Files
swift-mirror/lib/SIL/IR/SILValue.cpp
Erik Eckstein 011358edd6 SIL: let SingleValueInstruction only inherit from a single SILNode.
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.

Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
2021-01-27 16:40:15 +01:00

391 lines
13 KiB
C++

//===--- SILValue.cpp - Implementation for SILValue -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILValue.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuiltinVisitor.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Check SILNode Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
//===----------------------------------------------------------------------===//
// Check SILValue Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
static_assert(std::is_standard_layout<SILValue>::value,
"Expected SILValue to be standard layout");
static_assert(sizeof(SILValue) == sizeof(uintptr_t),
"SILValue should be pointer sized");
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
void ValueBase::replaceAllUsesWith(ValueBase *RHS) {
assert(this != RHS && "Cannot RAUW a value with itself");
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(RHS);
}
}
void ValueBase::replaceAllUsesWithUndef() {
auto *F = getFunction();
if (!F) {
llvm_unreachable("replaceAllUsesWithUndef can only be used on ValueBase "
"that have access to the parent function.");
}
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(SILUndef::get(Op->get()->getType(), *F));
}
}
SILInstruction *ValueBase::getDefiningInstruction() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return inst;
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return result->getParent();
return nullptr;
}
SILInstruction *ValueBase::getDefiningInsertionPoint() {
if (auto *inst = getDefiningInstruction())
return inst;
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
SILInstruction *ValueBase::getNextInstruction() {
if (auto *inst = getDefiningInstruction())
return &*std::next(inst->getIterator());
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
Optional<ValueBase::DefiningInstructionResult>
ValueBase::getDefiningInstructionResult() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return DefiningInstructionResult{inst, 0};
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return DefiningInstructionResult{result->getParent(), result->getIndex()};
return None;
}
SILBasicBlock *SILNode::getParentBlock() const {
if (auto *Inst = dyn_cast<SILInstruction>(this))
return Inst->getParent();
if (auto *Arg = dyn_cast<SILArgument>(this))
return Arg->getParent();
if (auto *MVR = dyn_cast<MultipleValueInstructionResult>(this)) {
return MVR->getParent()->getParent();
}
return nullptr;
}
SILFunction *SILNode::getFunction() const {
if (auto *parentBlock = getParentBlock())
return parentBlock->getParent();
return nullptr;
}
SILModule *SILNode::getModule() const {
if (SILFunction *func = getFunction())
return &func->getModule();
return nullptr;
}
/// Get a location for this value.
SILLocation SILValue::getLoc() const {
if (auto *instr = Value->getDefiningInstruction())
return instr->getLoc();
if (auto *arg = dyn_cast<SILArgument>(*this)) {
if (arg->getDecl())
return RegularLocation(const_cast<ValueDecl *>(arg->getDecl()));
}
// TODO: bbargs should probably use one of their operand locations.
return Value->getFunction()->getLocation();
}
//===----------------------------------------------------------------------===//
// OwnershipKind
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OwnershipKind &kind) {
return os << kind.asString();
}
StringRef OwnershipKind::asString() const {
switch (value) {
case OwnershipKind::Any:
return "any";
case OwnershipKind::Unowned:
return "unowned";
case OwnershipKind::Owned:
return "owned";
case OwnershipKind::Guaranteed:
return "guaranteed";
case OwnershipKind::None:
return "none";
}
}
//===----------------------------------------------------------------------===//
// ValueOwnershipKind
//===----------------------------------------------------------------------===//
ValueOwnershipKind::ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention)
: value(OwnershipKind::Any) {
auto &M = F.getModule();
// Trivial types can be passed using a variety of conventions. They always
// have trivial ownership.
if (Type.isTrivial(F)) {
value = OwnershipKind::None;
return;
}
switch (Convention) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Constant:
value = SILModuleConventions(M).useLoweredAddresses()
? OwnershipKind::None
: OwnershipKind::Owned;
break;
case SILArgumentConvention::Indirect_In_Guaranteed:
value = SILModuleConventions(M).useLoweredAddresses()
? OwnershipKind::None
: OwnershipKind::Guaranteed;
break;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
value = OwnershipKind::None;
return;
case SILArgumentConvention::Direct_Owned:
value = OwnershipKind::Owned;
return;
case SILArgumentConvention::Direct_Unowned:
value = OwnershipKind::Unowned;
return;
case SILArgumentConvention::Direct_Guaranteed:
value = OwnershipKind::Guaranteed;
return;
}
}
StringRef ValueOwnershipKind::asString() const {
