Files
swift-mirror/lib/AST/RequirementMachine/PropertyMap.cpp

585 lines
20 KiB
C++

//===--- PropertyMap.cpp - Collects properties of type parameters ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// In the rewrite system, a conformance requirement 'T : P' is represented as
// rewrite rule of the form:
//
// T.[P] => T
//
// Similarly, layout, superclass, and concrete-type requirements are represented
// by a rewrite rule of the form:
//
// T.[p] => T
//
// Where [p] is a "property symbol": [layout: L], [superclass: Foo],
// [concrete: Bar].
//
// Given an arbitrary type T and a property [p], we can check if T satisfies the
// property by checking if the two terms T.[p] and T reduce to the same term T'.
// That is, if our rewrite rules allow us to eliminate the [p] suffix, we know
// the type satisfies [p].
//
// However, the question then becomes, given an arbitrary type T, how do we find
// *all* properties [p] satisfied by T?
//
// The trick is that we can take advantage of confluence here.
//
// If T.[p] => T', and T => T'', then it must follow that T''.[p] => T'.
// Furthermore, since T'' is fully reduced, T'' == T'. So T'' == UV for some
// terms U and V, and there exist be a rewrite rule V.[p] => V' in the system.
//
// Therefore, in order to find all [p] satisfied by T, we start by fully reducing
// T, then we look for rules of the form V.[p] => V' where V is fully reduced,
// and a suffix of T.
//
// This is the idea behind the property map. We collect all rules of the form
// V.[p] => V into a multi-map keyed by V. Then given an arbitrary type T,
// we can reduce it and look up successive suffixes to find all properties [p]
// satisfied by T.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"
using namespace swift;
using namespace rewriting;
/// This papers over a behavioral difference between
/// GenericSignature::getRequiredProtocols() and ArchetypeType::getConformsTo();
/// the latter drops any protocols to which the superclass requirement
/// conforms to concretely.
llvm::TinyPtrVector<const ProtocolDecl *>
PropertyBag::getConformsToExcludingSuperclassConformances() const {
llvm::TinyPtrVector<const ProtocolDecl *> result;
if (SuperclassConformances.empty()) {
result = ConformsTo;
return result;
}
// The conformances in SuperclassConformances should appear in the same order
// as the protocols in ConformsTo.
auto conformanceIter = SuperclassConformances.begin();
for (const auto *proto : ConformsTo) {
if (conformanceIter == SuperclassConformances.end()) {
result.push_back(proto);
continue;
}
if (proto == (*conformanceIter)->getProtocol()) {
++conformanceIter;
continue;
}
result.push_back(proto);
}
assert(conformanceIter == SuperclassConformances.end());
return result;
}
void PropertyBag::dump(llvm::raw_ostream &out) const {
out << Key << " => {";
if (!ConformsTo.empty()) {
out << " conforms_to: [";
bool first = true;
for (const auto *proto : ConformsTo) {
if (first)
first = false;
else
out << " ";
out << proto->getName();
}
out << "]";
}
if (Layout) {
out << " layout: " << Layout;
}
if (Superclass) {
out << " superclass: " << *Superclass;
}
if (ConcreteType) {
out << " concrete_type: " << *ConcreteType;
}
out << " }";
}
/// Given a term \p lookupTerm whose suffix must equal this property bag's
/// key, return a new term with that suffix stripped off. Will be empty if
/// \p lookupTerm exactly equals the key.
MutableTerm
PropertyBag::getPrefixAfterStrippingKey(const MutableTerm &lookupTerm) const {
assert(lookupTerm.size() >= Key.size());
auto prefixBegin = lookupTerm.begin();
auto prefixEnd = lookupTerm.end() - Key.size();
assert(std::equal(prefixEnd, lookupTerm.end(), Key.begin()) &&
"This is not the bag you're looking for");
return MutableTerm(prefixBegin, prefixEnd);
}
/// Get the superclass bound for \p lookupTerm, whose suffix must be the term
/// represented by this property bag.
///
/// The original \p lookupTerm is important in case the concrete type has
/// substitutions. For example, if \p lookupTerm is [P:A].[U:B], and this
/// property bag records that the suffix [U:B] has a superclass symbol
/// [superclass: Cache<τ_0_0> with <[U:C]>], then we actually need to
/// apply the substitution τ_0_0 := [P:A].[U:C] to the type 'Cache<τ_0_0>'.
///
/// Asserts if this property bag does not have a superclass bound.
Type PropertyBag::getSuperclassBound(
TypeArrayView<GenericTypeParamType> genericParams,
const MutableTerm &lookupTerm,
const PropertyMap &map) const {
MutableTerm prefix = getPrefixAfterStrippingKey(lookupTerm);
return map.getTypeFromSubstitutionSchema(Superclass->getConcreteType(),
Superclass->getSubstitutions(),
genericParams, prefix);
}
/// Get the concrete type of the term represented by this property bag.
