Files
swift-mirror/lib/AST/RequirementMachine/RewriteSystem.h

511 lines
15 KiB
C++

//===--- RewriteSystem.h - Generics with term rewriting ---------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REWRITESYSTEM_H
#define SWIFT_REWRITESYSTEM_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerUnion.h"
#include "Debug.h"
#include "RewriteLoop.h"
#include "Symbol.h"
#include "Term.h"
#include "Trie.h"
#include "TypeDifference.h"
namespace llvm {
class raw_ostream;
}
namespace swift {
namespace rewriting {
class PropertyMap;
class RewriteContext;
class RewriteSystem;
/// A rewrite rule that replaces occurrences of LHS with RHS.
///
/// LHS must be greater than RHS in the linear order over terms.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class Rule final {
Term LHS;
Term RHS;
/// A 'permanent' rule cannot be deleted by homotopy reduction. These
/// do not correspond to generic requirements and are re-added when the
/// rewrite system is built.
unsigned Permanent : 1;
/// An 'explicit' rule is a generic requirement written by the user.
unsigned Explicit : 1;
/// An 'LHS simplified' rule's left hand side was reduced via another rule.
/// Set by simplifyLeftHandSides().
unsigned LHSSimplified : 1;
/// An 'RHS simplified' rule's right hand side can be reduced via another rule.
/// Set by simplifyRightHandSides().
unsigned RHSSimplified : 1;
/// A 'substitution simplified' rule's left hand side contains substitutions
/// which can be reduced via another rule.
/// Set by simplifyLeftHandSideSubstitutions().
unsigned SubstitutionSimplified : 1;
/// A 'redundant' rule was eliminated by homotopy reduction. Redundant rules
/// still participate in term rewriting, but they are not part of the minimal
/// set of requirements in a generic signature.
unsigned Redundant : 1;
/// A 'conflicting' rule is a property rule which cannot be satisfied by any
/// concrete type because it is mutually exclusive with some other rule.
/// An example would be a pair of concrete type rules:
///
/// T.[concrete: Int] => T
/// T.[concrete: String] => T
///
/// Conflicting rules are detected in property map construction, and are
/// dropped from the minimal set of requirements.
unsigned Conflicting : 1;
public:
Rule(Term lhs, Term rhs)
: LHS(lhs), RHS(rhs) {
Permanent = false;
Explicit = false;
LHSSimplified = false;
RHSSimplified = false;
SubstitutionSimplified = false;
Redundant = false;
Conflicting = false;
}
const Term &getLHS() const { return LHS; }
const Term &getRHS() const { return RHS; }
Optional<Symbol> isPropertyRule() const;
const ProtocolDecl *isProtocolConformanceRule() const;
const ProtocolDecl *isAnyConformanceRule() const;
bool isIdentityConformanceRule() const;
bool isProtocolRefinementRule() const;
/// See above for an explanation of these predicates.
bool isPermanent() const {
return Permanent;
}
bool isExplicit() const {
return Explicit;
}
bool isLHSSimplified() const {
return LHSSimplified;
}
bool isRHSSimplified() const {
return RHSSimplified;
}
bool isSubstitutionSimplified() const {
return SubstitutionSimplified;
}
bool isRedundant() const {
return Redundant;
}
bool isConflicting() const {
return Conflicting;
}
bool containsUnresolvedSymbols() const {
return (LHS.containsUnresolvedSymbols() ||
RHS.containsUnresolvedSymbols());
}
void markLHSSimplified() {
assert(!LHSSimplified);
LHSSimplified = true;
}
void markRHSSimplified() {
assert(!RHSSimplified);
RHSSimplified = true;
}
void markSubstitutionSimplified() {
assert(!SubstitutionSimplified);
SubstitutionSimplified = true;
}
void markPermanent() {
assert(!Explicit && !Permanent &&
"Permanent and explicit are mutually exclusive");
Permanent = true;
}
void markExplicit() {
assert(!Explicit && !Permanent &&
"Permanent and explicit are mutually exclusive");
Explicit = true;
}
void markRedundant() {
assert(!Redundant);
Redundant = true;
}
void markConflicting() {
// It's okay to mark a rule as conflicting multiple times, but it must not
// be a permanent rule.
assert(!Permanent && "Permanent rule should not conflict with anything");
Conflicting = true;
}
unsigned getDepth() const;
unsigned getNesting() const;
Optional<int> compare(const Rule &other, RewriteContext &ctx) const;
void dump(llvm::raw_ostream &out) const;
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &out,
const Rule &rule) {
rule.dump(out);
return out;
}
};
/// Result type for RequirementMachine::computeCompletion().
enum class CompletionResult {
/// Completion was successful.
