Ctx, Name);
if (Entry)
Result.push_back(Entry);
}
//===----------------------------------------------------------------------===//
// Normal Module Name Lookup
//===----------------------------------------------------------------------===//
class TranslationUnit::LookupCache {
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> TopLevelValues;
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> ClassMembers;
bool MemberCachePopulated = false;
void doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators);
void addToMemberCache(ArrayRef<Decl*> decls);
void populateMemberCache(const TranslationUnit &TU);
public:
typedef Module::AccessPathTy AccessPathTy;
LookupCache(const TranslationUnit &TU);
void lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind, TranslationUnit &TU,
SmallVectorImpl<ValueDecl*> &Result);
void lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind,
const TranslationUnit &TU);
void lookupClassMembers(AccessPathTy AccessPath,
VisibleDeclConsumer &consumer,
const TranslationUnit &TU);
void lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results,
const TranslationUnit &TU);
SmallVector<ValueDecl *, 0> AllVisibleValues;
};
using TULookupCache = TranslationUnit::LookupCache;
static TULookupCache &getTUCachePimpl(TULookupCache * const &CachePtr,
const TranslationUnit &TU) {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (!CachePtr)
const_cast<TULookupCache *&>(CachePtr) = new TULookupCache(TU);
return *CachePtr;
}
static void freeTUCachePimpl(TULookupCache *&CachePtr) {
delete CachePtr;
CachePtr = nullptr;
}
void TULookupCache::doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators) {
for (Decl *D : decls) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
if (onlyOperators ? VD->getName().isOperator() : !VD->getName().empty())
TopLevelValues[VD->getName()].push_back(VD);
if (NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D))
doPopulateCache(NTD->getMembers(), true);
if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D))
doPopulateCache(ED->getMembers(), true);
}
}
void TULookupCache::populateMemberCache(const TranslationUnit &TU) {
for (const Decl *D : TU.MainSourceFile->Decls) {
if (const NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D)) {
addToMemberCache(NTD->getMembers());
} else if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D)) {
addToMemberCache(ED->getMembers());
}
}
}
void TULookupCache::addToMemberCache(ArrayRef<Decl*> decls) {
for (Decl *D : decls) {
auto VD = dyn_cast<ValueDecl>(D);
if (!VD)
continue;
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
assert(!VD->canBeAccessedByDynamicLookup() &&
"inner types cannot be accessed by dynamic lookup");
addToMemberCache(NTD->getMembers());
} else if (VD->canBeAccessedByDynamicLookup()) {
ClassMembers[VD->getName()].push_back(VD);
}
}
}
/// Populate our cache on the first name lookup.
TULookupCache::LookupCache(const TranslationUnit &TU) {
doPopulateCache(TU.MainSourceFile->Decls, false);
}
void TULookupCache::lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind, TranslationUnit &TU,
SmallVectorImpl<ValueDecl*> &Result) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
// If this import is specific to some named type or decl ("import swift.int")
// then filter out any lookups that don't match.
if (AccessPath.size() == 1 && AccessPath.front().first != Name)
return;
auto I = TopLevelValues.find(Name);
if (I == TopLevelValues.end()) return;
Result.reserve(I->second.size());
for (ValueDecl *Elt : I->second)
Result.push_back(Elt);
}
void TULookupCache::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind,
const TranslationUnit &TU) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
if (!AccessPath.empty()) {
auto I = TopLevelValues.find(AccessPath.front().first);
if (I == TopLevelValues.end()) return;
for (auto vd : I->second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
return;
}
for (auto &tlv : TopLevelValues) {
for (ValueDecl *vd : tlv.second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
}
}
void TULookupCache::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
const TranslationUnit &TU) {
if (!MemberCachePopulated)
populateMemberCache(TU);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!accessPath.empty()) {
for (auto &member : ClassMembers) {
for (ValueDecl *vd : member.second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
return;
}
for (auto &member : ClassMembers) {
for (ValueDecl *vd : member.second)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
void TULookupCache::lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results,
const TranslationUnit &TU) {
if (!MemberCachePopulated)
populateMemberCache(TU);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
auto iter = ClassMembers.find(name);
if (iter == ClassMembers.end())
return;
if (!accessPath.empty()) {
for (ValueDecl *vd : iter->second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
results.push_back(vd);
}
return;
}
results.append(iter->second.begin(), iter->second.end());
}
//===----------------------------------------------------------------------===//
// Module Implementation
//===----------------------------------------------------------------------===//
void Module::lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) {
if (BuiltinModule *BM = dyn_cast<BuiltinModule>(this)) {
assert(AccessPath.empty() && "builtin module's access path always empty!");
return getBuiltinCachePimpl(BM->Cache)
.lookupValue(Name, LookupKind, *BM, Result);
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
// Look in the translation unit.
