mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is an extension of a similar problem that I had fixed earlier where due to
the usage of intermediate Sendable types we do not propagate regions correctly.
The previous issue I fixed was that we were not properly tieing the result of a
foreign async completion handler to the block storage since we used an
intervening UnsafeContinuation (which is Sendable) to propagate the result into
the block storage. I fixed this by changing SILGen to insert a
merge_isolation_region that explicitly ties the result to the block storage.
This new issue is that the block that we create and then pass as the completion
handler is an @Sendable block. Thus when we call the actual objc_method, the
block storage and self are not viewed as being in the same region. In this PR, I
change it so that we add a merge_isolation_region from self onto the block
storage.
The end result of this is that we have that self, the result of the call, and
the block storage are all in the same region meaning that we properly diagnose
that returning an NSObject from the imported Objective-C function is task
isolated and thus we cannot return it as a sending result.
rdar://131422332
(cherry picked from commit 227ab376cf)
1453 lines
57 KiB
C++
1453 lines
57 KiB
C++
//===--- ResultPlan.cpp ---------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ResultPlan.h"
|
|
#include "Callee.h"
|
|
#include "Conversion.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "SILGenFunction.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/LocalArchetypeRequirementCollector.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/AbstractionPatternGenerators.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Result Plans
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ResultPlan::finishAndAddTo(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError,
|
|
RValue &result) {
|
|
auto rvalue = finish(SGF, loc, directResults, bridgedForeignError);
|
|
assert(!rvalue.isInContext());
|
|
result.addElement(std::move(rvalue));
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A result plan for evaluating an indirect result into the address
|
|
/// associated with an initialization.
|
|
class InPlaceInitializationResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
|
|
public:
|
|
InPlaceInitializationResultPlan(Initialization *init) : init(init) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
init->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
}
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
outList.emplace_back(init->getAddressForInPlaceInitialization(SGF, loc));
|
|
}
|
|
};
|
|
|
|
/// A cleanup that handles the delayed emission of an indirect buffer for opened
|
|
/// Self arguments.
|
|
class IndirectOpenedSelfCleanup final : public Cleanup {
|
|
SILValue box;
|
|
public:
|
|
IndirectOpenedSelfCleanup()
|
|
: box()
|
|
{}
|
|
|
|
void setBox(SILValue b) {
|
|
assert(!box && "buffer already set?!");
|
|
box = b;
|
|
}
|
|
|
|
void emit(SILGenFunction &SGF, CleanupLocation loc, ForUnwind_t forUnwind)
|
|
override {
|
|
assert(box && "buffer never emitted before activating cleanup?!");
|
|
auto theBox = box;
|
|
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
|
|
if (auto *bbi = dyn_cast<BeginBorrowInst>(theBox)) {
|
|
SGF.B.createEndBorrow(loc, bbi);
|
|
theBox = bbi->getOperand();
|
|
}
|
|
}
|
|
SGF.B.createDeallocBox(loc, theBox);
|
|
}
|
|
|
|
void dump(SILGenFunction &SGF) const override {
|
|
llvm::errs() << "IndirectOpenedSelfCleanup\n";
|
|
if (box)
|
|
box->print(llvm::errs());
|
|
}
|
|
};
|
|
|
|
/// Map a type expressed in terms of opened archetypes into a context-free
|
|
/// dependent type, and return a substitution map with generic parameters
|
|
/// corresponding to each distinct root opened archetype.
|
|
static std::pair<CanType, SubstitutionMap>
|
|
mapTypeOutOfOpenedExistentialContext(CanType t, GenericEnvironment *genericEnv) {
|
|
auto &ctx = t->getASTContext();
|
|
|
|
SmallVector<GenericEnvironment *, 4> capturedEnvs;
|
|
t.visit([&](CanType t) {
|
|
if (auto local = dyn_cast<LocalArchetypeType>(t)) {
|
|
auto *genericEnv = local->getGenericEnvironment();
|
|
if (std::find(capturedEnvs.begin(), capturedEnvs.end(), genericEnv)
|
|
== capturedEnvs.end()) {
|
|
capturedEnvs.push_back(genericEnv);
|
|
}
|
|
}
|
|
});
|
|
|
|
GenericSignature baseGenericSig;
|
|
SubstitutionMap forwardingSubs;
|
|
if (genericEnv) {
|
|
baseGenericSig = genericEnv->getGenericSignature();
|
|
forwardingSubs = genericEnv->getForwardingSubstitutionMap();
|
|
}
|
|
|
|
auto mappedTy = mapLocalArchetypesOutOfContext(t, baseGenericSig, capturedEnvs);
|
|
|
|
auto genericSig = buildGenericSignatureWithCapturedEnvironments(
|
|
ctx, baseGenericSig, capturedEnvs);
|
|
auto mappedSubs = buildSubstitutionMapWithCapturedEnvironments(
|
|
forwardingSubs, genericSig, capturedEnvs);
|
|
|
|
return std::make_pair(mappedTy->getCanonicalType(), mappedSubs);
|
|
}
|
|
|
|
/// A result plan for an indirectly-returned opened existential value.
|
|
///
|
|
/// This defers allocating the temporary for the result to a later point so that
|
|
/// it happens after the arguments are evaluated.
|
|
class IndirectOpenedSelfResultPlan final : public ResultPlan {
|
|
AbstractionPattern origType;
|
|
CanType substType;
|
|
CleanupHandle handle = CleanupHandle::invalid();
|
|
mutable SILValue resultBox, resultBuf;
|
|
|
|
public:
|
|
IndirectOpenedSelfResultPlan(SILGenFunction &SGF,
|
|
AbstractionPattern origType,
|
|
CanType substType)
|
|
: origType(origType), substType(substType)
|
|
{
|
|
// Create a cleanup to deallocate the stack buffer at the proper scope.
|
|
// We won't emit the buffer till later, after arguments have been opened,
|
|
// though.
|
|
SGF.Cleanups.pushCleanupInState<IndirectOpenedSelfCleanup>(
|
|
CleanupState::Dormant);
|
|
handle = SGF.Cleanups.getCleanupsDepth();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
assert(!resultBox && "already created temporary?!");
|
|
|
|
// We allocate the buffer as a box because the scope nesting won't clean
|
|
// this up with good stack discipline relative to any stack allocations that
|
|
// occur during argument emission. Escape analysis during mandatory passes
|
|
// ought to clean this up.
|
|
|
|
auto resultTy = SGF.getLoweredType(origType, substType).getASTType();
|
|
CanType layoutTy;
|
|
SubstitutionMap layoutSubs;
|
|
std::tie(layoutTy, layoutSubs) =
|
|
mapTypeOutOfOpenedExistentialContext(resultTy, SGF.F.getGenericEnvironment());
|
|
|
|
CanGenericSignature layoutSig =
|
|
layoutSubs.getGenericSignature().getCanonicalSignature();
|
|
auto boxLayout =
|
|
SILLayout::get(SGF.getASTContext(), layoutSig,
|
|
SILField(layoutTy->getReducedType(layoutSig), true),
|
|
/*captures generics*/ false);
|
|
|
|
resultBox = SGF.B.createAllocBox(loc,
|
|
SILBoxType::get(SGF.getASTContext(),
|
|
boxLayout,
|
|
layoutSubs));
|
|
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
|
|
resultBox = SGF.B.createBeginBorrow(loc, resultBox, IsLexical);
|
|
}
|
|
|
|
// Complete the cleanup to deallocate this buffer later, after we're
|
|
// finished with the argument.
