Files
swift-mirror/stdlib/public/core/String.swift
Roman Levenstein 00d663d172 [sil-generic-specializer] Add @_semantics("optimize.sil.specialize.generic.partial.never") to disable partial specialization on functions
This new @_semantics is used to annotate some very big functions in the standard library. It reduced the code size of the stdlib by 2%.
2017-06-01 16:33:18 -07:00

1214 lines
42 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// A type that can represent a string as a collection of characters.
public protocol StringProtocol
: RangeReplaceableCollection, BidirectionalCollection,
CustomDebugStringConvertible,
CustomReflectable, CustomPlaygroundQuickLookable,
TextOutputStream, TextOutputStreamable,
LosslessStringConvertible, ExpressibleByStringLiteral,
Hashable
where Iterator.Element == Character {
associatedtype UTF8Index
var utf8: String.UTF8View { get }
associatedtype UTF16Index
var utf16: String.UTF16View { get }
associatedtype UnicodeScalarIndex
var unicodeScalars: String.UnicodeScalarView { get }
/*associatedtype CharacterIndex*/
var characters: String.CharacterView { get }
#if _runtime(_ObjC)
func hasPrefix(_ prefix: String) -> Bool
func hasSuffix(_ prefix: String) -> Bool
#endif
func lowercased() -> String
func uppercased() -> String
/// Creates a string from the given Unicode code units in the specified
/// encoding.
///
/// - Parameters:
/// - codeUnits: A collection of code units encoded in the ecoding
/// specified in `sourceEncoding`.
/// - sourceEncoding: The encoding in which `codeUnits` should be
/// interpreted.
init<C: Collection, Encoding: Unicode.Encoding>(
decoding codeUnits: C, as sourceEncoding: Encoding.Type
)
where C.Iterator.Element == Encoding.CodeUnit
/// Creates a string from the null-terminated, UTF-8 encoded sequence of
/// bytes at the given pointer.
///
/// - Parameter nullTerminatedUTF8: A pointer to a sequence of contiguous,
/// UTF-8 encoded bytes ending just before the first zero byte.
init(cString nullTerminatedUTF8: UnsafePointer<CChar>)
/// Creates a string from the null-terminated sequence of bytes at the given
/// pointer.
///
/// - Parameters:
/// - nullTerminatedCodeUnits: A pointer to a sequence of contiguous code
/// units in the encoding specified in `sourceEncoding`, ending just
/// before the first zero code unit.
/// - sourceEncoding: The encoding in which the code units should be
/// interpreted.
init<Encoding: Unicode.Encoding>(
decodingCString nullTerminatedCodeUnits: UnsafePointer<Encoding.CodeUnit>,
as sourceEncoding: Encoding.Type)
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of UTF-8 code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(_:)`. Do not store or return the pointer for
/// later use.
///
/// - Parameter body: A closure with a pointer parameter that points to a
/// null-terminated sequence of UTF-8 code units. If `body` has a return
/// value, it is used as the return value for the `withCString(_:)`
/// method. The pointer argument is valid only for the duration of the
/// method's execution.
/// - Returns: The return value of the `body` closure parameter, if any.
func withCString<Result>(
_ body: (UnsafePointer<CChar>) throws -> Result) rethrows -> Result
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(encodedAs:_:)`. Do not store or return the
/// pointer for later use.
///
/// - Parameters:
/// - body: A closure with a pointer parameter that points to a
/// null-terminated sequence of code units. If `body` has a return
/// value, it is used as the return value for the
/// `withCString(encodedAs:_:)` method. The pointer argument is valid
/// only for the duration of the method's execution.
/// - targetEncoding: The encoding in which the code units should be
/// interpreted.
/// - Returns: The return value of the `body` closure parameter, if any.
func withCString<Result, Encoding: Unicode.Encoding>(
encodedAs targetEncoding: Encoding.Type,
_ body: (UnsafePointer<Encoding.CodeUnit>) throws -> Result
) rethrows -> Result
}
/// A protocol that provides fast access to a known representation of String.
///
/// Can be used to specialize generic functions that would otherwise end up
/// doing grapheme breaking to vend individual characters.
internal protocol _SwiftStringView {
/// A `String`, having the same contents as `self`, that may be unsuitable for
/// long-term storage.
var _ephemeralContent : String { get }
/// A `String`, having the same contents as `self`, that is suitable for
/// long-term storage.