return getTUCachePimpl(TU->Cache, *TU)
.lookupValue(AccessPath, Name, LookupKind, *TU, Result);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupValue(this, AccessPath, Name, LookupKind, Result);
}
void Module::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
if (auto BM = dyn_cast<BuiltinModule>(this)) {
// TODO Look through the Builtin module.
(void)BM;
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(TU->Cache, *TU)
.lookupVisibleDecls(AccessPath, Consumer, LookupKind, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupVisibleDecls(this, AccessPath, Consumer, LookupKind);
}
void Module::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
if (isa<BuiltinModule>(this)) {
// The Builtin module defines no classes.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(TU->Cache, *TU)
.lookupClassMembers(accessPath, consumer, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupClassMembers(this, accessPath, consumer);
}
void Module::lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results) const {
if (isa<BuiltinModule>(this)) {
// The Builtin module defines no classes.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(TU->Cache, *TU)
.lookupClassMember(accessPath, name, results, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupClassMember(this, accessPath, name, results);
}
void Module::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) {
if (isa<BuiltinModule>(this)) {
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
Results.append(TU->MainSourceFile->Decls.begin(),
TU->MainSourceFile->Decls.end());
return;
}
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
return Owner.getTopLevelDecls(this, Results);
}
ArrayRef<Substitution> BoundGenericType::getSubstitutions(
Module *module,
LazyResolver *resolver) {
// FIXME: If there is no module, infer one. This is a hack for callers that
// don't have access to the module. It will have to go away once we're
// properly differentiating bound generic types based on the protocol
// conformances visible from a given module.
if (!module) {
module = getDecl()->getParentModule();
}
// If we already have a cached copy of the substitutions, return them.
auto *canon = getCanonicalType()->castTo<BoundGenericType>();
const ASTContext &ctx = canon->getASTContext();
if (auto known = ctx.getSubstitutions(canon))
return *known;
// Compute the set of substitutions.
llvm::SmallPtrSet<ArchetypeType *, 8> knownArchetypes;
SmallVector<ArchetypeType *, 8> archetypeStack;
TypeSubstitutionMap substitutions;
auto genericParams = canon->getDecl()->getGenericParams();
unsigned index = 0;
for (Type arg : canon->getGenericArgs()) {
auto gp = genericParams->getParams()[index++];
auto archetype = gp.getAsTypeParam()->getArchetype();
substitutions[archetype] = arg;
}
// Collect all of the archetypes.
SmallVector<ArchetypeType *, 2> allArchetypesList;
ArrayRef<ArchetypeType *> allArchetypes = genericParams->getAllArchetypes();
if (genericParams->getOuterParameters()) {
SmallVector<const GenericParamList *, 2> allGenericParams;
unsigned numArchetypes = 0;
for (; genericParams; genericParams = genericParams->getOuterParameters()) {
allGenericParams.push_back(genericParams);
numArchetypes += genericParams->getAllArchetypes().size();
}
allArchetypesList.reserve(numArchetypes);
for (auto gp = allGenericParams.rbegin(), gpEnd = allGenericParams.rend();
gp != gpEnd; ++gp) {
allArchetypesList.append((*gp)->getAllArchetypes().begin(),
(*gp)->getAllArchetypes().end());
}
allArchetypes = allArchetypesList;
}
// For each of the archetypes, compute the substitution.