|
|
static_cast<IndirectOpenedSelfCleanup&>(SGF.Cleanups.getCleanup(handle))
|
|
.setBox(resultBox);
|
|
SGF.Cleanups.setCleanupState(handle, CleanupState::Active);
|
|
|
|
resultBuf = SGF.B.createProjectBox(loc, resultBox, 0);
|
|
outList.emplace_back(resultBuf);
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
assert(resultBox && "never emitted temporary?!");
|
|
|
|
// Lower the unabstracted result type.
|
|
auto &substTL = SGF.getTypeLowering(substType);
|
|
|
|
ManagedValue value;
|
|
// If the value isn't address-only, go ahead and load.
|
|
if (!substTL.isAddressOnly()) {
|
|
auto load = substTL.emitLoad(SGF.B, loc, resultBuf,
|
|
LoadOwnershipQualifier::Take);
|
|
value = SGF.emitManagedRValueWithCleanup(load);
|
|
} else {
|
|
value = SGF.emitManagedRValueWithCleanup(resultBuf);
|
|
}
|
|
|
|
// A Self return should never be further abstracted. It's also never emitted
|
|
// into context; we disable that optimization because Self may not even
|
|
// be available to pre-allocate a stack buffer before we prepare a call.
|
|
return RValue(SGF, loc, substType, value);
|
|
}
|
|
};
|
|
|
|
/// A result plan for working with a single value and potentially
|
|
/// reabstracting it. The value can actually be a tuple if the
|
|
/// abstraction is opaque.
|
|
class ScalarResultPlan final : public ResultPlan {
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
AbstractionPattern origType;
|
|
CanType substType;
|
|
Initialization *init;
|
|
SILFunctionTypeRepresentation rep;
|
|
|
|
public:
|
|
ScalarResultPlan(std::unique_ptr<TemporaryInitialization> &&temporary,
|
|
AbstractionPattern origType, CanType substType,
|
|
Initialization *init,
|
|
SILFunctionTypeRepresentation rep)
|
|
: temporary(std::move(temporary)), origType(origType),
|
|
substType(substType), init(init), rep(rep) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
// Claim the value:
|
|
ManagedValue value;
|
|
|
|
// If we were created with a temporary, that address was passed as
|
|
// an indirect result.
|
|
if (temporary) {
|
|
// Establish the cleanup.
|
|
temporary->finishInitialization(SGF);
|
|
value = temporary->getManagedAddress();
|
|
|
|
auto &substTL = SGF.getTypeLowering(value.getType());
|
|
|
|
// If the value isn't address-only, go ahead and load.
|
|
if (!substTL.isAddressOnly()) {
|
|
auto load = substTL.emitLoad(SGF.B, loc, value.forward(SGF),
|
|
LoadOwnershipQualifier::Take);
|
|
value = SGF.emitManagedRValueWithCleanup(load);
|
|
}
|
|
|
|
// Otherwise, it was returned as a direct result.
|
|
} else {
|
|
value = directResults.front();
|
|
directResults = directResults.slice(1);
|
|
}
|
|
|
|
return finish(SGF, loc, value, origType, substType, init, rep);
|
|
}
|
|
|
|
static RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue value,
|
|
AbstractionPattern origType, CanType substType,
|
|
Initialization *init,
|
|
SILFunctionTypeRepresentation rep) {
|
|
// Reabstract the value if the types don't match. This can happen
|
|
// due to either substitution reabstractions or bridging.
|
|
SILType loweredResultTy = SGF.getLoweredType(substType);
|
|
if (value.getType().hasAbstractionDifference(rep, loweredResultTy)) {
|
|
Conversion conversion = [&] {
|
|
// Assume that a C-language API doesn't have substitution
|
|
// reabstractions. This shouldn't be necessary, but
|
|
// emitOrigToSubstValue can get upset.
|
|
if (getSILFunctionLanguage(rep) == SILFunctionLanguage::C) {
|
|
return Conversion::getBridging(Conversion::BridgeResultFromObjC,
|
|
origType.getType(), substType,
|
|
loweredResultTy);
|
|
} else {
|
|
return Conversion::getOrigToSubst(origType, substType,
|
|
value.getType(), loweredResultTy);
|
|
}
|
|
}();
|
|
|
|
// Attempt to peephole this conversion into the context.
|
|
if (init) {
|
|
if (auto outerConversion = init->getAsConversion()) {
|
|
if (outerConversion->tryPeephole(SGF, loc, value, conversion)) {
|
|
outerConversion->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If that wasn't possible, just apply the conversion.
|
|
value = conversion.emit(SGF, loc, value, SGFContext(init));
|
|
|
|
// If that successfully emitted into the initialization, we're done.
|
|
if (value.isInContext()) {
|
|
return RValue::forInContext();
|
|
}
|
|
}
|
|
|
|
// Otherwise, forcibly emit into the initialization if it exists.
|
|
if (init) {
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
|
|
// Otherwise, we've got the r-value we want.
|
|
} else {
|
|
return RValue(SGF, loc, substType, value);
|
|
}
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
if (!temporary)
|
|
return;
|
|
outList.emplace_back(temporary->getAddress());
|
|
}
|
|
};
|
|
|
|
/// A result plan which calls copyOrInitValueInto on an Initialization
|
|
/// using a temporary buffer initialized by a sub-plan.
|
|
class InitValueFromTemporaryResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
CanType substType;
|
|
ResultPlanPtr subPlan;
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
|
|
public:
|
|
InitValueFromTemporaryResultPlan(
|
|
Initialization *init, CanType substType,
|
|
ResultPlanPtr &&subPlan,
|
|
std::unique_ptr<TemporaryInitialization> &&temporary)
|
|
: init(init), substType(substType), subPlan(std::move(subPlan)),
|
|
temporary(std::move(temporary)) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
RValue subResult = subPlan->finish(SGF, loc, directResults,
|
|
bridgedForeignError);
|
|
assert(subResult.isInContext() && "sub-plan didn't emit into context?");
|
|
(void)subResult;
|
|
|
|
ManagedValue value = temporary->getManagedAddress();
|
|
|
|
if (init) {
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
return RValue(SGF, loc, substType, value);
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
};
|
|
|
|
/// A result plan which calls copyOrInitValueInto using the result of
|
|
/// a sub-plan.
|
|
class InitValueFromRValueResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
ResultPlanPtr subPlan;
|
|
|
|
public:
|
|
InitValueFromRValueResultPlan(Initialization *init, ResultPlanPtr &&subPlan)
|
|
: init(init), subPlan(std::move(subPlan)) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
RValue subResult = subPlan->finish(SGF, loc, directResults,
|
|
bridgedForeignError);
|
|
ManagedValue value = std::move(subResult).getAsSingleValue(SGF, loc);
|
|
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
};
|
|
|
|
/// A result plan which breaks a @pack_out result into some number of
|
|
/// components.
