mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
If the preloaded status is locked, then we need to reload it in order to distinguish between the current thread holding the lock and another thread holding the lock. Without this, if another thread holds the lock, then we won't set the is-locked bit. We'll still actually hold the lock, but other threads may perform operations locklessly if the bit is not set, which can cause a crash. By reloading status in that case, we ensure that the bit is always set correctly.
This manifested as crashes in task cancellation but could cause other task-related issues as well.
Also remove an assert of !isStatusRecordLocked() in AsyncTask::complete(). We allow other threads to access tasks and take the lock for things like cancellation, so the lock may legitimately be held at that point.
rdar://150327908
(cherry picked from commit 325b66ab20)
1099 lines
43 KiB
C++
1099 lines
43 KiB
C++
//===--- TaskStatus.cpp - Asynchronous task status tracking ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Routines for maintaining and interacting with the current state of a
|
|
// task, including tracking child tasks, deadlines, and cancellation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/ABI/TaskStatus.h"
|
|
#include "../CompatibilityOverride/CompatibilityOverride.h"
|
|
#include "TaskPrivate.h"
|
|
#include "swift/Runtime/AtomicWaitQueue.h"
|
|
#include "swift/Runtime/Concurrency.h"
|
|
#include "swift/Runtime/ExistentialContainer.h"
|
|
#include "swift/Threading/Mutex.h"
|
|
#include "swift/Threading/Thread.h"
|
|
#include <atomic>
|
|
|
|
using namespace swift;
|
|
|
|
inline TaskStatusRecord *
|
|
ActiveTaskStatus::getStatusRecordParent(TaskStatusRecord *ptr) {
|
|
return ptr->getParent();
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/************************* RECORD LOCK MANAGEMENT *************************/
|
|
/**************************************************************************/
|
|
|
|
/// This function grabs the status record lock of the input task and invokes
|
|
/// `fn` while holding the StatusRecordLock of the input task.
|
|
///
|
|
/// If the client of withStatusRecordLock has already loaded the status of the
|
|
/// task, they may pass it into this function to avoid a double-load.
|
|
///
|
|
/// The input `fn` is invoked once while holding the status record lock.
|
|
///
|
|
/// The optional `statusUpdate` is invoked while releasing the StatusRecordLock
|
|
/// from the ActiveTaskStatus so that callers may make additional modifications
|
|
/// to ActiveTaskStatus flags. `statusUpdate` can be called multiple times in a
|
|
/// RMW loop and so much be idempotent.
|
|
static void withStatusRecordLock(
|
|
AsyncTask *task, ActiveTaskStatus status,
|
|
llvm::function_ref<void(ActiveTaskStatus)> fn,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus &)>
|
|
statusUpdate = nullptr) {
|
|
// We need to acquire the lock AND set the is-locked bit in the status so that
|
|
// other threads attempting lockless operations can atomically check whether
|
|
// another thread holds the lock. Various operations can be done with a
|
|
// compare and swap if nothing holds the lock, but need to wait for the lock
|
|
// to be released if something does hold it.
|
|
//
|
|
// Setting the bit can't be done atomically with acquiring the lock, but
|
|
// that's OK. If we hold the lock but haven't yet set the bit, then we haven't
|
|
// actually done any work and other threads can operate without violating our
|
|
// assumptions. Once we swap in the is-locked bit and begin work, any
|
|
// in-progress lockless work will fail its compare and swap operation, retry,
|
|
// see that the is-locked bit is now set, and then wait for the lock.
|
|
task->_private().statusLock.lock();
|
|
|
|
bool alreadyLocked = false;
|
|
|
|
// `status` was loaded before we acquired the lock. If its is-locked bit is
|
|
// not set, then we know that this thread doesn't already hold the lock.
|
|
// However, if the is-locked bit is set, then we don't know if this thread
|
|
// held the lock or another thread did. In that case, we reload the status
|
|
// after acquiring the lock. If the reloaded status still has the is-locked
|
|
// bit set, then we know it's this thread. If it doesn't, then we know it was
|
|
// a different thread.