bool hasTypeVariables = canon->hasTypeVariable();
SmallVector<Substitution, 4> resultSubstitutions;
resultSubstitutions.resize(allArchetypes.size());
index = 0;
for (auto archetype : allArchetypes) {
// Substitute into the type.
auto type = Type(archetype).subst(module, substitutions,
/*ignoreMissing=*/hasTypeVariables,
resolver);
assert(type && "Unable to perform type substitution");
SmallVector<ProtocolConformance *, 4> conformances;
if (type->hasTypeVariable()) {
// If the type involves a type variable, just fill in null conformances.
// FIXME: It seems like we should record these as requirements (?).
conformances.assign(archetype->getConformsTo().size(), nullptr);
} else {
// Find the conformances.
for (auto proto : archetype->getConformsTo()) {
auto conforms = module->lookupConformance(type, proto, resolver);
switch (conforms.getInt()) {
case ConformanceKind::Conforms:
conformances.push_back(conforms.getPointer());
break;
case ConformanceKind::DoesNotConform:
case ConformanceKind::UncheckedConforms:
llvm_unreachable("Couldn't find conformance");
}
}
}
// Record this substitution.
resultSubstitutions[index].Archetype = archetype;
resultSubstitutions[index].Replacement = type;
resultSubstitutions[index].Conformance = ctx.AllocateCopy(conformances);
++index;
}
// Copy and record the substitutions.
auto permanentSubs = ctx.AllocateCopy(resultSubstitutions,
hasTypeVariables
? AllocationArena::ConstraintSolver
: AllocationArena::Permanent);
ctx.setSubstitutions(canon, permanentSubs);
return permanentSubs;
}
/// Gather the set of substitutions required to map from the generic form of
/// the given type to the specialized form.
static ArrayRef<Substitution> gatherSubstitutions(Module *module, Type type,
LazyResolver *resolver) {
assert(type->isSpecialized() && "Type is not specialized");
SmallVector<ArrayRef<Substitution>, 2> allSubstitutions;
while (type) {
// Record the substitutions in a bound generic type.
if (auto boundGeneric = type->getAs<BoundGenericType>()) {
allSubstitutions.push_back(boundGeneric->getSubstitutions(module,
resolver));
type = boundGeneric->getParent();
continue;
}
// Skip to the parent of a nominal type.
if (auto nominal = type->getAs<NominalType>()) {
type = nominal->getParent();
continue;
}
llvm_unreachable("Not a nominal or bound generic type");
}
assert(!allSubstitutions.empty() && "No substitutions?");
// If there is only one list of substitutions, return it. There's no
// need to copy it.
if (allSubstitutions.size() == 1)
return allSubstitutions.front();
SmallVector<Substitution, 4> flatSubstitutions;
for (auto substitutions : allSubstitutions)
flatSubstitutions.append(substitutions.begin(), substitutions.end());
auto &ctx = module->getASTContext();
return ctx.AllocateCopy(flatSubstitutions);
}
/// Given a type witness map and a set of substitutions, produce the specialized
/// type witness map by applying the substitutions to each type witness.
static TypeWitnessMap
specializeTypeWitnesses(ASTContext &ctx,
Module *module,
const TypeWitnessMap &witnesses,
ArrayRef<Substitution> substitutions,
LazyResolver *resolver) {
// Compute the substitution map, which is needed for substType().
TypeSubstitutionMap substitutionMap;
for (const auto &substitution : substitutions) {
substitutionMap[substitution.Archetype] = substitution.Replacement;
}
// Substitute into each of the type witnesses.
TypeWitnessMap result;
for (const auto &genericWitness : witnesses) {
// Substitute into the type witness to produce the type witness for
// the specialized type.
auto specializedType
= genericWitness.second.Replacement.subst(module, substitutionMap,
/*ignoreMissing=*/false,
resolver);
// If the type witness was unchanged, just copy it directly.
if (specializedType.getPointer() ==
genericWitness.second.Replacement.getPointer()) {
result.insert(genericWitness);
continue;
}
// Gather the conformances for the type witness. These should never fail.