|
|
class PackExpansionResultPlan : public ResultPlan {
|
|
SILValue PackAddr;
|
|
SmallVector<ResultPlanPtr, 4> ComponentPlans;
|
|
|
|
public:
|
|
PackExpansionResultPlan(ResultPlanBuilder &builder, SILValue packAddr,
|
|
std::optional<ArrayRef<Initialization *>> inits,
|
|
AbstractionPattern origExpansionType,
|
|
CanTupleEltTypeArrayRef substEltTypes)
|
|
: PackAddr(packAddr) {
|
|
assert(!inits || inits->size() == substEltTypes.size());
|
|
|
|
auto packTy = packAddr->getType().castTo<SILPackType>();
|
|
auto formalPackType =
|
|
CanPackType::get(packTy->getASTContext(), substEltTypes);
|
|
auto origPatternType = origExpansionType.getPackExpansionPatternType();
|
|
|
|
ComponentPlans.reserve(substEltTypes.size());
|
|
for (auto i : indices(substEltTypes)) {
|
|
Initialization *init = inits ? (*inits)[i] : nullptr;
|
|
CanType substEltType = substEltTypes[i];
|
|
|
|
if (isa<PackExpansionType>(substEltType)) {
|
|
ComponentPlans.emplace_back(
|
|
builder.buildPackExpansionIntoPack(packAddr, formalPackType, i,
|
|
init, origPatternType));
|
|
} else {
|
|
ComponentPlans.emplace_back(
|
|
builder.buildScalarIntoPack(packAddr, formalPackType, i,
|
|
init, origPatternType));
|
|
}
|
|
}
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
for (auto &componentPlan : ComponentPlans) {
|
|
auto componentRV = componentPlan->finish(SGF, loc, directResults,
|
|
bridgedForeignError);
|
|
assert(componentRV.isInContext()); (void) componentRV;
|
|
}
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void finishAndAddTo(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError,
|
|
RValue &result) override {
|
|
for (auto &componentPlan : ComponentPlans) {
|
|
componentPlan->finishAndAddTo(SGF, loc, directResults,
|
|
bridgedForeignError, result);
|
|
}
|
|
}
|
|
|
|
void gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
outList.push_back(PackAddr);
|
|
}
|
|
};
|
|
|
|
/// A result plan which transforms a pack expansion component.
|
|
class PackTransformResultPlan final : public ResultPlan {
|
|
/// The address of the pack. The addresses of the tuple elements
|
|
/// have been written into the pack elements for the given component.
|
|
SILValue PackAddr;
|
|
|
|
/// A formal pack type with the same shape as the pack.
|
|
CanPackType FormalPackType;
|
|
|
|
/// The index of the pack expansion component within the pack.
|
|
unsigned ComponentIndex;
|
|
|
|
/// An initialization that the expansion elements should be fed into.
|
|
Initialization *EmitInto;
|
|
|
|
/// The abstraction pattern of the expansion type of the expansion.
|
|
AbstractionPattern OrigPatternType;
|
|
|
|
SILFunctionTypeRepresentation Rep;
|
|
|
|
public:
|
|
PackTransformResultPlan(SILValue packAddr, CanPackType formalPackType,
|
|
unsigned componentIndex, Initialization *init,
|
|
AbstractionPattern origType,
|
|
SILFunctionTypeRepresentation rep)
|
|
: PackAddr(packAddr), FormalPackType(formalPackType),
|
|
ComponentIndex(componentIndex), EmitInto(init),
|
|
OrigPatternType(origType), Rep(rep) {}
|
|
|
|
void gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
llvm_unreachable("should not be gathering from an expansion plan");
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
// We opened a generic environment for the loop prior to the call
|
|
// which wrote element addresses into the pack. We can't open the
|
|
// same environment twice in a function, though, so we need a new
|
|
// environment.
|
|
auto eltPatternTy =
|
|
PackAddr->getType().castTo<SILPackType>()
|
|
->getSILElementType(ComponentIndex);
|
|
auto substPatternType = FormalPackType.getElementType(ComponentIndex);
|
|
|
|
SILType eltAddrTy;
|
|
CanType substEltType;
|
|
auto openedEnv =
|
|
SGF.createOpenedElementValueEnvironment({eltPatternTy}, {&eltAddrTy},
|
|
{substPatternType}, {&substEltType});
|
|
|
|
// Loop over the pack, initializing each value with the appropriate
|
|
// element.
|
|
SGF.emitDynamicPackLoop(loc, FormalPackType, ComponentIndex, openedEnv,
|
|
[&](SILValue indexWithinComponent,
|
|
SILValue expansionIndex,
|
|
SILValue packIndex) {
|
|
EmitInto->performPackExpansionInitialization(SGF, loc,
|
|
indexWithinComponent,
|
|
[&](Initialization *eltInit) {
|
|
// Pull the element address out of the pack, which is cheaper
|
|
// than re-projecting it from the tuple.
|
|
auto eltAddr =
|
|
SGF.B.createPackElementGet(loc, packIndex, PackAddr, eltAddrTy);
|
|
|
|
// Move the value into the destination.
|
|
ManagedValue eltMV = [&] {
|
|
auto &eltTL = SGF.getTypeLowering(eltAddrTy);
|
|
if (!eltTL.isAddressOnly()) {
|
|
auto load = eltTL.emitLoad(SGF.B, loc, eltAddr,
|
|
LoadOwnershipQualifier::Take);
|
|
return SGF.emitManagedRValueWithCleanup(load, eltTL);
|
|
}
|
|
return SGF.emitManagedBufferWithCleanup(eltAddr, eltTL);
|
|
}();
|
|
|
|
// Finish in the normal way for scalar results.
|
|
RValue rvalue =
|
|
ScalarResultPlan::finish(SGF, loc, eltMV, OrigPatternType,
|
|
substEltType, eltInit, Rep);
|
|
assert(rvalue.isInContext()); (void) rvalue;
|
|
});
|
|
});
|
|
|
|
EmitInto->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
}
|
|
};
|
|
|
|
/// A result plan which produces a larger RValue from a bunch of
|
|
/// components.
|
|
class TupleRValueResultPlan final : public ResultPlan {
|
|
CanType substType;
|
|
SmallVector<ResultPlanPtr, 4> origEltPlans;
|
|
|
|
public:
|
|
TupleRValueResultPlan(ResultPlanBuilder &builder, AbstractionPattern origType,
|
|
CanType substType)
|
|
: substType(substType) {
|
|
// Create plans for all the elements.
|
|
origEltPlans.reserve(origType.getNumTupleElements());
|
|
origType.forEachTupleElement(substType,
|
|
[&](TupleElementGenerator &origElt) {
|
|
AbstractionPattern origEltType = origElt.getOrigType();
|
|
auto substEltTypes = origElt.getSubstTypes();
|
|
if (!origElt.isOrigPackExpansion()) {
|
|
origEltPlans.push_back(
|
|
builder.build(nullptr, origEltType, substEltTypes[0]));
|
|
} else {
|
|
origEltPlans.push_back(builder.buildForPackExpansion(
|
|
std::nullopt, origEltType, substEltTypes));
|
|
}
|
|
});
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
RValue tupleRV(substType);
|
|
|
|
// Finish all the component tuples.
|
|
for (auto &plan : origEltPlans) {
|
|
plan->finishAndAddTo(SGF, loc, directResults, bridgedForeignError,
|
|
tupleRV);
|
|
}
|
|
|
|
return tupleRV;
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
for (const auto &plan : origEltPlans) {
|
|
plan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A result plan which evaluates into the sub-components
|
|
/// of a splittable tuple initialization.
|
|
class TupleInitializationResultPlan final : public ResultPlan {
|
|
Initialization *tupleInit;
|
|
SmallVector<InitializationPtr, 4> eltInitsBuffer;
|
|
SmallVector<ResultPlanPtr, 4> eltPlans;
|
|
bool origTupleVanishes;
|
|
|
|
public:
|
|
TupleInitializationResultPlan(ResultPlanBuilder &builder,
|
|
Initialization *tupleInit,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
bool origTupleVanishes)
|
|
: tupleInit(tupleInit), origTupleVanishes(origTupleVanishes) {
|
|
|
|
// Get the sub-initializations.