var _persistentContent : String { get }
}
extension _SwiftStringView {
var _ephemeralContent : String { return _persistentContent }
}
extension StringProtocol {
internal var _ephemeralString : String {
if _fastPath(self is _SwiftStringView) {
return (self as! _SwiftStringView)._ephemeralContent
}
return String(String.CharacterView(self))
}
internal var _persistentString : String {
if _fastPath(self is _SwiftStringView) {
return (self as! _SwiftStringView)._persistentContent
}
return String(String.CharacterView(self))
}
}
extension String : _SwiftStringView {
var _persistentContent : String { return characters._persistentContent }
}
/// Call body with a pointer to zero-terminated sequence of
/// `TargetEncoding.CodeUnit` representing the same string as `source`, when
/// `source` is interpreted as being encoded with `SourceEncoding`.
internal func _withCString<
Source : Collection,
SourceEncoding : Unicode.Encoding,
TargetEncoding : Unicode.Encoding,
Result
>(
encodedAs targetEncoding: TargetEncoding.Type,
from source: Source,
encodedAs sourceEncoding: SourceEncoding.Type,
execute body : (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result
where Source.Iterator.Element == SourceEncoding.CodeUnit {
return try _withCStringAndLength(
encodedAs: targetEncoding,
from: source,
encodedAs: sourceEncoding) { p, _ in try body(p) }
}
internal func _withCStringAndLength<
Source : Collection,
SourceEncoding : Unicode.Encoding,
TargetEncoding : Unicode.Encoding,
Result
>(
encodedAs targetEncoding: TargetEncoding.Type,
from source: Source,
encodedAs sourceEncoding: SourceEncoding.Type,
execute body : (UnsafePointer<TargetEncoding.CodeUnit>, Int) throws -> Result
) rethrows -> Result
where Source.Iterator.Element == SourceEncoding.CodeUnit {
var targetLength = 0 // nul terminator
var i = source.makeIterator()
SourceEncoding.ForwardParser._parse(&i) {
targetLength += numericCast(
targetEncoding._transcode($0, from: SourceEncoding.self).count)
}
var a: [TargetEncoding.CodeUnit] = []
a.reserveCapacity(targetLength + 1)
i = source.makeIterator()
SourceEncoding.ForwardParser._parse(&i) {
a.append(
contentsOf: targetEncoding._transcode($0, from: SourceEncoding.self))
}
a.append(0)
return try body(a, targetLength)
}
extension _StringCore {
/// Invokes `body` on a null-terminated sequence of code units in the given
/// encoding corresponding to the substring in `bounds`.
internal func _withCSubstring<Result, TargetEncoding: Unicode.Encoding>(
in bounds: Range<Index>,
encoding targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result {
return try _withCSubstringAndLength(in: bounds, encoding: targetEncoding) {
p,_ in try body(p)
}
}
@_semantics("optimize.sil.specialize.generic.partial.never")
internal func _withCSubstringAndLength<
Result, TargetEncoding: Unicode.Encoding
>(
in bounds: Range<Index>,
encoding targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>, Int) throws -> Result
) rethrows -> Result {
if _fastPath(hasContiguousStorage) {
defer { _fixLifetime(self) }
if isASCII {
return try Swift._withCStringAndLength(
encodedAs: targetEncoding,
from: UnsafeBufferPointer(start: startASCII, count: count)[bounds],
encodedAs: Unicode.ASCII.self,
execute: body
)
}
else {
return try Swift._withCStringAndLength(
encodedAs: targetEncoding,
from: UnsafeBufferPointer(start: startUTF16, count: count)[bounds],
encodedAs: Unicode.UTF16.self,
execute: body
)
}
}
return try Swift._withCStringAndLength(
encodedAs: targetEncoding,
from: self[bounds],
encodedAs: Unicode.UTF16.self,
execute: body
)
}
}
extension String {
/// Creates a string from the given Unicode code units in the specified
/// encoding.
///
/// - Parameters:
/// - codeUnits: A collection of code units encoded in the ecoding
/// specified in `sourceEncoding`.
/// - sourceEncoding: The encoding in which `codeUnits` should be
/// interpreted.
public init<C: Collection, Encoding: Unicode.Encoding>(
decoding codeUnits: C, as sourceEncoding: Encoding.Type
) where C.Iterator.Element == Encoding.CodeUnit {
let (b,_) = _StringBuffer.fromCodeUnits(
codeUnits, encoding: sourceEncoding, repairIllFormedSequences: true)
self = String(_StringCore(b!))
}
/// Creates a string from the null-terminated sequence of bytes at the given
/// pointer.
///
/// - Parameters:
/// - nullTerminatedCodeUnits: A pointer to a sequence of contiguous code
/// units in the encoding specified in `sourceEncoding`, ending just
/// before the first zero code unit.
/// - sourceEncoding: The encoding in which the code units should be
/// interpreted.
public init<Encoding: Unicode.Encoding>(
decodingCString nullTerminatedCodeUnits: UnsafePointer<Encoding.CodeUnit>,
as sourceEncoding: Encoding.Type) {
let codeUnits = _SentinelCollection(
UnsafeBufferPointer(_unboundedStartingAt: nullTerminatedCodeUnits),
until: _IsZero()
)
self.init(decoding: codeUnits, as: sourceEncoding)
}
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(encodedAs:_:)`. Do not store or return the
/// pointer for later use.