///
/// The original \p lookupTerm is important in case the concrete type has
/// substitutions. For example, if \p lookupTerm is [P:A].[U:B], and this
/// property bag records that the suffix [U:B] has a concrete type symbol
/// [concrete: Array<τ_0_0> with <[U:C]>], then we actually need to
/// apply the substitution τ_0_0 := [P:A].[U:C] to the type 'Array<τ_0_0>'.
///
/// Asserts if this property bag is not concrete.
Type PropertyBag::getConcreteType(
TypeArrayView<GenericTypeParamType> genericParams,
const MutableTerm &lookupTerm,
const PropertyMap &map) const {
MutableTerm prefix = getPrefixAfterStrippingKey(lookupTerm);
return map.getTypeFromSubstitutionSchema(ConcreteType->getConcreteType(),
ConcreteType->getSubstitutions(),
genericParams, prefix);
}
void PropertyBag::copyPropertiesFrom(const PropertyBag *next,
RewriteContext &ctx) {
// If this is the property bag of T and 'next' is the
// property bag of V, then T := UV for some non-empty U.
int prefixLength = Key.size() - next->Key.size();
assert(prefixLength > 0);
assert(std::equal(Key.begin() + prefixLength, Key.end(),
next->Key.begin()));
// Conformances and the layout constraint, if any, can be copied over
// unmodified.
ConformsTo = next->ConformsTo;
ConformsToRules = next->ConformsToRules;
Layout = next->Layout;
LayoutRule = next->LayoutRule;
// If the property bag of V has superclass or concrete type
// substitutions {X1, ..., Xn}, then the property bag of
// T := UV should have substitutions {UX1, ..., UXn}.
MutableTerm prefix(Key.begin(), Key.begin() + prefixLength);
if (next->Superclass) {
Superclass = next->Superclass->prependPrefixToConcreteSubstitutions(
prefix, ctx);
SuperclassRule = next->SuperclassRule;
}
if (next->ConcreteType) {
ConcreteType = next->ConcreteType->prependPrefixToConcreteSubstitutions(
prefix, ctx);
ConcreteTypeRule = next->ConcreteTypeRule;
}
}
void PropertyBag::verify(const RewriteSystem &system) const {
#ifndef NDEBUG
assert(ConformsTo.size() == ConformsToRules.size());
for (unsigned i : indices(ConformsTo)) {
auto symbol = system.getRule(ConformsToRules[i]).getLHS().back();
assert(symbol.getKind() == Symbol::Kind::Protocol);
assert(symbol.getProtocol() == ConformsTo[i]);
}
// FIXME: Once unification introduces new rules, add asserts requiring
// that the layout, superclass and concrete type symbols match, as above
assert(!Layout.isNull() == LayoutRule.hasValue());
assert(Superclass.hasValue() == SuperclassRule.hasValue());
assert(ConcreteType.hasValue() == ConcreteTypeRule.hasValue());
#endif
}
PropertyMap::~PropertyMap() {
Trie.updateHistograms(Context.PropertyTrieHistogram,
Context.PropertyTrieRootHistogram);
clear();
}
/// Look for a property bag corresponding to a suffix of the given range.
///
/// The symbol range must correspond to a term that has already been
/// simplified.
///
/// Returns nullptr if no information is known about this key.
PropertyBag *
PropertyMap::lookUpProperties(std::reverse_iterator<const Symbol *> begin,
std::reverse_iterator<const Symbol *> end) const {
if (auto result = Trie.find(begin, end))
return *result;
return nullptr;
}
/// Look for a property bag corresponding to a suffix of the given key.
///
/// The term must have already been simplified.
///
/// Returns nullptr if no information is known about this key.
PropertyBag *
PropertyMap::lookUpProperties(const MutableTerm &key) const {
return lookUpProperties(key.rbegin(), key.rend());
}
/// Look for a property bag corresponding to the given key, creating a new
/// property bag if necessary.
///
/// This must be called in monotonically non-decreasing key order.
PropertyBag *
PropertyMap::getOrCreateProperties(Term key) {
auto next = Trie.find(key.rbegin(), key.rend());
if (next && (*next)->getKey() == key)
return *next;
auto *props = new PropertyBag(key);
// Look for the longest suffix of the key that has a property bag,
// recording it as the next property bag if we find one.