|
|
SmallVector<Initialization*, 4> eltInits;
|
|
if (origTupleVanishes) {
|
|
eltInits.push_back(tupleInit);
|
|
} else {
|
|
MutableArrayRef<InitializationPtr> ownedEltInits
|
|
= tupleInit->splitIntoTupleElements(builder.SGF, builder.loc,
|
|
substType, eltInitsBuffer);
|
|
|
|
// The ownership of these inits is maintained in eltInitsBuffer
|
|
// (or tupleInit internally), but we need to create a temporary
|
|
// array of unowned references to the inits, after which we can
|
|
// throw away the ArrayRef that was returned to us.
|
|
eltInits.reserve(ownedEltInits.size());
|
|
for (auto &eltInit : ownedEltInits) {
|
|
eltInits.push_back(eltInit.get());
|
|
}
|
|
}
|
|
|
|
// Create plans for all the sub-initializations.
|
|
eltPlans.reserve(origType.getNumTupleElements());
|
|
origType.forEachTupleElement(substType,
|
|
[&](TupleElementGenerator &elt) {
|
|
auto origEltType = elt.getOrigType();
|
|
auto substEltTypes = elt.getSubstTypes();
|
|
if (!elt.isOrigPackExpansion()) {
|
|
Initialization *eltInit = eltInits[elt.getSubstIndex()];
|
|
eltPlans.push_back(builder.build(eltInit, origEltType,
|
|
substEltTypes[0]));
|
|
} else {
|
|
auto componentInits = llvm::ArrayRef(eltInits).slice(
|
|
elt.getSubstIndex(), substEltTypes.size());
|
|
eltPlans.push_back(builder.buildForPackExpansion(componentInits,
|
|
origEltType,
|
|
substEltTypes));
|
|
}
|
|
});
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
for (auto &plan : eltPlans) {
|
|
RValue eltRV = plan->finish(SGF, loc, directResults,
|
|
bridgedForeignError);
|
|
assert(eltRV.isInContext());
|
|
(void)eltRV;
|
|
}
|
|
|
|
// Finish the tuple initialization; but if the tuple vanished,
|
|
// this is handled in the loop above.
|
|
if (!origTupleVanishes) {
|
|
tupleInit->finishInitialization(SGF);
|
|
}
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
for (const auto &eltPlan : eltPlans) {
|
|
eltPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ForeignAsyncInitializationPlan final : public ResultPlan {
|
|
SILLocation loc;
|
|
CalleeTypeInfo calleeTypeInfo;
|
|
SILType opaqueResumeType;
|
|
SILValue resumeBuf;
|
|
SILValue continuation;
|
|
ExecutorBreadcrumb breadcrumb;
|
|
|
|
SILValue blockStorage;
|
|
CanType blockStorageTy;
|
|
CanType continuationTy;
|
|
|
|
public:
|
|
ForeignAsyncInitializationPlan(SILGenFunction &SGF, SILLocation loc,
|
|
const CalleeTypeInfo &calleeTypeInfo)
|
|
: loc(loc), calleeTypeInfo(calleeTypeInfo)
|
|
{
|
|
// Allocate space to receive the resume value when the continuation is
|
|
// resumed.
|
|
opaqueResumeType = SGF.getLoweredType(AbstractionPattern::getOpaque(),
|
|
calleeTypeInfo.substResultType);
|
|
resumeBuf = SGF.emitTemporaryAllocation(loc, opaqueResumeType);
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
// A foreign async function shouldn't have any indirect results.
|
|
}
|
|
|
|
std::tuple</*blockStorage=*/SILValue, /*blockStorageType=*/CanType,
|
|
/*continuationType=*/CanType>
|
|
emitBlockStorage(SILGenFunction &SGF, SILLocation loc, bool throws) {
|
|
auto &ctx = SGF.getASTContext();
|
|
|
|
// Wrap the Builtin.RawUnsafeContinuation in an
|
|
// UnsafeContinuation<T, E>.
|
|
auto *unsafeContinuationDecl = ctx.getUnsafeContinuationDecl();
|
|
auto errorTy = throws ? ctx.getErrorExistentialType() : ctx.getNeverType();
|
|
auto continuationTy =
|
|
BoundGenericType::get(unsafeContinuationDecl, /*parent=*/Type(),
|
|
{calleeTypeInfo.substResultType, errorTy})
|
|
->getCanonicalType();
|
|
|
|
auto wrappedContinuation = SGF.B.createStruct(
|
|
loc, SILType::getPrimitiveObjectType(continuationTy), {continuation});
|
|
|
|
const bool checkedBridging = ctx.LangOpts.UseCheckedAsyncObjCBridging;
|
|
|
|
// If checked bridging is enabled, wrap that continuation again in a
|
|
// CheckedContinuation<T, E>
|
|
if (checkedBridging) {
|
|
auto *checkedContinuationDecl = ctx.getCheckedContinuationDecl();
|
|
continuationTy =
|
|
BoundGenericType::get(checkedContinuationDecl, /*parent=*/Type(),
|
|
{calleeTypeInfo.substResultType, errorTy})
|
|
->getCanonicalType();
|
|
}
|
|
|
|
auto blockStorageTy = SILBlockStorageType::get(ctx.TheAnyType);
|
|
auto blockStorage = SGF.emitTemporaryAllocation(
|
|
loc, SILType::getPrimitiveAddressType(blockStorageTy));
|
|
|
|
auto continuationAddr = SGF.B.createProjectBlockStorage(loc, blockStorage);
|
|
|
|
// Stash continuation in a buffer for a block object.
|
|
auto conformances =
|
|
collectExistentialConformances(continuationTy, ctx.TheAnyType);
|
|
|
|
// In this case block storage captures `Any` which would be initialized
|
|
// with a continuation.
|
|
auto underlyingContinuationAddr = SGF.B.createInitExistentialAddr(
|
|
loc, continuationAddr, continuationTy,
|
|
SGF.getLoweredType(continuationTy), conformances);
|
|
|
|
if (checkedBridging) {
|
|
auto createIntrinsic =
|
|
throws ? SGF.SGM.getCreateCheckedThrowingContinuation()
|
|
: SGF.SGM.getCreateCheckedContinuation();
|
|
auto conformances =
|
|
collectExistentialConformances(calleeTypeInfo.substResultType,
|
|
ctx.TheAnyType);
|
|
auto subs =
|
|
SubstitutionMap::get(createIntrinsic->getGenericSignature(),
|
|
{calleeTypeInfo.substResultType}, conformances);
|
|
InitializationPtr underlyingInit(
|
|
new KnownAddressInitialization(underlyingContinuationAddr));
|
|
auto continuationMV =
|
|
ManagedValue::forRValueWithoutOwnership(wrappedContinuation);
|
|
SGF.emitApplyOfLibraryIntrinsic(loc, createIntrinsic, subs,
|
|
{continuationMV}, SGFContext())
|
|
.forwardInto(SGF, loc, underlyingInit.get());
|
|
SGF.enterDestroyCleanup(underlyingContinuationAddr);
|
|
} else {
|
|
SGF.B.createStore(loc, wrappedContinuation, underlyingContinuationAddr,
|
|
StoreOwnershipQualifier::Trivial);
|
|
}
|
|
|
|
return std::make_tuple(blockStorage, blockStorageTy, continuationTy);
|
|
}
|
|
|
|
ManagedValue emitForeignAsyncCompletionHandler(
|
|
SILGenFunction &SGF, AbstractionPattern origFormalType, ManagedValue self,
|
|
SILLocation loc) override {
|
|
// Get the current continuation for the task.