Success,
/// Maximum number of rules exceeded.
MaxRuleCount,
/// Maximum rule length exceeded.
MaxRuleLength,
/// Maximum concrete type nesting depth exceeded.
MaxConcreteNesting
};
/// A term rewrite system for working with types in a generic signature.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class RewriteSystem final {
/// Rewrite context for memory allocation.
RewriteContext &Context;
/// If this is a rewrite system for a connected component of protocols,
/// this array is non-empty. Otherwise, it is a rewrite system for a
/// top-level generic signature and this array is empty.
ArrayRef<const ProtocolDecl *> Protos;
/// The rules added so far, including rules from our client, as well
/// as rules introduced by the completion procedure.
std::vector<Rule> Rules;
/// A prefix trie of rule left hand sides to optimize lookup. The value
/// type is an index into the Rules array defined above.
Trie<unsigned, MatchKind::Shortest> Trie;
/// The set of protocols known to this rewrite system. The boolean associated
/// with each key is true if the protocol is part of the 'Protos' set above,
/// otherwies it is false.
///
/// See RuleBuilder::ProtocolMap for a more complete explanation. For the most
/// part, this is only used while building the rewrite system, but conditional
/// requirement inference forces us to be able to add new protocols to the
/// rewrite system after the fact, so this little bit of RuleBuilder state
/// outlives the initialization phase.
llvm::DenseMap<const ProtocolDecl *, bool> ProtocolMap;
DebugOptions Debug;
/// Whether we've initialized the rewrite system with a call to initialize().
unsigned Initialized : 1;
/// Whether we've computed the confluent completion at least once.
///
/// It might be computed multiple times if the property map's concrete type
/// unification procedure adds new rewrite rules.
unsigned Complete : 1;
/// Whether we've minimized the rewrite system.
unsigned Minimized : 1;
/// If set, the completion procedure records rewrite loops describing the
/// identities among rewrite rules discovered while resolving critical pairs.
unsigned RecordLoops : 1;
public:
explicit RewriteSystem(RewriteContext &ctx);
~RewriteSystem();
RewriteSystem(const RewriteSystem &) = delete;
RewriteSystem(RewriteSystem &&) = delete;
RewriteSystem &operator=(const RewriteSystem &) = delete;
RewriteSystem &operator=(RewriteSystem &&) = delete;
/// Return the rewrite context used for allocating memory.
RewriteContext &getRewriteContext() const { return Context; }
llvm::DenseMap<const ProtocolDecl *, bool> &getProtocolMap() {
return ProtocolMap;
}
DebugOptions getDebugOptions() const { return Debug; }
void initialize(bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules);
ArrayRef<const ProtocolDecl *> getProtocols() const {
return Protos;
}
bool isKnownProtocol(const ProtocolDecl *proto) const {
return ProtocolMap.find(proto) != ProtocolMap.end();
}
unsigned getRuleID(const Rule &rule) const {
assert((unsigned)(&rule - &*Rules.begin()) < Rules.size());
return (unsigned)(&rule - &*Rules.begin());
}
ArrayRef<Rule> getRules() const {
return Rules;
}
Rule &getRule(unsigned ruleID) {
return Rules[ruleID];
}
const Rule &getRule(unsigned ruleID) const {
return Rules[ruleID];
}
bool addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path=nullptr);
bool addPermanentRule(MutableTerm lhs, MutableTerm rhs);
bool addExplicitRule(MutableTerm lhs, MutableTerm rhs);
bool simplify(MutableTerm &term, RewritePath *path=nullptr) const;
bool simplifySubstitutions(Symbol &symbol, RewritePath *path=nullptr) const;
//////////////////////////////////////////////////////////////////////////////
///
/// Completion
///
//////////////////////////////////////////////////////////////////////////////
/// Pairs of rules which have already been checked for overlap.
llvm::DenseSet<std::pair<unsigned, unsigned>> CheckedOverlaps;
std::pair<CompletionResult, unsigned>
computeConfluentCompletion(unsigned maxRuleCount,
unsigned maxRuleLength);
void simplifyLeftHandSides();
void simplifyRightHandSides();
void simplifyLeftHandSideSubstitutions();
enum ValidityPolicy {
AllowInvalidRequirements,
DisallowInvalidRequirements
};
void verifyRewriteRules(ValidityPolicy policy) const;
private:
struct CriticalPair {
MutableTerm LHS;
MutableTerm RHS;
RewritePath Path;
CriticalPair(MutableTerm lhs, MutableTerm rhs, RewritePath path)
: LHS(lhs), RHS(rhs), Path(path) {}
};
bool
computeCriticalPair(
ArrayRef<Symbol>::const_iterator from,
const Rule &lhs, const Rule &rhs,
std::vector<CriticalPair> &pairs,
std::vector<RewriteLoop> &loops) const;
/// Constructed from a rule of the form X.[P2:T] => X.[P1:T] by
/// checkMergedAssociatedType().
struct MergedAssociatedType {
/// The *right* hand side of the original rule, X.[P1:T].