///
/// - Parameters:
/// - body: A closure with a pointer parameter that points to a
/// null-terminated sequence of code units. If `body` has a return
/// value, it is used as the return value for the
/// `withCString(encodedAs:_:)` method. The pointer argument is valid
/// only for the duration of the method's execution.
/// - targetEncoding: The encoding in which the code units should be
/// interpreted.
/// - Returns: The return value of the `body` closure parameter, if any.
public func withCString<Result, TargetEncoding: Unicode.Encoding>(
encodedAs targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result {
return try _core._withCSubstring(
in: _core.startIndex..<_core.endIndex, encoding: targetEncoding, body)
}
}
// FIXME: complexity documentation for most of methods on String ought to be
// qualified with "amortized" at least, as Characters are variable-length.
/// A Unicode string value that is a collection of characters.
///
/// A string is a series of characters, such as `"Swift"`. Strings in Swift are
/// Unicode correct, locale insensitive, and designed to be efficient. The
/// `String` type bridges with the Objective-C class `NSString` and offers
/// interoperability with C functions that works with strings.
///
/// You can create new strings using string literals or string interpolations.
/// A string literal is a series of characters enclosed in quotes.
///
/// let greeting = "Welcome!"
///
/// String interpolations are string literals that evaluate any included
/// expressions and convert the results to string form. String interpolations
/// are an easy way to build a string from multiple pieces. Wrap each
/// expression in a string interpolation in parentheses, prefixed by a
/// backslash.
///
/// let name = "Rosa"
/// let personalizedGreeting = "Welcome, \(name)!"
///
/// let price = 2
/// let number = 3
/// let cookiePrice = "\(number) cookies: $\(price * number)."
///
/// Combine strings using the concatenation operator (`+`).
///
/// let longerGreeting = greeting + " We're glad you're here!"
/// print(longerGreeting)
/// // Prints "Welcome! We're glad you're here!"
///
/// Multiline string literals are enclosed in three double quotes (`"""`), with
/// each delimiter on its own line. Indentation is stripped from each line of
/// a multiline string literal to match the indentation of the closing
/// delimiter.
///
/// let banner = """
/// __,
/// ( o /) _/_
/// `. , , , , // /
/// (___)(_(_/_(_ //_ (__
/// /)
/// (/
/// """
///
/// Modifying and Comparing Strings
/// ===============================
///
/// Strings always have value semantics. Modifying a copy of a string leaves
/// the original unaffected.
///
/// var otherGreeting = greeting
/// otherGreeting += " Have a nice time!"
/// print(otherGreeting)
/// // Prints "Welcome! Have a nice time!"
///
/// print(greeting)
/// // Prints "Welcome!"
///
/// Comparing strings for equality using the equal-to operator (`==`) or a
/// relational operator (like `<` and `>=`) is always performed using the
/// Unicode canonical representation. This means that different
/// representations of a string compare as being equal.
///
/// let cafe1 = "Cafe\u{301}"
/// let cafe2 = "Café"
/// print(cafe1 == cafe2)
/// // Prints "true"
///
/// The Unicode code point `"\u{301}"` modifies the preceding character to
/// include an accent, so `"e\u{301}"` has the same canonical representation
/// as the single Unicode code point `"é"`.
///
/// Basic string operations are not sensitive to locale settings. This ensures
/// that string comparisons and other operations always have a single, stable
/// result, allowing strings to be used as keys in `Dictionary` instances and
/// for other purposes.
///
/// Accessing String Elements
/// =========================
///
/// A string is a collection of *extended grapheme clusters*, which approximate
/// human-readable characters. Many individual characters, such as "é", "",
/// and "🇮🇳", can be made up of multiple Unicode code points. These code points
/// are combined by Unicode's boundary algorithms into extended grapheme
/// clusters, represented by Swift's `Character` type. Each element of a
/// string is represented by a `Character` instance.
///
/// For example, to retrieve the first word of a longer string, you can search
/// for a space and then create a substring from a prefix of the string up to
/// that point:
///
/// let name = "Marie Curie"
/// let firstSpace = name.index(of: " ") ?? name.endIndex
/// let firstName = name[..<firstSpace]
/// // firstName == "Marie"
///
/// The `firstName` constant is an instance of the `Substring` type---a type
/// that represents substrings of a string while sharing the original string's
/// storage. Substrings present the same interface as strings.
///
/// print("\(name)'s first name has \(firstName.count) letters.")
/// // Prints "Marie Curie's name has 5 letters."