return value.asString();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
ValueOwnershipKind kind) {
return os << kind.asString();
}
ValueOwnershipKind::ValueOwnershipKind(StringRef S)
: value(OwnershipKind::Any) {
auto Result = llvm::StringSwitch<Optional<OwnershipKind::innerty>>(S)
.Case("unowned", OwnershipKind::Unowned)
.Case("owned", OwnershipKind::Owned)
.Case("guaranteed", OwnershipKind::Guaranteed)
.Case("any", OwnershipKind::None)
.Default(None);
if (!Result.hasValue())
llvm_unreachable("Invalid string representation of ValueOwnershipKind");
value = Result.getValue();
}
ValueOwnershipKind
ValueOwnershipKind::getProjectedOwnershipKind(const SILFunction &F,
SILType Proj) const {
if (Proj.isTrivial(F))
return OwnershipKind::None;
return *this;
}
#if 0
/// Map a SILValue mnemonic name to its ValueKind.
ValueKind swift::getSILValueKind(StringRef Name) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
if (Name == #TextualName) \
return ValueKind::Id;
#define VALUE(Id, Parent) \
if (Name == #Id) \
return ValueKind::Id;
#include "swift/SIL/SILNodes.def"
#ifdef NDEBUG
llvm::errs()
<< "Unknown SILValue name\n";
abort();
#endif
llvm_unreachable("Unknown SILValue name");
}
/// Map ValueKind to a corresponding mnemonic name.
StringRef swift::getSILValueName(ValueKind Kind) {
switch (Kind) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
case ValueKind::Id: \
return #TextualName;
#define VALUE(Id, Parent) \
case ValueKind::Id: \
return #Id;
#include "swift/SIL/SILNodes.def"
}
}
#endif
//===----------------------------------------------------------------------===//
// UseLifetimeConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
UseLifetimeConstraint constraint) {
switch (constraint) {
case UseLifetimeConstraint::NonLifetimeEnding:
os << "NonLifetimeEnding";
break;
case UseLifetimeConstraint::LifetimeEnding:
os << "LifetimeEnding";
break;
}
return os;
}
//===----------------------------------------------------------------------===//
// Operand
//===----------------------------------------------------------------------===//
SILBasicBlock *Operand::getParentBlock() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getParent();
}
SILFunction *Operand::getParentFunction() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getFunction();
}
bool Operand::canAcceptKind(ValueOwnershipKind kind) const {
auto operandOwnership = getOperandOwnership();
auto constraint = operandOwnership.getOwnershipConstraint();
if (constraint.satisfiesConstraint(kind)) {
// Constraints aren't precise enough to enforce Unowned value uses.
if (kind == OwnershipKind::Unowned) {
return canAcceptUnownedValue(operandOwnership);
}
return true;
}
return false;
}
bool Operand::satisfiesConstraints() const {
return canAcceptKind(get().getOwnershipKind());
}
bool Operand::isLifetimeEnding() const {
auto constraint = getOwnershipConstraint();
// If our use lifetime constraint is NonLifetimeEnding, just return false.
if (!constraint.isLifetimeEnding())
return false;
// Otherwise, we may have a lifetime ending use. We consider two cases here:
// the case where our value has OwnershipKind::None and one where it has some
// other OwnershipKind. Note that values with OwnershipKind::None ownership
// can not have their lifetime ended since they are outside of the ownership
// system. Given such a case, if we have such a value we return
// isLifetimeEnding() as false even if the constraint itself has a constraint
// that says a value is LifetimeEnding. If we have a value that has a
// non-OwnershipKind::None ownership then we just return true as expected.
return get().getOwnershipKind() != OwnershipKind::None;
}
//===----------------------------------------------------------------------===//
// OperandConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
OwnershipConstraint constraint) {
return os << "<Constraint "
"Kind:" << constraint.getPreferredKind()
<< " LifetimeConstraint:" << constraint.getLifetimeConstraint()
<< ">";
}
StringRef OperandOwnership::asString() const {
switch (value) {
case OperandOwnership::NonUse:
return "non-use";
case OperandOwnership::TrivialUse:
return "trivial-use";
case OperandOwnership::InstantaneousUse:
return "instantaneous";
case OperandOwnership::UnownedInstantaneousUse:
return "unowned-instantaneous";
case OperandOwnership::ForwardingUnowned:
return "forwarding-unowned";
case OperandOwnership::PointerEscape:
return "pointer-escape";
case OperandOwnership::BitwiseEscape:
return "bitwise-escape";
case OperandOwnership::Borrow:
return "borrow";
case OperandOwnership::DestroyingConsume:
return "destroying-consume";
case OperandOwnership::ForwardingConsume:
return "forwarding-consume";
case OperandOwnership::InteriorPointer:
return "interior-pointer";
case OperandOwnership::ForwardingBorrow:
return "forwarding-borrow";
case OperandOwnership::EndBorrow:
return "end-borrow";
case OperandOwnership::Reborrow:
return "reborrow";
}
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OperandOwnership &operandOwnership) {
return os << operandOwnership.asString();
}