SmallVector<ProtocolConformance *, 4> conformances;
auto archetype = genericWitness.second.Archetype;
for (auto proto : archetype->getConformsTo()) {
auto conforms = module->lookupConformance(specializedType, proto,
resolver);
switch (conforms.getInt()) {
case ConformanceKind::Conforms:
conformances.push_back(conforms.getPointer());
break;
case ConformanceKind::DoesNotConform:
case ConformanceKind::UncheckedConforms:
// FIXME: Signal errors in a more sane way.
return TypeWitnessMap();
}
}
result[genericWitness.first]
= Substitution{archetype, specializedType,
ctx.AllocateCopy(conformances)};
}
return result;
}
/// Retrieve the explicit conformance of the given nominal type declaration
/// to the given protocol.
static std::tuple<NominalTypeDecl *, Decl *, ProtocolConformance *>
findExplicitConformance(NominalTypeDecl *nominal, ProtocolDecl *protocol,
LazyResolver *resolver) {
// FIXME: Introduce a cache/lazy lookup structure to make this more efficient?
// Walk the nominal type, its extensions, superclasses, and so on.
llvm::SmallPtrSet<ProtocolDecl *, 4> visitedProtocols;
SmallVector<std::tuple<NominalTypeDecl *, NominalTypeDecl *, Decl *>,4> stack;
NominalTypeDecl *owningNominal = nullptr;
Decl *declaresConformance = nullptr;
ProtocolConformance *nominalConformance = nullptr;
// Local function that checks for our protocol in the given array of
// protocols.
auto isProtocolInList
= [&](NominalTypeDecl *currentNominal,
Decl *currentOwner,
ArrayRef<ProtocolDecl *> protocols,
ArrayRef<ProtocolConformance *> conformances) -> bool {
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
auto testProto = protocols[i];
if (testProto == protocol) {
owningNominal = currentNominal;
declaresConformance = currentOwner;
if (i < conformances.size())
nominalConformance = conformances[i];
return true;
}
if (visitedProtocols.insert(testProto))
stack.push_back({testProto, currentNominal, currentOwner});
}
return false;
};
resolver->resolveDeclSignature(nominal);
// Walk the stack of types to find a conformance.
stack.push_back({nominal, nominal, nominal});
while (!stack.empty()) {
NominalTypeDecl *current;
NominalTypeDecl *currentNominal;
Decl *currentOwner;
std::tie(current, currentNominal, currentOwner) = stack.back();
stack.pop_back();
// Visit the superclass of a class.
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
if (auto superclassTy = classDecl->getSuperclass()) {
auto nominal = superclassTy->getAnyNominal();
stack.push_back({nominal, nominal, nominal});
}
}
// Visit the protocols this type conforms to directly.
if (isProtocolInList(currentNominal, currentOwner,
current->getProtocols(),
current->getConformances()))
break;
// Visit the extensions of this type.
for (auto ext : current->getExtensions()) {
if (isProtocolInList(currentNominal, ext, ext->getProtocols(),
ext->getConformances()))
break;
}
}
// If we didn't find the protocol, we don't conform. Cache the negative result
// and return.
if (!owningNominal) {
return { nullptr, nullptr, nullptr };
}
// If we don't have a nominal conformance, but we do have a resolver, try
// to resolve the nominal conformance now.
if (!nominalConformance && resolver) {
nominalConformance = resolver->resolveConformance(
owningNominal,
protocol,
dyn_cast<ExtensionDecl>(declaresConformance));
}
// If we have a nominal conformance, we're done.
if (nominalConformance) {
return { owningNominal, declaresConformance, nominalConformance };
}
return { nullptr, nullptr, nullptr };
}
LookupConformanceResult Module::lookupConformance(Type type,
ProtocolDecl *protocol,
LazyResolver *resolver) {
ASTContext &ctx = getASTContext();
// An archetype conforms to a protocol if the protocol is listed in the
// archetype's list of conformances.