|
|
bool throws =
|
|
calleeTypeInfo.foreign.async->completionHandlerErrorParamIndex()
|
|
.has_value() ||
|
|
calleeTypeInfo.foreign.error.has_value();
|
|
|
|
continuation = SGF.B.createGetAsyncContinuationAddr(loc, resumeBuf,
|
|
calleeTypeInfo.substResultType, throws);
|
|
|
|
std::tie(blockStorage, blockStorageTy, continuationTy) =
|
|
emitBlockStorage(SGF, loc, throws);
|
|
|
|
// Add a merge_isolation_region from the continuation result buffer
|
|
// (resumeBuf) onto the block storage so it is in the same region as the
|
|
// block storage despite the intervening Sendable continuation wrapping that
|
|
// disguises this fact from the region isolation checker.
|
|
SGF.B.createMergeIsolationRegion(loc, {blockStorage, resumeBuf});
|
|
|
|
// Get the block invocation function for the given completion block type.
|
|
auto completionHandlerIndex = calleeTypeInfo.foreign.async
|
|
->completionHandlerParamIndex();
|
|
auto impTy = SGF.getSILType(calleeTypeInfo.substFnType
|
|
->getParameters()[completionHandlerIndex],
|
|
calleeTypeInfo.substFnType);
|
|
bool handlerIsOptional;
|
|
CanSILFunctionType impFnTy;
|
|
if (auto impObjTy = impTy.getOptionalObjectType()) {
|
|
handlerIsOptional = true;
|
|
impFnTy = cast<SILFunctionType>(impObjTy.getASTType());
|
|
} else {
|
|
handlerIsOptional = false;
|
|
impFnTy = cast<SILFunctionType>(impTy.getASTType());
|
|
}
|
|
auto env = SGF.F.getGenericEnvironment();
|
|
auto sig = env ? env->getGenericSignature().getCanonicalSignature()
|
|
: CanGenericSignature();
|
|
SILFunction *impl =
|
|
SGF.SGM.getOrCreateForeignAsyncCompletionHandlerImplFunction(
|
|
cast<SILFunctionType>(
|
|
impFnTy->mapTypeOutOfContext()->getReducedType(sig)),
|
|
blockStorageTy->mapTypeOutOfContext()->getReducedType(sig),
|
|
continuationTy->mapTypeOutOfContext()->getReducedType(sig),
|
|
origFormalType, sig, calleeTypeInfo);
|
|
auto impRef = SGF.B.createFunctionRef(loc, impl);
|
|
|
|
// Initialize the block object for the completion handler.
|
|
SILValue block = SGF.B.createInitBlockStorageHeader(loc, blockStorage,
|
|
impRef, SILType::getPrimitiveObjectType(impFnTy),
|
|
SGF.getForwardingSubstitutionMap());
|
|
|
|
// If our block is Sendable, we have lost the connection in between self and
|
|
// blockStorage. We need to restore that connection by using a merge
|
|
// isolation region.
|
|
if (self && block->getType().isSendable(&SGF.F)) {
|
|
SGF.B.createMergeIsolationRegion(loc, {self.getValue(), blockStorage});
|
|
}
|
|
|
|
// Wrap it in optional if the callee expects it.
|
|
if (handlerIsOptional) {
|
|
block = SGF.B.createOptionalSome(loc, block, impTy);
|
|
}
|
|
|
|
// We don't need to manage the block because it's still on the stack. We
|
|
// know we won't escape it locally so the callee can be responsible for
|
|
// _Block_copy-ing it.
|
|
//
|
|
// InitBlockStorageHeader always has Unowned ownership.
|
|
return ManagedValue::forUnownedObjectValue(block);
|
|
}
|
|
|
|
void deferExecutorBreadcrumb(ExecutorBreadcrumb &&crumb) override {
|
|
assert(!breadcrumb.needsEmit() && "overwriting an existing breadcrumb?");
|
|
breadcrumb = std::move(crumb);
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
// There should be no direct results from the call.
|
|
assert(directResults.empty());
|
|
auto &ctx = SGF.getASTContext();
|
|
|
|
// Await the continuation we handed off to the completion handler.
|
|
SILBasicBlock *resumeBlock = SGF.createBasicBlock();
|
|
SILBasicBlock *errorBlock = nullptr;
|
|
bool throws =
|
|
calleeTypeInfo.foreign.async->completionHandlerErrorParamIndex()
|
|
.has_value() ||
|
|
calleeTypeInfo.foreign.error.has_value();
|
|
if (throws) {
|
|
errorBlock = SGF.createBasicBlock(FunctionSection::Postmatter);
|
|
}
|
|
|
|
auto *awaitBB = SGF.B.getInsertionBB();
|
|
if (bridgedForeignError) {
|
|
// Avoid a critical edge from the block which branches to the await and
|
|
// foreign error blocks to the await block (to which the error block will
|
|
// be made to branch in a moment) by introducing a trampoline which will
|
|
// branch to the await block.
|
|
awaitBB = SGF.createBasicBlock();
|
|
SGF.B.createBranch(loc, awaitBB);
|
|
|
|
// Finish emitting the foreign error block:
|
|
// (1) fulfill the unsafe continuation with the foreign error
|
|
// (2) branch to the await block
|
|
{
|
|
// First, fulfill the continuation with the foreign error.
|
|
// Currently, that block's code looks something like
|
|
// %foreignError = ... : $*Optional<NSError>
|
|
// %converter = function_ref _convertNSErrorToError(_:)
|
|
// %error = apply %converter(%foreignError)
|
|
// [... insert here ...]
|
|
// destroy_value %error
|
|
// destroy_value %foreignError
|
|
// Insert code to fulfill it after the native %error is defined. That
|
|
// code should load UnsafeContinuation (or CheckedContinuation
|
|
// depending on mode) and then pass that together with (a copy of) the
|
|
// error to _resume{Unsafe, Checked}ThrowingContinuationWithError.
|
|
// [foreign_error_block_with_foreign_async_convention]
|
|
SGF.B.setInsertionPoint(
|
|
++bridgedForeignError->getDefiningInstruction()->getIterator());
|
|
|
|
bool checkedBridging = ctx.LangOpts.UseCheckedAsyncObjCBridging;
|
|
|
|
// Load unsafe or checked continuation from the block storage
|
|
// and call _resume{Unsafe, Checked}ThrowingContinuationWithError.
|
|
|
|
SILValue continuationAddr =
|
|
SGF.B.createProjectBlockStorage(loc, blockStorage);
|
|
|
|
ManagedValue continuation;
|
|
{
|
|
FormalEvaluationScope scope(SGF);
|
|
|
|
auto underlyingValueTy =
|
|
ExistentialArchetypeType::get(ctx.TheAnyType);
|
|
|
|
auto underlyingValueAddr = SGF.emitOpenExistential(
|
|
loc, ManagedValue::forTrivialAddressRValue(continuationAddr),
|
|
SGF.getLoweredType(underlyingValueTy), AccessKind::Read);
|
|
|
|
continuation = SGF.B.createUncheckedAddrCast(
|
|
loc, underlyingValueAddr,
|
|
SILType::getPrimitiveAddressType(continuationTy));
|
|
|
|
// If we are calling the unsafe variant, we always pass the value in
|
|
// registers.