///
/// Accessing a String's Unicode Representation
/// ===========================================
///
/// If you need to access the contents of a string as encoded in different
/// Unicode encodings, use one of the string's `unicodeScalars`, `utf16`, or
/// `utf8` properties. Each property provides access to a view of the string
/// as a series of code units, each encoded in a different Unicode
/// representation.
///
/// To demonstrate the different views available for every string, the
/// following examples use this `String` instance:
///
/// let cafe = "Cafe\u{301} du 🌍"
/// print(cafe)
/// // Prints "Café du 🌍"
///
/// The `cafe` string is a collection of the nine characters that are visible
/// in the printed string above.
///
/// print(cafe.count)
/// // Prints "9"
/// print(Array(cafe))
/// // Prints "["C", "a", "f", "é", " ", "d", "u", " ", "🌍"]"
///
/// Unicode Scalar View
/// -------------------
///
/// A string's `unicodeScalars` property is a collection of Unicode scalar
/// values, the 21-bit codes that are the basic unit of Unicode. Each scalar
/// value is represented by a `Unicode.Scalar` instance and is equivalent to a
/// UTF-32 code unit.
///
/// print(cafe.unicodeScalars.count)
/// // Prints "10"
/// print(Array(cafe.unicodeScalars))
/// // Prints "["C", "a", "f", "e", "\u{0301}", " ", "d", "u", " ", "\u{0001F30D}"]"
/// print(cafe.unicodeScalars.map { $0.value })
/// // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 127757]"
///
/// The `unicodeScalars` view's elements comprise each Unicode scalar value in
/// the `cafe` string. In particular, because `cafe` was declared using the
/// decomposed form of the `"é"` character, `unicodeScalars` contains the code
/// points for both the letter `"e"` (101) and the accent character `"´"`
/// (769).
///
/// UTF-16 View
/// -----------
///
/// A string's `utf16` property is a collection of UTF-16 code units, the
/// 16-bit encoding form of the string's Unicode scalar values. Each code unit
/// is stored as a `UInt16` instance.
///
/// print(cafe.utf16.count)
/// // Prints "11"
/// print(Array(cafe.utf16))
/// // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 55356, 57101]"
///
/// The elements of the `utf16` view are the code units for the string when
/// encoded in UTF-16.
///
/// The elements of this collection match those accessed through indexed
/// `NSString` APIs.
///
/// let nscafe = cafe as NSString
/// print(nscafe.length)
/// // Prints "11"
/// print(nscafe.character(at: 3))
/// // Prints "101"
///
/// UTF-8 View
/// ----------
///
/// A string's `utf8` property is a collection of UTF-8 code units, the 8-bit
/// encoding form of the string's Unicode scalar values. Each code unit is
/// stored as a `UInt8` instance.
///
/// print(cafe.utf8.count)
/// // Prints "14"
/// print(Array(cafe.utf8))
/// // Prints "[67, 97, 102, 101, 204, 129, 32, 100, 117, 32, 240, 159, 140, 141]"
///
/// The elements of the `utf8` view are the code units for the string when
/// encoded in UTF-8. This representation matches the one used when `String`
/// instances are passed to C APIs.
///
/// let cLength = strlen(cafe)
/// print(cLength)
/// // Prints "14"
///
/// Measuring the Length of a String
/// ================================
///
/// When you need to know the length of a string, you must first consider what
/// you'll use the length for. Are you measuring the number of characters that
/// will be displayed on the screen, or are you measuring the amount of
/// storage needed for the string in a particular encoding? A single string
/// can have greatly differing lengths when measured by its different views.
///
/// For example, an ASCII character like the capital letter *A* is represented
/// by a single element in each of its four views. The Unicode scalar value of
/// *A* is `65`, which is small enough to fit in a single code unit in both
/// UTF-16 and UTF-8.
///
/// let capitalA = "A"
/// print(capitalA.count)
/// // Prints "1"
/// print(capitalA.unicodeScalars.count)
/// // Prints "1"
/// print(capitalA.utf16.count)
/// // Prints "1"
/// print(capitalA.utf8.count)
/// // Prints "1"
///
/// On the other hand, an emoji flag character is constructed from a pair of
/// Unicode scalars values, like `"\u{1F1F5}"` and `"\u{1F1F7}"`. Each of
/// these scalar values, in turn, is too large to fit into a single UTF-16 or
/// UTF-8 code unit. As a result, each view of the string `"🇵🇷"` reports a
/// different length.
///
/// let flag = "🇵🇷"
/// print(flag.count)
/// // Prints "1"
/// print(flag.unicodeScalars.count)
/// // Prints "2"
/// print(flag.utf16.count)
/// // Prints "4"
/// print(flag.utf8.count)
/// // Prints "8"
///
/// To check whether a string is empty, use its `isEmpty` property instead of
/// comparing the length of one of the views to `0`. Unlike `isEmpty`,
/// calculating a view's `count` property requires iterating through the
/// elements of the string.