if (auto archetype = type->getAs<ArchetypeType>()) {
for (auto ap : archetype->getConformsTo()) {
if (ap == protocol || ap->inheritsFrom(protocol))
return { nullptr, ConformanceKind::Conforms };
}
return { nullptr, ConformanceKind::DoesNotConform };
}
// An archetype conforms to a protocol if the protocol is listed in the
// existential's list of conformances and the existential conforms to
// itself.
if (type->isExistentialType()) {
// If the protocol doesn't conform to itself, there's no point in looking
// further.
auto known = protocol->existentialConformsToSelf();
if (!known && resolver) {
resolver->resolveExistentialConformsToItself(protocol);
known = protocol->existentialConformsToSelf();
}
// If we know that protocol doesn't conform to itself, we're done.
if (known && !*known)
return { nullptr, ConformanceKind::DoesNotConform };
// Look for this protocol within the existential's list of conformances.
SmallVector<ProtocolDecl *, 4> protocols;
type->isExistentialType(protocols);
for (auto ap : protocols) {
if (ap == protocol || ap->inheritsFrom(protocol)) {
return { nullptr,
known? ConformanceKind::Conforms
: ConformanceKind::UncheckedConforms };
}
}
// We didn't find our protocol in the existential's list; it doesn't
// conform.
return { nullptr, ConformanceKind::DoesNotConform };
}
// Check whether we have already cached an answer to this query.
ASTContext::ConformsToMap::key_type key(type->getCanonicalType(), protocol);
auto known = ctx.ConformsTo.find(key);
if (known != ctx.ConformsTo.end()) {
// If we conform, return the conformance.
if (known->second.getInt()) {
return { known->second.getPointer(), ConformanceKind::Conforms };
}
// We don't conform.
return { nullptr, ConformanceKind::DoesNotConform };
}
auto nominal = type->getAnyNominal();
// If we don't have a nominal type, there are no conformances.
// FIXME: We may have implicit conformances for some cases. Handle those
// here.
if (!nominal) {
return { nullptr, ConformanceKind::DoesNotConform };
}
// Find the explicit conformance.
NominalTypeDecl *owningNominal = nullptr;
Decl *declaresConformance = nullptr;
ProtocolConformance *nominalConformance = nullptr;
std::tie(owningNominal, declaresConformance, nominalConformance)
= findExplicitConformance(nominal, protocol, resolver);
// If we didn't find an owning nominal, we don't conform. Cache the negative
// result and return.
if (!owningNominal) {
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
return { nullptr, ConformanceKind::DoesNotConform };
}
// If we found an owning nominal but didn't have a conformance, this is
// an unchecked conformance.
if (!nominalConformance) {
return { nullptr, ConformanceKind::UncheckedConforms };
}
// If the nominal type in which we found the conformance is not the same
// as the type we asked for, it's an inherited type.
if (owningNominal != nominal) {
// Find the superclass type
Type superclassTy = type->getSuperclass(resolver);
while (superclassTy->getAnyNominal() != owningNominal)
superclassTy = superclassTy->getSuperclass(resolver);
// Compute the conformance for the inherited type.
auto inheritedConformance = lookupConformance(superclassTy, protocol,
resolver);
switch (inheritedConformance.getInt()) {
case ConformanceKind::DoesNotConform:
llvm_unreachable("We already found the inherited conformance");
case ConformanceKind::UncheckedConforms:
return inheritedConformance;
case ConformanceKind::Conforms:
// Create inherited conformance below.
break;
}
// Create the inherited conformance entry.
auto result
= ctx.getInheritedConformance(type, inheritedConformance.getPointer());
ctx.ConformsTo[key] = ConformanceEntry(result, true);
return { result, ConformanceKind::Conforms };
}
// If the type is specialized, find the conformance for the generic type.
if (type->isSpecialized()) {
// Figure out the type that's explicitly conforming to this protocol.