Term rhs;
/// The associated type symbol appearing at the end of the *left*
/// hand side of the original rule, [P2:T].
Symbol lhsSymbol;
/// The merged associated type symbol, [P1&P2:T].
Symbol mergedSymbol;
};
/// A list of pending terms for the associated type merging completion
/// heuristic. Entries are added by checkMergedAssociatedType(), and
/// consumed in processMergedAssociatedTypes().
std::vector<MergedAssociatedType> MergedAssociatedTypes;
void processMergedAssociatedTypes();
void checkMergedAssociatedType(Term lhs, Term rhs);
//////////////////////////////////////////////////////////////////////////////
///
/// Relations are "pseudo-rules" introduced by the property map
///
//////////////////////////////////////////////////////////////////////////////
public:
/// The left hand side is known to be smaller than the right hand side.
using Relation = std::pair<Term, Term>;
private:
/// The map's values are indices into the vector. The map is used for
/// uniquing, then the index is returned and lookups are performed into
/// the vector.
llvm::DenseMap<Relation, unsigned> RelationMap;
std::vector<Relation> Relations;
public:
unsigned recordRelation(Term lhs, Term rhs);
Relation getRelation(unsigned index) const;
unsigned recordRelation(Symbol lhs, Symbol rhs);
unsigned recordConcreteConformanceRelation(
Symbol concreteSymbol, Symbol protocolSymbol,
Symbol concreteConformanceSymbol);
unsigned recordConcreteTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol,
Symbol typeWitnessSymbol);
unsigned recordSameTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol);
private:
/// The map's values are indices into the vector. The map is used for
/// uniquing, then the index is returned and lookups are performed into
/// the vector.
llvm::DenseMap<std::tuple<Term, Symbol, Symbol>, unsigned> DifferenceMap;
std::vector<TypeDifference> Differences;
public:
unsigned recordTypeDifference(const TypeDifference &difference);
bool
computeTypeDifference(Term term, Symbol lhs, Symbol rhs,
Optional<unsigned> &lhsDifferenceID,
Optional<unsigned> &rhsDifferenceID);
const TypeDifference &getTypeDifference(unsigned index) const;
private:
//////////////////////////////////////////////////////////////////////////////
///
/// Homotopy reduction
///
//////////////////////////////////////////////////////////////////////////////
/// Homotopy generators for this rewrite system. These are the
/// rewrite loops which rewrite a term back to itself.
///
/// In the category theory interpretation, a rewrite rule is a generating
/// 2-cell, and a rewrite path is a 2-cell made from a composition of
/// generating 2-cells.
///
/// Homotopy generators, in turn, are 3-cells. The special case of a
/// 3-cell discovered during completion can be viewed as two parallel
/// 2-cells; this is actually represented as a single 2-cell forming a
/// loop around a base point.
///
/// This data is used by the homotopy reduction and minimal conformances
/// algorithms.
std::vector<RewriteLoop> Loops;
void propagateExplicitBits();
Optional<std::pair<unsigned, unsigned>>
findRuleToDelete(llvm::function_ref<bool(unsigned)> isRedundantRuleFn);
void deleteRule(unsigned ruleID, const RewritePath &replacementPath);
void performHomotopyReduction(
llvm::function_ref<bool(unsigned)> isRedundantRuleFn);
void computeMinimalConformances(
llvm::DenseSet<unsigned> &redundantConformances);
public:
void recordRewriteLoop(MutableTerm basepoint,
RewritePath path);
bool isInMinimizationDomain(ArrayRef<const ProtocolDecl *> protos) const;
ArrayRef<RewriteLoop> getLoops() const {
return Loops;
}
void minimizeRewriteSystem();
bool hadError() const;
llvm::DenseMap<const ProtocolDecl *, std::vector<unsigned>>
getMinimizedProtocolRules() const;
std::vector<unsigned> getMinimizedGenericSignatureRules() const;
private:
void verifyRewriteLoops() const;
void verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const;
void verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const;
public:
void dump(llvm::raw_ostream &out) const;
};
} // end namespace rewriting
} // end namespace swift
#endif