///
/// Accessing String View Elements
/// ==============================
///
/// To find individual elements of a string, use the appropriate view for your
/// task. For example, to retrieve the first word of a longer string, you can
/// search the `characters` view for a space and then create a new string from
/// a prefix of the `characters` view up to that point.
///
/// let name = "Marie Curie"
/// let firstSpace = name.index(of: " ") ?? name.endIndex
/// let firstName = name[..<firstSpace]
/// print(firstName)
/// // Prints "Marie"
///
/// You can convert an index into one of a string's views to an index into
/// another view.
///
/// let firstSpaceUTF8 = firstSpace.samePosition(in: name.utf8)
/// print(Array(name.utf8[..<firstSpaceUTF8]))
/// // Prints "[77, 97, 114, 105, 101]"
///
/// Performance Optimizations
/// =========================
///
/// Although strings in Swift have value semantics, strings use a copy-on-write
/// strategy to store their data in a buffer. This buffer can then be shared
/// by different copies of a string. A string's data is only copied lazily,
/// upon mutation, when more than one string instance is using the same
/// buffer. Therefore, the first in any sequence of mutating operations may
/// cost O(*n*) time and space.
///
/// When a string's contiguous storage fills up, a new buffer must be allocated
/// and data must be moved to the new storage. String buffers use an
/// exponential growth strategy that makes appending to a string a constant
/// time operation when averaged over many append operations.
///
/// Bridging between String and NSString
/// ====================================
///
/// Any `String` instance can be bridged to `NSString` using the type-cast
/// operator (`as`), and any `String` instance that originates in Objective-C
/// may use an `NSString` instance as its storage. Because any arbitrary
/// subclass of `NSString` can become a `String` instance, there are no
/// guarantees about representation or efficiency when a `String` instance is
/// backed by `NSString` storage. Because `NSString` is immutable, it is just
/// as though the storage was shared by a copy: The first in any sequence of
/// mutating operations causes elements to be copied into unique, contiguous
/// storage which may cost O(*n*) time and space, where *n* is the length of
/// the string's encoded representation (or more, if the underlying `NSString`
/// has unusual performance characteristics).
///
/// For more information about the Unicode terms used in this discussion, see
/// the [Unicode.org glossary][glossary]. In particular, this discussion
/// mentions [extended grapheme clusters][clusters], [Unicode scalar
/// values][scalars], and [canonical equivalence][equivalence].
///
/// [glossary]: http://www.unicode.org/glossary/
/// [clusters]: http://www.unicode.org/glossary/#extended_grapheme_cluster
/// [scalars]: http://www.unicode.org/glossary/#unicode_scalar_value
/// [equivalence]: http://www.unicode.org/glossary/#canonical_equivalent
///
/// - SeeAlso: `String.CharacterView`, `String.UnicodeScalarView`,
/// `String.UTF16View`, `String.UTF8View`
@_fixed_layout
public struct String {
/// Creates an empty string.
public init() {
_core = _StringCore()
}
public // @testable
init(_ _core: _StringCore) {
self._core = _core
}
public // @testable
var _core: _StringCore
}
extension String {
public // @testable
static func _fromWellFormedCodeUnitSequence<
Encoding : Unicode.Encoding, Input : Collection
>(
_ encoding: Encoding.Type, input: Input
) -> String
where Input.Element == Encoding.CodeUnit {
return String._fromCodeUnitSequence(encoding, input: input)!
}
public // @testable
static func _fromCodeUnitSequence<
Encoding : Unicode.Encoding, Input : Collection
>(
_ encoding: Encoding.Type, input: Input
) -> String?