Type explicitConformanceType;
if (auto nominal = dyn_cast<NominalTypeDecl>(declaresConformance)) {
explicitConformanceType = nominal->getDeclaredTypeInContext();
} else {
explicitConformanceType = cast<ExtensionDecl>(declaresConformance)
->getDeclaredTypeInContext();
}
// If the explicit conformance is associated with a type that is different
// from the type we're checking, retrieve generic conformance.
if (!explicitConformanceType->isEqual(type)) {
// Gather the substitutions we need to map the generic conformance to
// the specialized conformance.
auto substitutions = gatherSubstitutions(this, type, resolver);
// The type witnesses for the specialized conformance.
TypeWitnessMap typeWitnesses
= specializeTypeWitnesses(ctx, this,
nominalConformance->getTypeWitnesses(),
substitutions,
resolver);
// Create the specialized conformance entry.
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
auto result = ctx.getSpecializedConformance(type, nominalConformance,
substitutions,
std::move(typeWitnesses));
ctx.ConformsTo[key] = ConformanceEntry(result, true);
return { result, ConformanceKind::Conforms };
}
}
// Record and return the simple conformance.
ctx.ConformsTo[key] = ConformanceEntry(nominalConformance, true);
return { nominalConformance, ConformanceKind::Conforms };
}
void Module::getDisplayDecls(SmallVectorImpl<Decl*> &results) {
if (isa<BuiltinModule>(this)) {
// FIXME: The Builtin module isn't usually visible, but it would be nice
// to have the option to display its decls. Unfortunately those decls are
// lazily generated.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
results.append(TU->MainSourceFile->Decls.begin(),
TU->MainSourceFile->Decls.end());
return;
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.getDisplayDecls(this, results);
}
namespace {
template <typename T>
using IdentifierMap = SourceFile::IdentifierMap<T>;
// Returns Nothing on error, Optional(nullptr) if no operator decl found, or
// Optional(decl) if decl was found.
template<typename OP_DECL>
Optional<OP_DECL *> lookupOperatorDeclForName(Module *M,
SourceLoc Loc,
Identifier Name,
IdentifierMap<OP_DECL *> SourceFile::*OP_MAP)
{
if (auto loadedModule = dyn_cast<LoadedModule>(M))
return loadedModule->lookupOperator<OP_DECL>(Name);
auto *TU = dyn_cast<TranslationUnit>(M);
if (!TU)
return Nothing;
// Look for an operator declaration in the current module.
auto found = (TU->MainSourceFile->*OP_MAP).find(Name);
if (found != (TU->MainSourceFile->*OP_MAP).end())
return found->second ? Optional<OP_DECL *>(found->second) : Nothing;
// Look for imported operator decls.
llvm::DenseSet<OP_DECL*> importedOperators;
for (auto &imported : TU->MainSourceFile->getImports()) {
Optional<OP_DECL *> maybeOp
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
if (!maybeOp)
return Nothing;
if (OP_DECL *op = *maybeOp)
importedOperators.insert(op);
}
// If we found a single import, use it.
if (importedOperators.empty()) {
// Cache the mapping so we don't need to troll imports next time.
(TU->MainSourceFile->*OP_MAP)[Name] = nullptr;
return Nothing;
}
if (importedOperators.size() == 1) {
// Cache the mapping so we don't need to troll imports next time.
OP_DECL *result = *importedOperators.begin();
(TU->MainSourceFile->*OP_MAP)[Name] = result;
return result;
}
// Otherwise, check for conflicts.
auto i = importedOperators.begin(), end = importedOperators.end();
OP_DECL *first = *i;
for (++i; i != end; ++i) {
if ((*i)->conflictsWith(first)) {
if (Loc.isValid()) {
ASTContext &C = M->getASTContext();
C.Diags.diagnose(Loc, diag::ambiguous_operator_decls);
C.Diags.diagnose(first->getLoc(), diag::found_this_operator_decl);
C.Diags.diagnose((*i)->getLoc(), diag::found_this_operator_decl);
}
return Nothing;
}
}
// Cache the mapping so we don't need to troll imports next time.