|
|
if (status.isStatusRecordLocked()) {
|
|
status = task->_private()._status().load(std::memory_order_relaxed);
|
|
alreadyLocked = status.isStatusRecordLocked();
|
|
}
|
|
|
|
// If it's already locked then this thread is the thread that locked it, and
|
|
// we can leave that bit alone here.
|
|
if (!alreadyLocked) {
|
|
while (true) {
|
|
ActiveTaskStatus newStatus = status.withStatusRecordLocked();
|
|
|
|
// The caller may be reading a record that was locklessly emplaced. The
|
|
// CONSUME here pairs with the release in addStatusRecord to ensure the
|
|
// record's memory is visible to this thread.
|
|
if (task->_private()._status().compare_exchange_weak(
|
|
status, newStatus,
|
|
/*success*/ SWIFT_MEMORY_ORDER_CONSUME,
|
|
/*failure*/ std::memory_order_relaxed)) {
|
|
status = newStatus;
|
|
status.traceStatusChanged(task, false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We now hold the lock and we've set the bit (or the bit was already set).
|
|
// Call the function to do the work.
|
|
fn(status);
|
|
|
|
while (true) {
|
|
// If we were already locked and there's no status update, then we can skip
|
|
// updating the status field.
|
|
if (alreadyLocked && !statusUpdate)
|
|
break;
|
|
|
|
ActiveTaskStatus newStatus = status;
|
|
|
|
// If we set the is-locked bit, clear it.
|
|
if (!alreadyLocked) {
|
|
newStatus = newStatus.withoutStatusRecordLocked();
|
|
}
|
|
|
|
// If the caller of the function wanted to modify something, let them.
|
|
if (statusUpdate) {
|
|
statusUpdate(status, newStatus);
|
|
}
|
|
|
|
// Records can only be read with the status lock held, so the lock's
|
|
// memory barriers will ensure that a newly emplaced record will be
|
|
// visible to any reader, and we can use relaxed ordering here.
|
|
if (task->_private()._status().compare_exchange_weak(
|
|
status, newStatus,
|
|
/*success*/ std::memory_order_relaxed,
|
|
/*failure*/ std::memory_order_relaxed)) {
|
|
newStatus.traceStatusChanged(task, false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
task->_private().statusLock.unlock();
|
|
}
|
|
|
|
/// A convenience version of the above for contexts that haven't already
|
|
/// done the load.
|
|
template <class Fn>
|
|
static void withStatusRecordLock(
|
|
AsyncTask *task, Fn &&fn,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus &)>
|
|
statusUpdate = nullptr) {
|
|
ActiveTaskStatus status = task->_private()._status().load(std::memory_order_relaxed);
|
|
withStatusRecordLock(
|
|
task, status, [&](ActiveTaskStatus taskStatus) { fn(taskStatus); },
|
|
/*statusUpdate=*/statusUpdate);
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/*************************** RECORD MANAGEMENT ****************************/
|
|
/**************************************************************************/
|
|
|
|
SWIFT_CC(swift)
|
|
bool swift::addStatusRecord(AsyncTask *task, TaskStatusRecord *newRecord,
|
|
ActiveTaskStatus& oldStatus,
|
|
llvm::function_ref<bool(ActiveTaskStatus, ActiveTaskStatus&)> shouldAddRecord) {
|
|
|
|
SWIFT_TASK_DEBUG_LOG("Adding %p record to task %p", newRecord, task);
|
|
while (true) {
|
|
if (oldStatus.isStatusRecordLocked()) {
|
|
// If the record is locked, then acquire the lock and emplace the new
|
|
// record with the lock held. We don't have any other work to do, so we
|
|
// pass an empty function for `fn`, and give a `statusUpdate` that puts
|
|
// the new record in place.
|
|
bool addRecord = false;
|
|
withStatusRecordLock(
|
|
task, oldStatus, [](ActiveTaskStatus) {},
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
// Reset the parent of the new record.
|
|
newRecord->resetParent(newStatus.getInnermostRecord());
|
|
ActiveTaskStatus modifiedStatus =
|
|
newStatus.withInnermostRecord(newRecord);
|
|
addRecord = shouldAddRecord(newStatus, modifiedStatus);
|
|
if (addRecord)
|
|
newStatus = modifiedStatus;
|
|
});
|
|
return addRecord;
|
|
}
|
|
|
|
// If the status record is not locked, try emplacing the new record without
|
|
// locking.