|
|
if (!checkedBridging)
|
|
continuation = SGF.B.createLoadTrivial(loc, continuation);
|
|
}
|
|
|
|
auto mappedOutContinuationTy =
|
|
continuationTy->mapTypeOutOfContext()->getCanonicalType();
|
|
auto resumeType =
|
|
cast<BoundGenericType>(mappedOutContinuationTy).getGenericArgs()[0];
|
|
|
|
auto errorIntrinsic =
|
|
checkedBridging
|
|
? SGF.SGM.getResumeCheckedThrowingContinuationWithError()
|
|
: SGF.SGM.getResumeUnsafeThrowingContinuationWithError();
|
|
|
|
Type replacementTypes[] = {
|
|
SGF.F.mapTypeIntoContext(resumeType)->getCanonicalType()};
|
|
auto subs = SubstitutionMap::get(errorIntrinsic->getGenericSignature(),
|
|
replacementTypes,
|
|
LookUpConformanceInModule());
|
|
|
|
SGF.emitApplyOfLibraryIntrinsic(
|
|
loc, errorIntrinsic, subs,
|
|
{continuation,
|
|
SGF.B.copyOwnedObjectRValue(loc, bridgedForeignError,
|
|
ManagedValue::ScopeKind::Lexical)},
|
|
SGFContext());
|
|
|
|
// Second, emit a branch from the end of the foreign error block to the
|
|
// await block, to await the continuation which was just fulfilled.
|
|
SGF.B.setInsertionPoint(
|
|
bridgedForeignError->getDefiningInstruction()->getParent());
|
|
SGF.B.createBranch(loc, awaitBB);
|
|
}
|
|
|
|
SGF.B.emitBlock(awaitBB);
|
|
}
|
|
SGF.B.createAwaitAsyncContinuation(loc, continuation, resumeBlock, errorBlock);
|
|
|
|
// Propagate an error if we have one.
|
|
if (errorBlock) {
|
|
SGF.B.emitBlock(errorBlock);
|
|
breadcrumb.emit(SGF, loc);
|
|
|
|
Scope errorScope(SGF, loc);
|
|
|
|
auto errorTy = ctx.getErrorExistentialType();
|
|
auto errorVal = SGF.B.createTermResult(
|
|
SILType::getPrimitiveObjectType(errorTy), OwnershipKind::Owned);
|
|
|
|
SGF.emitThrow(loc, errorVal, true);
|
|
}
|
|
|
|
SGF.B.emitBlock(resumeBlock);
|
|
breadcrumb.emit(SGF, loc);
|
|
|
|
// The incoming value is the maximally-abstracted result type of the
|
|
// continuation. Move it out of the resume buffer and reabstract it if
|
|
// necessary.
|
|
auto resumeResult =
|
|
SGF.emitLoad(loc, resumeBuf, AbstractionPattern::getOpaque(),
|
|
calleeTypeInfo.substResultType,
|
|
SGF.getTypeLowering(calleeTypeInfo.substResultType),
|
|
SGFContext(), IsTake);
|
|
|
|
return RValue(SGF, loc, calleeTypeInfo.substResultType, resumeResult);
|
|
}
|
|
};
|
|
|
|
class ForeignErrorInitializationPlan final : public ResultPlan {
|
|
SILLocation loc;
|
|
LValue lvalue;
|
|
ResultPlanPtr subPlan;
|
|
ManagedValue managedErrorTemp;
|
|
CanType unwrappedPtrType;
|
|
PointerTypeKind ptrKind;
|
|
bool isOptional;
|
|
CanType errorPtrType;
|
|
|
|
public:
|
|
ForeignErrorInitializationPlan(SILGenFunction &SGF, SILLocation loc,
|
|
const CalleeTypeInfo &calleeTypeInfo,
|
|
ResultPlanPtr &&subPlan)
|
|
: loc(loc), subPlan(std::move(subPlan)) {
|
|
unsigned errorParamIndex =
|
|
calleeTypeInfo.foreign.error->getErrorParameterIndex();
|
|
auto substFnType = calleeTypeInfo.substFnType;
|
|
SILParameterInfo errorParameter =
|
|
substFnType->getParameters()[errorParamIndex];
|
|
// We assume that there's no interesting reabstraction here beyond a layer
|
|
// of optional.
|
|
errorPtrType = errorParameter.getArgumentType(
|
|
SGF.SGM.M, substFnType, SGF.getTypeExpansionContext());
|
|
unwrappedPtrType = errorPtrType;
|
|
Type unwrapped = errorPtrType->getOptionalObjectType();
|
|
isOptional = (bool) unwrapped;
|
|
|
|
if (unwrapped)
|
|
unwrappedPtrType = unwrapped->getCanonicalType();
|
|
|
|
auto errorType =
|
|
CanType(unwrappedPtrType->getAnyPointerElementType(ptrKind));
|
|
|
|
// In cases when from swift, we call objc imported methods written like so:
|
|
//
|
|
// (1) - (BOOL)submit:(NSError *_Nonnull __autoreleasing *_Nullable)errorOut;
|
|
//
|
|
// the clang importer will successfully import the given method as having a
|
|
// non-null NSError. This doesn't follow the normal convention where we
|
|
// expect the NSError to be Optional<NSError>. In order to preserve source
|
|
// compatibility, we want to allow SILGen to handle this behavior. Luckily
|
|
// in this case, NSError and Optional<NSError> are layout compatible, so we
|
|
// can just pass in the Optional<NSError> and everything works.
|
|
if (auto nsErrorTy = SGF.getASTContext().getNSErrorType()->getCanonicalType()) {
|
|
if (errorType == nsErrorTy) {
|
|
errorType = errorType.wrapInOptionalType();
|
|
}
|
|
}
|
|
|
|
auto &errorTL = SGF.getTypeLowering(errorType);
|
|
|
|
// Allocate a temporary.
|
|
// It's flagged with "hasDynamicLifetime" because it's not possible to
|
|
// statically verify the lifetime of the value.
|
|
SILValue errorTemp = SGF.emitTemporaryAllocation(
|
|
loc, errorTL.getLoweredType(), HasDynamicLifetime);
|
|
|
|
// Nil-initialize it.
|
|
SGF.emitInjectOptionalNothingInto(loc, errorTemp, errorTL);
|
|
|
|
// Enter a cleanup to destroy the value there.
|
|
managedErrorTemp = SGF.emitManagedBufferWithCleanup(errorTemp, errorTL);
|
|
|
|
// Create the appropriate pointer type.
|
|
lvalue = LValue::forAddress(SGFAccessKind::ReadWrite,
|
|
ManagedValue::forLValue(errorTemp),
|
|
/*TODO: enforcement*/ std::nullopt,
|
|
AbstractionPattern(errorType), errorType);
|
|
}
|
|
|
|
void deferExecutorBreadcrumb(ExecutorBreadcrumb &&breadcrumb) override {
|
|
subPlan->deferExecutorBreadcrumb(std::move(breadcrumb));
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> &directResults,
|
|
SILValue bridgedForeignError) override {
|
|
return subPlan->finish(SGF, loc, directResults, bridgedForeignError);
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
|
|
ManagedValue emitForeignAsyncCompletionHandler(
|
|
SILGenFunction &SGF, AbstractionPattern origFormalType, ManagedValue self,
|
|
SILLocation loc) override {
|
|
return subPlan->emitForeignAsyncCompletionHandler(SGF, origFormalType, self,
|
|
loc);
|
|
}
|
|
|
|
std::optional<std::pair<ManagedValue, ManagedValue>>
|
|
emitForeignErrorArgument(SILGenFunction &SGF, SILLocation loc) override {
|
|
SILGenFunction::PointerAccessInfo pointerInfo = {
|
|
unwrappedPtrType, ptrKind, SGFAccessKind::ReadWrite
|
|
};
|
|
auto pointerValue =
|
|
SGF.emitLValueToPointer(loc, std::move(lvalue), pointerInfo);
|
|
|
|
// Wrap up in an Optional if called for.