(TU->MainSourceFile->*OP_MAP)[Name] = first;
return first;
}
} // end anonymous namespace
Optional<PrefixOperatorDecl *> Module::lookupPrefixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::PrefixOperators);
}
Optional<PostfixOperatorDecl *> Module::lookupPostfixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::PostfixOperators);
}
Optional<InfixOperatorDecl *> Module::lookupInfixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::InfixOperators);
}
void
Module::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
bool includePrivate) const {
if (isa<BuiltinModule>(this))
return;
if (auto TU = dyn_cast<TranslationUnit>(this)) {
for (auto importPair : TU->MainSourceFile->getImports())
if (includePrivate || importPair.second)
modules.push_back(importPair.first);
return;
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.getImportedModules(this, modules, includePrivate);
}
namespace {
/// Arbitrarily orders ImportedModule records, for inclusion in sets and such.
class OrderImportedModules {
using ImportedModule = Module::ImportedModule;
using AccessPathTy = Module::AccessPathTy;
public:
bool operator()(const ImportedModule &lhs, const ImportedModule &rhs) {
if (lhs.second != rhs.second)
return std::less<const Module *>()(lhs.second, rhs.second);
if (lhs.first.data() != rhs.first.data())
return std::less<AccessPathTy::iterator>()(lhs.first.begin(),
rhs.first.begin());
return lhs.first.size() < rhs.first.size();
}
};
}
bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
if (lhs.size() != rhs.size())
return false;
auto iters = std::mismatch(lhs.begin(), lhs.end(), rhs.begin(),
[](const AccessPathElem &lElem,
const AccessPathElem &rElem) {
return lElem.first == rElem.first;
});
return iters.first == lhs.end();
}
StringRef Module::getModuleFilename() const {
if (isa<BuiltinModule>(this))
return StringRef();
if (auto TU = dyn_cast<TranslationUnit>(this)) {
if (auto ID = TU->MainSourceFile->getImportBufferID())
return Ctx.SourceMgr->getMemoryBuffer(*ID)->getBufferIdentifier();
return StringRef();
}
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
return Owner.getModuleFilename(this);
}
bool Module::isStdlibModule() const {
return !getParent() && Name == Ctx.StdlibModuleName;
}
template<bool respectVisibility, typename Callback>
static void forAllImportedModules(Module *topLevel,
Optional<Module::AccessPathTy> thisPath,
const Callback &fn) {
using ImportedModule = Module::ImportedModule;
using AccessPathTy = Module::AccessPathTy;
llvm::SmallSet<ImportedModule, 32, OrderImportedModules> visited;
SmallVector<ImportedModule, 32> queue;
AccessPathTy overridingPath;
if (thisPath.hasValue()) {
if (respectVisibility)
overridingPath = thisPath.getValue();
queue.push_back(ImportedModule(overridingPath, topLevel));
} else {
visited.insert(ImportedModule({}, topLevel));
}
// Even if we're processing the top-level module like any other, we still want
// to include non-exported modules.