//
// For example, if our rewrite system contains the following three rules:
//
// A.[P] => A
// B.A.[Q] => B.A
// C.A.[R] => C.A
//
// Then we have three property bags:
//
// A => { [P] }
// B.A => { [Q] }
// C.A => { [R] }
//
// The next property bag of both 'B.A' and 'C.A' is 'A'; conceptually,
// the set of properties satisfied by 'B.A' is a superset of the properties
// satisfied by 'A'; analogously for 'C.A'.
//
// Since 'A' has no proper suffix with additional properties, the next
// property bag of 'A' is nullptr.
if (next)
props->copyPropertiesFrom(*next, Context);
Entries.push_back(props);
auto oldProps = Trie.insert(key.rbegin(), key.rend(), props);
if (oldProps) {
llvm::errs() << "Duplicate property map entry for " << key << "\n";
llvm::errs() << "Old:\n";
(*oldProps)->dump(llvm::errs());
llvm::errs() << "\n";
llvm::errs() << "New:\n";
props->dump(llvm::errs());
llvm::errs() << "\n";
abort();
}
return props;
}
void PropertyMap::clear() {
for (auto *props : Entries)
delete props;
Trie.clear();
Entries.clear();
}
/// Build the property map from all rules of the form T.[p] => T, where
/// [p] is a property symbol.
///
/// Also performs property unification, nested type concretization and
/// concrete simplification. These phases can add new rules; if new rules
/// were added, the the caller must run another round of Knuth-Bendix
/// completion, and rebuild the property map again.
void PropertyMap::buildPropertyMap() {
if (System.getDebugOptions().contains(DebugFlags::PropertyMap)) {
llvm::dbgs() << "-------------------------\n";
llvm::dbgs() << "- Building property map -\n";
llvm::dbgs() << "-------------------------\n";
}
clear();
struct Property {
Term key;
Symbol symbol;
unsigned ruleID;
};
// PropertyMap::addRule() requires that shorter rules are added
// before longer rules, so that it can perform lookups on suffixes and call
// PropertyBag::copyPropertiesFrom(). However, we don't have to perform a
// full sort by term order here; a bucket sort by term length suffices.
SmallVector<std::vector<Property>, 4> properties;
for (const auto &rule : System.getRules()) {
if (rule.isLHSSimplified() ||
rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
continue;
// Identity conformances ([P].[P] => [P]) are permanent rules, but we
// keep them around to ensure that concrete conformance introduction
// works in the case where the protocol's Self type is itself subject
// to a superclass or concrete type requirement.
if (rule.isPermanent() && !rule.isIdentityConformanceRule())
continue;
// Collect all rules of the form T.[p] => T where T is canonical.
auto property = rule.isPropertyRule();
if (!property)
continue;
auto rhs = rule.getRHS();
unsigned length = rhs.size();
if (length >= properties.size())
properties.resize(length + 1);
unsigned ruleID = System.getRuleID(rule);
properties[length].push_back({rhs, *property, ruleID});
}
for (const auto &bucket : properties) {
for (auto property : bucket) {
addProperty(property.key, property.symbol,
property.ruleID);
}
}
// Now, check for conflicts between superclass and concrete type rules.
checkConcreteTypeRequirements();
// Now, we merge concrete type rules with conformance rules, by adding
// relations between associated type members of type parameters with
// the concrete type witnesses in the concrete type's conformance.
concretizeNestedTypesFromConcreteParents();
// Finally, a post-processing pass to reduce substitutions down to
// concrete types.
concretelySimplifyLeftHandSideSubstitutions();
// Check invariants of the constructed property map.
verify();
}
/// Similar to RewriteSystem::simplifySubstitutions(), but also replaces type
/// parameters with concrete types and builds a type difference describing
/// the transformation.
///
/// Returns None if the concrete type symbol cannot be simplified further.
///
/// Otherwise returns an index which can be passed to
/// RewriteSystem::getTypeDifference().
Optional<unsigned>
PropertyMap::concretelySimplifySubstitutions(Term baseTerm, Symbol symbol,
RewritePath *path) const {
assert(symbol.hasSubstitutions());
// Fast path if the type is fully concrete.
auto substitutions = symbol.getSubstitutions();
if (substitutions.empty())
return None;
// Save the original rewrite path length so that we can reset if if we don't
// find anything to simplify.
unsigned oldSize = (path ? path->size() : 0);
if (path) {
// The term is at the top of the primary stack. Push all substitutions onto
// the primary stack.
path->add(RewriteStep::forDecompose(substitutions.size(),
/*inverse=*/false));
// Move all substitutions but the first one to the secondary stack.
for (unsigned i = 1; i < substitutions.size(); ++i)
path->add(RewriteStep::forShift(/*inverse=*/false));
}
// Simplify and collect substitutions.
llvm::SmallVector<std::pair<unsigned, Term>, 1> sameTypes;
llvm::SmallVector<std::pair<unsigned, Symbol>, 1> concreteTypes;
for (unsigned index : indices(substitutions)) {
// Move the next substitution from the secondary stack to the primary stack.
if (index != 0 && path)
path->add(RewriteStep::forShift(/*inverse=*/true));
auto term = symbol.getSubstitutions()[index];
MutableTerm mutTerm(term);
// Note that it's of course possible that the term both requires
// simplification, and the simplified term has a concrete type.