|
|
if (isOptional) {
|
|
auto &optTL = SGF.getTypeLowering(errorPtrType);
|
|
pointerValue = SGF.getOptionalSomeValue(loc, pointerValue, optTL);
|
|
}
|
|
|
|
return std::make_pair(managedErrorTemp, pointerValue);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Result Plan Builder
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build a result plan for the results of an apply.
|
|
///
|
|
/// If the initialization is non-null, the result plan will emit into it.
|
|
ResultPlanPtr ResultPlanBuilder::buildTopLevelResult(Initialization *init,
|
|
SILLocation loc) {
|
|
// First check if we have a foreign error and/or async convention.
|
|
if (auto foreignError = calleeTypeInfo.foreign.error) {
|
|
// Handle the foreign error first.
|
|
//
|
|
// The plan needs to be built using the formal result type after foreign-error
|
|
// adjustment.
|
|
switch (foreignError->getKind()) {
|
|
// These conventions make the formal result type ().
|
|
case ForeignErrorConvention::ZeroResult:
|
|
case ForeignErrorConvention::NonZeroResult:
|
|
assert(calleeTypeInfo.substResultType->isVoid() ||
|
|
calleeTypeInfo.foreign.async);
|
|
allResults.clear();
|
|
break;
|
|
|
|
// These conventions leave the formal result alone.
|
|
case ForeignErrorConvention::ZeroPreservedResult:
|
|
case ForeignErrorConvention::NonNilError:
|
|
break;
|
|
|
|
// This convention changes the formal result to the optional object type; we
|
|
// need to make our own make SILResultInfo array.
|
|
case ForeignErrorConvention::NilResult: {
|
|
assert(allResults.size() == 1);
|
|
auto substFnTy = calleeTypeInfo.substFnType;
|
|
CanType objectType = allResults[0]
|
|
.getReturnValueType(SGF.SGM.M, substFnTy,
|
|
SGF.getTypeExpansionContext())
|
|
.getOptionalObjectType();
|
|
SILResultInfo optResult = allResults[0].getWithInterfaceType(objectType);
|
|
allResults.clear();
|
|
allResults.push_back(optResult);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ResultPlanPtr subPlan;
|
|
if (auto foreignAsync = calleeTypeInfo.foreign.async) {
|
|
subPlan = ResultPlanPtr(
|
|
new ForeignAsyncInitializationPlan(SGF, loc, calleeTypeInfo));
|
|
} else {
|
|
subPlan = build(init, calleeTypeInfo.origResultType.value(),
|
|
calleeTypeInfo.substResultType);
|
|
}
|
|
return ResultPlanPtr(new ForeignErrorInitializationPlan(
|
|
SGF, loc, calleeTypeInfo, std::move(subPlan)));
|
|
} else if (auto foreignAsync = calleeTypeInfo.foreign.async) {
|
|
// Create a result plan that gets the result schema from the completion
|
|
// handler callback's arguments.
|
|
return ResultPlanPtr(
|
|
new ForeignAsyncInitializationPlan(SGF, loc, calleeTypeInfo));
|
|
} else {
|
|
// Otherwise, we can just call build.
|
|
return build(init, calleeTypeInfo.origResultType.value(),
|
|
calleeTypeInfo.substResultType);
|
|
}
|
|
}
|
|
|
|
/// Build a result plan for the results of an apply.
|
|
///
|
|
/// If the initialization is non-null, the result plan will emit into it.
|
|
ResultPlanPtr ResultPlanBuilder::build(Initialization *init,
|
|
AbstractionPattern origType,
|
|
CanType substType) {
|
|
// Destructure original tuples.
|
|
if (origType.isTuple()) {
|
|
return buildForTuple(init, origType, substType);
|
|
}
|
|
|
|
assert(!origType.isPackExpansion() &&
|
|
"should've been handled when destructuring tuples");
|
|
|
|
// Otherwise, grab the next result.
|
|
auto result = allResults.pop_back_val();
|
|
|
|
return buildForScalar(init, origType, substType, result);
|
|
}
|
|
|
|
ResultPlanPtr ResultPlanBuilder::buildForScalar(Initialization *init,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILResultInfo result) {
|
|
auto calleeTy = calleeTypeInfo.substFnType;
|
|
|
|
// If the result is indirect, and we have an address to emit into, and
|
|
// there are no abstraction differences, then just do it.
|
|
if (init && init->canPerformInPlaceInitialization() &&
|
|
SGF.silConv.isSILIndirect(result) &&
|
|
!SGF.getLoweredType(substType).getAddressType().hasAbstractionDifference(
|
|
calleeTypeInfo.getOverrideRep(),
|
|
result.getSILStorageType(SGF.SGM.M, calleeTy,
|
|
SGF.getTypeExpansionContext()))) {
|
|
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
|
|
}
|
|
|
|
// Otherwise, we need to:
|
|
// - get the value, either directly or indirectly
|
|
// - possibly reabstract it
|
|
// - store it to the destination
|
|
// We could break this down into different ResultPlan implementations,
|
|
// but it's easier not to.
|
|
|
|
// If the result type involves an indirectly-returned opened existential,
|
|
// then we need to evaluate the arguments first in order to have access to
|
|
// the opened Self type. A special result plan defers allocating the stack
|
|
// slot to the point the call is emitted.
|
|
if (result
|
|
.getReturnValueType(SGF.SGM.M, calleeTy,
|
|
SGF.getTypeExpansionContext())
|
|
->hasOpenedExistential() &&
|
|
SGF.silConv.isSILIndirect(result)) {
|
|
return ResultPlanPtr(
|
|
new IndirectOpenedSelfResultPlan(SGF, origType, substType));
|
|
}
|
|
|
|
// Create a temporary if the result is indirect.
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
if (SGF.silConv.isSILIndirect(result)) {
|
|
auto &resultTL = SGF.getTypeLowering(result.getReturnValueType(
|
|
SGF.SGM.M, calleeTy, SGF.getTypeExpansionContext()));
|
|
SILLocation tmpLoc(loc);
|
|
tmpLoc.markAutoGenerated();
|
|
temporary = SGF.emitTemporary(tmpLoc, resultTL);
|
|
}
|
|
|
|
return ResultPlanPtr(new ScalarResultPlan(
|
|
std::move(temporary), origType, substType, init,
|
|
calleeTypeInfo.getOverrideRep()));
|
|
}
|
|
|
|
ResultPlanPtr ResultPlanBuilder::buildForPackExpansion(
|
|
std::optional<ArrayRef<Initialization *>> inits,
|
|
AbstractionPattern origExpansionType, CanTupleEltTypeArrayRef substTypes) {
|
|
assert(!inits || inits->size() == substTypes.size());
|
|
|
|
// Pack expansions in the original result type always turn into
|
|
// a single @pack_out result.
|
|
auto result = allResults.pop_back_val();
|
|
assert(result.isPack());
|
|
auto packTy =
|
|
result.getSILStorageType(SGF.SGM.M, calleeTypeInfo.substFnType,
|
|
SGF.getTypeExpansionContext());
|
|
assert(packTy.castTo<SILPackType>()->getNumElements() == substTypes.size());
|
|
|
|
// TODO: try to just forward a single pack
|
|
|
|
// Allocate a pack to serve as the element.