topLevel->getImportedModules(queue, true);
while (!queue.empty()) {
auto next = queue.pop_back_val();
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
if (next.first.empty() || !respectVisibility)
next.first = overridingPath;
else if (!overridingPath.empty() &&
!Module::isSameAccessPath(next.first, overridingPath)) {
// If we ever allow importing non-top-level decls, it's possible the rule
// above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
}
if (!visited.insert(next))
continue;
if (!fn(next))
break;
next.second->getImportedModules(queue, !respectVisibility);
}
}
void Module::forAllVisibleModules(Optional<AccessPathTy> thisPath,
std::function<bool(ImportedModule)> fn) {
forAllImportedModules<true>(this, thisPath, fn);
}
void Module::collectLinkLibraries(LinkLibraryCallback callback) {
forAllImportedModules<false>(this, AccessPathTy(),
[=](ImportedModule import) -> bool {
auto loadedModule = dyn_cast<LoadedModule>(import.second);
if (!loadedModule)
return true;
ModuleLoader &owner = loadedModule->getOwner();
owner.getLinkLibraries(loadedModule, callback);
return true;
});
}
//===----------------------------------------------------------------------===//
// TranslationUnit Implementation
//===----------------------------------------------------------------------===//
void TranslationUnit::print(raw_ostream &os) {
print(os, PrintOptions::printEverything());
}
void TranslationUnit::print(raw_ostream &os, const PrintOptions &options) {
for (auto decl : MainSourceFile->Decls) {
if (!decl->shouldPrintInContext())
continue;
decl->print(os, options);
os << "\n";
}
}
void TranslationUnit::clearLookupCache() {
freeTUCachePimpl(Cache);
}
void
TranslationUnit::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const{
auto &cached = getTUCachePimpl(Cache, *this).AllVisibleValues;
static_cast<SmallVectorImpl<ValueDecl*>&>(cached) = std::move(globals);
}
const SmallVectorImpl<ValueDecl *> &
TranslationUnit::getCachedVisibleDecls() const {
return getTUCachePimpl(Cache, *this).AllVisibleValues;
}
bool TranslationUnit::walk(ASTWalker &Walker) {
return MainSourceFile->walk(Walker);
}
static void performAutoImport(SourceFile &SF, bool hasBuiltinModuleAccess) {
if (SF.Kind == SourceFile::SIL)
return;
// If we're building the standard library, import the magic Builtin module,
// otherwise, import the standard library.
std::pair<Module::ImportedModule, bool> Imports[2];
Module *M;
if (hasBuiltinModuleAccess)
M = SF.TU.Ctx.TheBuiltinModule;
else
M = SF.TU.Ctx.getModule({ {SF.TU.Ctx.StdlibModuleName, SourceLoc()} });
if (!M)
return;
// FIXME: These will be the same for most source files, but we copy them
// over and over again.
Imports[0] = std::make_pair(Module::ImportedModule({}, M), false);
if (SF.TU.Ctx.LangOpts.Axle && !hasBuiltinModuleAccess) {
Module* AxleM =
SF.TU.Ctx.getModule({{SF.TU.Ctx.AxleStdlibModuleName, SourceLoc()}});
Imports[1] = std::make_pair(Module::ImportedModule({}, AxleM), false);
SF.setImports(SF.TU.Ctx.AllocateCopy(llvm::makeArrayRef(Imports, 2)));
} else
SF.setImports(SF.TU.Ctx.AllocateCopy(llvm::makeArrayRef(Imports, 1)));
}
SourceFile::SourceFile(TranslationUnit &tu, SourceKind K,
Optional<unsigned> ImportID, bool hasBuiltinModuleAccess)
: ImportBufferID(ImportID ? *ImportID : -1), TU(tu), Kind(K) {
performAutoImport(*this, hasBuiltinModuleAccess);
}
bool SourceFile::walk(ASTWalker &walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent, &TU);
for (Decl *D : Decls) {
if (D->walk(walker))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// LoadedModule Implementation
//===----------------------------------------------------------------------===//
OperatorDecl *LoadedModule::lookupOperator(Identifier name, DeclKind fixity) {
return getOwner().lookupOperator(this, name, fixity);
}
template<>
PrefixOperatorDecl *
LoadedModule::lookupOperator<PrefixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::PrefixOperator);
return cast_or_null<PrefixOperatorDecl>(result);
}
template<>
PostfixOperatorDecl *
LoadedModule::lookupOperator<PostfixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::PostfixOperator);
return cast_or_null<PostfixOperatorDecl>(result);
}
template<>
InfixOperatorDecl *
LoadedModule::lookupOperator<InfixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::InfixOperator);
return cast_or_null<InfixOperatorDecl>(result);
}
//===----------------------------------------------------------------------===//
// ModuleLoader Implementation
//===----------------------------------------------------------------------===//
ModuleLoader::~ModuleLoader() {}