where Input.Element == Encoding.CodeUnit {
let (stringBufferOptional, _) =
_StringBuffer.fromCodeUnits(input, encoding: encoding,
repairIllFormedSequences: false)
return stringBufferOptional.map { String(_storage: $0) }
}
public // @testable
static func _fromCodeUnitSequenceWithRepair<
Encoding : Unicode.Encoding, Input : Collection
>(
_ encoding: Encoding.Type, input: Input
) -> (String, hadError: Bool)
where Input.Element == Encoding.CodeUnit {
let (stringBuffer, hadError) =
_StringBuffer.fromCodeUnits(input, encoding: encoding,
repairIllFormedSequences: true)
return (String(_storage: stringBuffer!), hadError)
}
}
extension String : _ExpressibleByBuiltinUnicodeScalarLiteral {
@effects(readonly)
public // @testable
init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self = String._fromWellFormedCodeUnitSequence(
UTF32.self, input: CollectionOfOne(UInt32(value)))
}
}
extension String : _ExpressibleByBuiltinExtendedGraphemeClusterLiteral {
@_inlineable
@effects(readonly)
@_semantics("string.makeUTF8")
public init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1) {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(utf8CodeUnitCount)))
}
}
extension String : _ExpressibleByBuiltinUTF16StringLiteral {
@_inlineable
@effects(readonly)
@_semantics("string.makeUTF16")
public init(
_builtinUTF16StringLiteral start: Builtin.RawPointer,
utf16CodeUnitCount: Builtin.Word
) {
self = String(
_StringCore(
baseAddress: UnsafeMutableRawPointer(start),
count: Int(utf16CodeUnitCount),
elementShift: 1,
hasCocoaBuffer: false,
owner: nil))
}
}
extension String : _ExpressibleByBuiltinStringLiteral {
@_inlineable
@effects(readonly)
@_semantics("string.makeUTF8")
public init(
_builtinStringLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1) {
if Bool(isASCII) {
self = String(
_StringCore(
baseAddress: UnsafeMutableRawPointer(start),
count: Int(utf8CodeUnitCount),
elementShift: 0,
hasCocoaBuffer: false,
owner: nil))
}
else {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(utf8CodeUnitCount)))
}
}
}
extension String : ExpressibleByStringLiteral {
/// Creates an instance initialized to the given string value.
///
/// Do not call this initializer directly. It is used by the compiler when you
/// initialize a string using a string literal. For example:
///
/// let nextStop = "Clark & Lake"
///
/// This assignment to the `nextStop` constant calls this string literal
/// initializer behind the scenes.
public init(stringLiteral value: String) {
self = value
}
}
extension String : CustomDebugStringConvertible {
/// A representation of the string that is suitable for debugging.
public var debugDescription: String {
var result = "\""
for us in self.unicodeScalars {
result += us.escaped(asASCII: false)
}
result += "\""
return result
}
}
extension String {
/// Returns the number of code units occupied by this string
/// in the given encoding.
func _encodedLength<
Encoding: Unicode.Encoding
>(_ encoding: Encoding.Type) -> Int {
var codeUnitCount = 0
self._encode(encoding, into: { _ in codeUnitCount += 1 })
return codeUnitCount
}
// FIXME: this function may not handle the case when a wrapped NSString
// contains unpaired surrogates. Fix this before exposing this function as a
// public API. But it is unclear if it is valid to have such an NSString in
// the first place. If it is not, we should not be crashing in an obscure
// way -- add a test for that.
// Related: <rdar://problem/17340917> Please document how NSString interacts
// with unpaired surrogates
func _encode<Encoding: Unicode.Encoding>(
_ encoding: Encoding.Type,
into processCodeUnit: (Encoding.CodeUnit) -> Void
) {
return _core.encode(encoding, into: processCodeUnit)
}
}
// Support for copy-on-write
extension String {
/// Appends the given string to this string.
///
/// The following example builds a customized greeting by using the
/// `append(_:)` method:
///
/// var greeting = "Hello, "
/// if let name = getUserName() {
/// greeting.append(name)
/// } else {
/// greeting.append("friend")
/// }
/// print(greeting)
/// // Prints "Hello, friend"
///
/// - Parameter other: Another string.
public mutating func append(_ other: String) {
_core.append(other._core)
}
/// Appends the given Unicode scalar to the string.
///
/// - Parameter x: A Unicode scalar value.
///
/// - Complexity: Appending a Unicode scalar to a string averages to O(1)
/// over many additions.
@available(*, unavailable, message: "Replaced by append(_: String)")
public mutating func append(_ x: Unicode.Scalar) {
Builtin.unreachable()
}
public // SPI(Foundation)
init(_storage: _StringBuffer) {
_core = _StringCore(_storage)
}
}
extension String {
@effects(readonly)
@_semantics("string.concat")
public static func + (lhs: String, rhs: String) -> String {
if lhs.isEmpty {
return rhs
}
var lhs = lhs
lhs._core.append(rhs._core)
return lhs
}
// String append
public static func += (lhs: inout String, rhs: String) {
if lhs.isEmpty {
lhs = rhs
}
else {
lhs._core.append(rhs._core)
}
}
/// Constructs a `String` in `resultStorage` containing the given UTF-8.
///
/// Low-level construction interface used by introspection
/// implementation in the runtime library.
@_inlineable
@_silgen_name("swift_stringFromUTF8InRawMemory")
public // COMPILER_INTRINSIC
static func _fromUTF8InRawMemory(
_ resultStorage: UnsafeMutablePointer<String>,
start: UnsafeMutablePointer<UTF8.CodeUnit>,
utf8CodeUnitCount: Int
) {
resultStorage.initialize(to:
String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(start: start, count: utf8CodeUnitCount)))
}
}
extension Sequence where Element == String {
/// Returns a new string by concatenating the elements of the sequence,
/// adding the given separator between each element.