//
// This isn't handled with our current representation of
// TypeDifference, but that should be fine since the caller
// has to iterate until fixed point anyway.
//
// This should be rare in practice.
if (System.simplify(mutTerm, path)) {
// Record a mapping from this substitution to the simplified term.
sameTypes.emplace_back(index, Term::get(mutTerm, Context));
} else {
auto *props = lookUpProperties(mutTerm);
if (props && props->ConcreteType) {
// The property map entry might apply to a suffix of the substitution
// term, so prepend the appropriate prefix to its own substitutions.
auto prefix = props->getPrefixAfterStrippingKey(mutTerm);
auto concreteSymbol =
props->ConcreteType->prependPrefixToConcreteSubstitutions(
prefix, Context);
// Record a mapping from this substitution to the concrete type.
concreteTypes.emplace_back(index, concreteSymbol);
// If U.V is the substitution term and V is the property map key,
// apply the rewrite step U.(V => V.[concrete: C]) followed by
// prepending the prefix U to each substitution in the concrete type
// symbol if |U| > 0.
if (path) {
path->add(RewriteStep::forRewriteRule(/*startOffset=*/prefix.size(),
/*endOffset=*/0,
/*ruleID=*/*props->ConcreteTypeRule,
/*inverse=*/true));
path->add(RewriteStep::forPrefixSubstitutions(/*length=*/prefix.size(),
/*endOffset=*/0,
/*inverse=*/false));
}
}
}
}
// If nothing changed, we don't have to build the type difference.
if (sameTypes.empty() && concreteTypes.empty()) {
if (path) {
// The rewrite path should consist of a Decompose, followed by a number
// of Shifts, followed by a Compose.
#ifndef NDEBUG
for (auto iter = path->begin() + oldSize; iter < path->end(); ++iter) {
assert(iter->Kind == RewriteStep::Shift ||
iter->Kind == RewriteStep::Decompose);
}
#endif
path->resize(oldSize);
}
return None;
}
auto difference = buildTypeDifference(baseTerm, symbol,
sameTypes, concreteTypes,
Context);
assert(difference.LHS != difference.RHS);
unsigned differenceID = System.recordTypeDifference(difference);
// All simplified substitutions are now on the primary stack. Collect them to
// produce the new term.
if (path) {
path->add(RewriteStep::forDecomposeConcrete(differenceID,
/*inverse=*/true));
}
return differenceID;
}
void PropertyMap::concretelySimplifyLeftHandSideSubstitutions() const {
for (unsigned ruleID = 0, e = System.getRules().size(); ruleID < e; ++ruleID) {
auto &rule = System.getRule(ruleID);
if (rule.isLHSSimplified() ||
rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
continue;
auto optSymbol = rule.isPropertyRule();
if (!optSymbol || !optSymbol->hasSubstitutions())
continue;
auto symbol = *optSymbol;
RewritePath path;
auto differenceID = concretelySimplifySubstitutions(
rule.getRHS(), symbol, &path);
if (!differenceID)
continue;
rule.markSubstitutionSimplified();
auto difference = System.getTypeDifference(*differenceID);
assert(difference.LHS == symbol);
// If the original rule is (T.[concrete: C] => T) and [concrete: C'] is
// the simplified symbol, then difference.LHS == [concrete: C] and
// difference.RHS == [concrete: C'], and the rewrite path we just
// built takes T.[concrete: C] to T.[concrete: C'].
//
// We want a path from T.[concrete: C'] to T, so invert the path to get
// a path from T.[concrete: C'] to T.[concrete: C], and add a final step
// applying the original rule (T.[concrete: C] => T).
path.invert();
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0,
/*endOffset=*/0,
/*ruleID=*/ruleID,
/*inverted=*/false));
MutableTerm rhs(rule.getRHS());
MutableTerm lhs(rhs);
lhs.add(difference.RHS);
System.addRule(lhs, rhs, &path);
}
}
void PropertyMap::dump(llvm::raw_ostream &out) const {
out << "Property map: {\n";
for (const auto &props : Entries) {
out << " ";
props->dump(out);
out << "\n";
}
out << "}\n";
}
void PropertyMap::verify() const {
#ifndef NDEBUG
for (const auto &props : Entries)
props->verify(System);
#endif
}