|
|
auto packAddr =
|
|
SGF.emitTemporaryPackAllocation(loc, packTy.getObjectType());
|
|
|
|
return ResultPlanPtr(new PackExpansionResultPlan(*this, packAddr, inits,
|
|
origExpansionType, substTypes));
|
|
}
|
|
|
|
ResultPlanPtr
|
|
ResultPlanBuilder::buildPackExpansionIntoPack(SILValue packAddr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
Initialization *init,
|
|
AbstractionPattern origPatternType) {
|
|
assert(init && init->canPerformPackExpansionInitialization());
|
|
|
|
// Create an opened-element environment sufficient for working with
|
|
// values of the pack expansion type.
|
|
auto packTy = packAddr->getType().castTo<SILPackType>();
|
|
auto result = SGF.createOpenedElementValueEnvironment(
|
|
packTy->getSILElementType(componentIndex));
|
|
auto openedEnv = result.first;
|
|
auto eltTy = result.second;
|
|
|
|
// This code would be much easier to write, and more efficient
|
|
// dynamically, if we could form packs by pack-applying a coroutine.
|
|
// Instead, we have to initialize a tuple if we don't fall into the
|
|
// (narrow but important) special case where we can just forward
|
|
// addresses into the pack.
|
|
|
|
// If the expansion addresses can just be forwarded into the pack,
|
|
// we can emit a dynamic loop to do that now.
|
|
if (init->canPerformInPlacePackInitialization(openedEnv, eltTy)) {
|
|
SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
|
|
[&](SILValue indexWithinComponent,
|
|
SILValue expansionPackIndex,
|
|
SILValue packIndex) {
|
|
auto eltAddr =
|
|
init->getAddressForInPlacePackInitialization(SGF, loc, eltTy);
|
|
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
|
|
});
|
|
|
|
// The result plan just needs to finish the initialization when
|
|
// it's finished.
|
|
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
|
|
}
|
|
|
|
// Otherwise, make a tuple temporary and write the element addresses
|
|
// into the pack.
|
|
auto tupleTy = CanTupleType(TupleType::get(
|
|
{packTy->getElementType(componentIndex)}, SGF.getASTContext()));
|
|
auto tupleAddr = SGF.emitTemporaryAllocation(loc,
|
|
SILType::getPrimitiveObjectType(tupleTy));
|
|
|
|
SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
|
|
[&](SILValue indexWithinComponent,
|
|
SILValue expansionPackIndex,
|
|
SILValue packIndex) {
|
|
auto eltAddr = SGF.B.createTuplePackElementAddr(loc, expansionPackIndex,
|
|
tupleAddr, eltTy);
|
|
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
|
|
});
|
|
|
|
// The result plan will write into `init` during finish().
|
|
return ResultPlanPtr(
|
|
new PackTransformResultPlan(packAddr, formalPackType,
|
|
componentIndex, init, origPatternType,
|
|
calleeTypeInfo.getOverrideRep()));
|
|
}
|
|
|
|
ResultPlanPtr
|
|
ResultPlanBuilder::buildScalarIntoPack(SILValue packAddr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
Initialization *init,
|
|
AbstractionPattern origType) {
|
|
assert(!origType.isPackExpansion());
|
|
auto substType = formalPackType.getElementType(componentIndex);
|
|
assert(!isa<PackExpansionType>(substType));
|
|
|
|
// Fake up an @out result.
|
|
auto loweredEltType = packAddr->getType().castTo<SILPackType>()
|
|
->getElementType(componentIndex);
|
|
SILResultInfo resultInfo(loweredEltType, ResultConvention::Indirect);
|
|
|
|
// Use the normal scalar emission path to gather an indirect result
|
|
// of that type.
|
|
auto plan = buildForScalar(init, origType, substType, resultInfo);
|
|
|
|
// Immediately gather the indirect result.
|
|
SmallVector<SILValue, 1> indirectResults;
|
|
plan->gatherIndirectResultAddrs(SGF, loc, indirectResults);
|
|
assert(indirectResults.size() == 1);
|
|
auto eltAddr = indirectResults.front();
|
|
|
|
// Write that into the pack.
|
|
auto packIndex =
|
|
SGF.B.createScalarPackIndex(loc, componentIndex, formalPackType);
|
|
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
|
|
|
|
return plan;
|
|
}
|
|
|
|
ResultPlanPtr ResultPlanBuilder::buildForTuple(Initialization *init,
|
|
AbstractionPattern origType,
|
|
CanType substType) {
|
|
// If we have an initialization, and we can split the initialization,
|
|
// emit directly into the initialization. If the orig tuple vanishes,
|
|
// that counts as the initialization being splittable.
|
|
if (init) {
|
|
bool vanishes = origType.doesTupleVanish();
|
|
if (vanishes || init->canSplitIntoTupleElements()) {
|
|
return ResultPlanPtr(
|
|
new TupleInitializationResultPlan(*this, init, origType, substType,
|
|
vanishes));
|
|
}
|
|
}
|
|
|
|
auto substTupleType = dyn_cast<TupleType>(substType);
|
|
bool substHasPackExpansion =
|
|
(substTupleType && substTupleType.containsPackExpansionType());
|
|
|
|
// Otherwise, if the tuple contains a pack expansion, we'll need to
|
|
// initialize a single buffer one way or another: either we're giving
|
|
// this to RValue (which wants a single value for tuples with pack
|
|
// expansions) or we'll have to call copyOrInitValueInto on init
|
|
// (which expects a single value). Create a temporary, build into
|
|
// that, and then call the initialization.
|
|
//
|
|
// We also use this path when we have an init and the type is
|
|
// address-only, because we'll need to call copyOrInitValueInto and
|
|
// we'll get better code by building that up indirectly. But we don't
|
|
// do that if we're not using lowered addresses because we prefer to
|
|
// build tuples with scalar operations.
|
|
auto &substTL = SGF.getTypeLowering(substType);
|
|
assert(substTL.isAddressOnly() || !substHasPackExpansion);
|
|
if (substTL.isAddressOnly() &&
|
|
(substHasPackExpansion ||
|
|
(init != nullptr && SGF.F.getConventions().useLoweredAddresses()))) {
|
|
// Create a temporary.
|
|
auto temporary = SGF.emitTemporary(loc, substTL);
|
|
|
|
// Build a sub-plan to emit into the temporary.
|
|
auto subplan = buildForTuple(temporary.get(), origType, substType);
|
|
|
|
// Make a plan to produce the final result from that.
|
|
return ResultPlanPtr(new InitValueFromTemporaryResultPlan(
|
|
init, substType, std::move(subplan), std::move(temporary)));
|
|
}
|
|
|
|
// If we don't have an initialization, just build the individual
|
|
// components.
|
|
if (!init) {
|
|
return ResultPlanPtr(new TupleRValueResultPlan(*this, origType, substType));
|
|
}
|
|
|
|
// Build a sub-plan that doesn't know about the initialization.
|
|
auto subplan = buildForTuple(nullptr, origType, substType);
|
|
|
|
// Make a plan that calls copyOrInitValueInto.
|
|
return ResultPlanPtr(
|
|
new InitValueFromRValueResultPlan(init, std::move(subplan)));
|
|
}
|
|
|
|
ResultPlanPtr
|
|
ResultPlanBuilder::computeResultPlan(SILGenFunction &SGF,
|
|
const CalleeTypeInfo &calleeTypeInfo,
|
|
SILLocation loc, SGFContext evalContext) {
|
|
ResultPlanBuilder builder(SGF, loc, calleeTypeInfo);
|
|
return builder.buildTopLevelResult(evalContext.getEmitInto(), loc);
|
|
}
|