///
/// The following example shows how an array of strings can be joined to a
/// single, comma-separated string:
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// let list = cast.joined(separator: ", ")
/// print(list)
/// // Prints "Vivien, Marlon, Kim, Karl"
///
/// - Parameter separator: A string to insert between each of the elements
/// in this sequence. The default separator is an empty string.
/// - Returns: A single, concatenated string.
public func joined(separator: String = "") -> String {
return _joined(separator: separator)
}
@inline(__always)
internal func _joined(separator: String = "") -> String {
var result = ""
// FIXME(performance): this code assumes UTF-16 in-memory representation.
// It should be switched to low-level APIs.
let separatorSize = separator.utf16.count
let reservation = self._preprocessingPass {
() -> Int in
var r = 0
for chunk in self {
// FIXME(performance): this code assumes UTF-16 in-memory representation.
// It should be switched to low-level APIs.
r += separatorSize + chunk.utf16.count
}
return r - separatorSize
}
if let n = reservation {
result.reserveCapacity(n)
}
if separatorSize == 0 {
for x in self {
result.append(x)
}
return result
}
var iter = makeIterator()
if let first = iter.next() {
result.append(first)
while let next = iter.next() {
result.append(separator)
result.append(next)
}
}
return result
}
}
// This overload is necessary because String now conforms to
// BidirectionalCollection, and there are other `joined` overloads that are
// considered more specific. See Flatten.swift.gyb.
extension BidirectionalCollection where Iterator.Element == String {
/// Returns a new string by concatenating the elements of the sequence,
/// adding the given separator between each element.
///
/// The following example shows how an array of strings can be joined to a
/// single, comma-separated string:
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// let list = cast.joined(separator: ", ")
/// print(list)
/// // Prints "Vivien, Marlon, Kim, Karl"
///
/// - Parameter separator: A string to insert between each of the elements
/// in this sequence. The default separator is an empty string.
/// - Returns: A single, concatenated string.
public func joined(separator: String = "") -> String {
return _joined(separator: separator)
}
}
#if _runtime(_ObjC)
@_silgen_name("swift_stdlib_NSStringLowercaseString")
func _stdlib_NSStringLowercaseString(_ str: AnyObject) -> _CocoaString
@_silgen_name("swift_stdlib_NSStringUppercaseString")
func _stdlib_NSStringUppercaseString(_ str: AnyObject) -> _CocoaString
#else
internal func _nativeUnicodeLowercaseString(_ str: String) -> String {
var buffer = _StringBuffer(
capacity: str._core.count, initialSize: str._core.count, elementWidth: 2)
// Allocation of a StringBuffer requires binding the memory to the correct
// encoding type.
let dest = buffer.start.bindMemory(
to: UTF16.CodeUnit.self, capacity: str._core.count)
// Try to write it out to the same length.
let z = _swift_stdlib_unicode_strToLower(
dest, Int32(str._core.count),
str._core.startUTF16, Int32(str._core.count))
let correctSize = Int(z)
// If more space is needed, do it again with the correct buffer size.
if correctSize != str._core.count {
buffer = _StringBuffer(
capacity: correctSize, initialSize: correctSize, elementWidth: 2)
let dest = buffer.start.bindMemory(
to: UTF16.CodeUnit.self, capacity: str._core.count)
_swift_stdlib_unicode_strToLower(
dest, Int32(correctSize), str._core.startUTF16, Int32(str._core.count))
}
return String(_storage: buffer)
}
internal func _nativeUnicodeUppercaseString(_ str: String) -> String {
var buffer = _StringBuffer(
capacity: str._core.count, initialSize: str._core.count, elementWidth: 2)
// Allocation of a StringBuffer requires binding the memory to the correct
// encoding type.
let dest = buffer.start.bindMemory(
to: UTF16.CodeUnit.self, capacity: str._core.count)
// Try to write it out to the same length.
let z = _swift_stdlib_unicode_strToUpper(
dest, Int32(str._core.count),
str._core.startUTF16, Int32(str._core.count))
let correctSize = Int(z)
// If more space is needed, do it again with the correct buffer size.
if correctSize != str._core.count {
buffer = _StringBuffer(
capacity: correctSize, initialSize: correctSize, elementWidth: 2)
let dest = buffer.start.bindMemory(
to: UTF16.CodeUnit.self, capacity: str._core.count)
_swift_stdlib_unicode_strToUpper(
dest, Int32(correctSize), str._core.startUTF16, Int32(str._core.count))
}
return String(_storage: buffer)
}
#endif
// Unicode algorithms
extension String {
// FIXME: implement case folding without relying on Foundation.
// <rdar://problem/17550602> [unicode] Implement case folding
/// A "table" for which ASCII characters need to be upper cased.
/// To determine which bit corresponds to which ASCII character, subtract 1
/// from the ASCII value of that character and divide by 2. The bit is set iff
/// that character is a lower case character.
internal var _asciiLowerCaseTable: UInt64 {
@inline(__always)
get {
return 0b0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000
}
}
/// The same table for upper case characters.
internal var _asciiUpperCaseTable: UInt64 {
@inline(__always)
get {
return 0b0000_0000_0000_0000_0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
}
}
/// Returns a lowercase version of the string.
///
/// Here's an example of transforming a string to all lowercase letters.
///
/// let cafe = "Café 🍵"
/// print(cafe.lowercased())
/// // Prints "café 🍵"
///
/// - Returns: A lowercase copy of the string.
///
/// - Complexity: O(*n*)
public func lowercased() -> String {
if let asciiBuffer = self._core.asciiBuffer {
let count = asciiBuffer.count
let source = asciiBuffer.baseAddress!
let buffer = _StringBuffer(
capacity: count, initialSize: count, elementWidth: 1)
let dest = buffer.start
for i in 0..<count {
// For each character in the string, we lookup if it should be shifted
// in our ascii table, then we return 0x20 if it should, 0x0 if not.
// This code is equivalent to:
// switch source[i] {
// case let x where (x >= 0x41 && x <= 0x5a):
// dest[i] = x &+ 0x20
// case let x:
// dest[i] = x
// }
let value = source[i]
let isUpper =
_asciiUpperCaseTable &>>
UInt64(((value &- 1) & 0b0111_1111) &>> 1)
let add = (isUpper & 0x1) &<< 5
// Since we are left with either 0x0 or 0x20, we can safely truncate to
// a UInt8 and add to our ASCII value (this will not overflow numbers in
// the ASCII range).
dest.storeBytes(of: value &+ UInt8(extendingOrTruncating: add),
toByteOffset: i, as: UInt8.self)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringLowercaseString(self._bridgeToObjectiveCImpl()))
#else
return _nativeUnicodeLowercaseString(self)
#endif
}
/// Returns an uppercase version of the string.
///
/// The following example transforms a string to uppercase letters:
///
/// let cafe = "Café 🍵"
/// print(cafe.uppercased())
/// // Prints "CAFÉ 🍵"
///
/// - Returns: An uppercase copy of the string.
///
/// - Complexity: O(*n*)
public func uppercased() -> String {
if let asciiBuffer = self._core.asciiBuffer {
let count = asciiBuffer.count
let source = asciiBuffer.baseAddress!
let buffer = _StringBuffer(
capacity: count, initialSize: count, elementWidth: 1)
let dest = buffer.start
for i in 0..<count {
// See the comment above in lowercaseString.
let value = source[i]
let isLower =
_asciiLowerCaseTable &>>
UInt64(((value &- 1) & 0b0111_1111) &>> 1)
let add = (isLower & 0x1) &<< 5
dest.storeBytes(of: value &- UInt8(extendingOrTruncating: add),
toByteOffset: i, as: UInt8.self)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringUppercaseString(self._bridgeToObjectiveCImpl()))
#else
return _nativeUnicodeUppercaseString(self)
#endif
}
/// Creates an instance from the description of a given
/// `LosslessStringConvertible` instance.
public init<T : LosslessStringConvertible>(_ value: T) {
self = value.description
}
}
extension String : CustomStringConvertible {
public var description: String {
return self
}
}
extension String {
@available(*, unavailable, renamed: "append(_:)")
public mutating func appendContentsOf(_ other: String) {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "append(contentsOf:)")
public mutating func appendContentsOf<S : Sequence>(_ newElements: S)
where S.Element == Character {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "insert(contentsOf:at:)")
public mutating func insertContentsOf<S : Collection>(
_ newElements: S, at i: Index
) where S.Element == Character {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "replaceSubrange")
public mutating func replaceRange<C : Collection>(
_ subRange: Range<Index>, with newElements: C
) where C.Element == Character {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "replaceSubrange")
public mutating func replaceRange(
_ subRange: Range<Index>, with newElements: String
) {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "remove(at:)")
public mutating func removeAtIndex(_ i: Index) -> Character {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "removeSubrange")
public mutating func removeRange(_ subRange: Range<Index>) {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "lowercased()")
public var lowercaseString: String {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "uppercased()")
public var uppercaseString: String {
Builtin.unreachable()
}
@available(*, unavailable, renamed: "init(describing:)")
public init<T>(_: T) {
Builtin.unreachable()
}
}
extension Sequence where Element == String {
@available(*, unavailable, renamed: "joined(separator:)")
public func joinWithSeparator(_ separator: String) -> String {
Builtin.unreachable()
}
}