|
|
|
|
// Reset the parent of the new record.
|
|
newRecord->resetParent(oldStatus.getInnermostRecord());
|
|
|
|
ActiveTaskStatus newStatus = oldStatus.withInnermostRecord(newRecord);
|
|
if (shouldAddRecord(oldStatus, newStatus)) {
|
|
// We have to use a release on success to make the initialization of
|
|
// the new record visible to another thread reading the new record.
|
|
_swift_tsan_release(task);
|
|
if (task->_private()._status().compare_exchange_weak(oldStatus, newStatus,
|
|
/*success*/ std::memory_order_release,
|
|
/*failure*/ std::memory_order_relaxed)) {
|
|
newStatus.traceStatusChanged(task, false);
|
|
return true;
|
|
} else {
|
|
// Retry
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
bool swift::addStatusRecord(AsyncTask *task, TaskStatusRecord *newRecord,
|
|
llvm::function_ref<bool(ActiveTaskStatus, ActiveTaskStatus&)> shouldAddRecord) {
|
|
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
|
|
|
|
return addStatusRecord(task, newRecord, oldStatus, shouldAddRecord);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
bool swift::addStatusRecordToSelf(TaskStatusRecord *record,
|
|
llvm::function_ref<bool(ActiveTaskStatus, ActiveTaskStatus&)> testAddRecord) {
|
|
return addStatusRecord(swift_task_getCurrent(), record, testAddRecord);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
bool swift::addStatusRecordToSelf(TaskStatusRecord *record, ActiveTaskStatus &status,
|
|
llvm::function_ref<bool(ActiveTaskStatus, ActiveTaskStatus&)> testAddRecord) {
|
|
return addStatusRecord(swift_task_getCurrent(), record, status, testAddRecord);
|
|
}
|
|
|
|
// Remove a status record that is not the innermost record. The status record
|
|
// lock must be held.
|
|
static void removeNonInnermostStatusRecordLocked(ActiveTaskStatus status,
|
|
TaskStatusRecord *record) {
|
|
bool removedRecord = false;
|
|
auto cur = status.getInnermostRecord();
|
|
assert(status.isStatusRecordLocked());
|
|
assert(cur != record);
|
|
|
|
// Cut the record out.
|
|
while (cur != nullptr) {
|
|
auto next = cur->getParent();
|
|
if (next == record) {
|
|
cur->resetParent(record->getParent());
|
|
removedRecord = true;
|
|
break;
|
|
}
|
|
cur = next;
|
|
}
|
|
static_cast<void>(removedRecord);
|
|
assert(removedRecord);
|
|
}
|
|
|
|
// For when we are trying to remove a record and also optionally trying to
|
|
// modify some flags in the ActiveTaskStatus at the same time.
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecord(AsyncTask *task, TaskStatusRecord *record,
|
|
ActiveTaskStatus& oldStatus,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>fn) {
|
|
|
|
SWIFT_TASK_DEBUG_LOG("remove status record = %p, from task = %p",
|
|
record, task);
|
|
|
|
while (true) {
|
|
// If the record is locked, then either we wait for the lock or we own the
|
|
// lock. Either way, acquire the status record lock and perform the removal.
|
|
// If the record to be removed is not the innermost record, then we need to
|
|
// acquire the lock to safely remove it.
|
|
if (oldStatus.isStatusRecordLocked() ||
|
|
oldStatus.getInnermostRecord() != record) {
|
|
withStatusRecordLock(
|
|
task, oldStatus,
|
|
[&](ActiveTaskStatus lockedStatus) {
|
|
// If the record is the innermost (always was, or became that way
|
|
// while we waited) then we have to remove it in the status change
|
|
// function, since changing the head of the list requires changing
|
|
// the status. If it's not the innermost then we can remove it here.
|
|
if (lockedStatus.getInnermostRecord() != record)
|
|
removeNonInnermostStatusRecordLocked(lockedStatus, record);
|
|
},
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
// We're removing the innermost record, set a new status with the
|
|
// record removed.
|
|
if (newStatus.getInnermostRecord() == record)
|
|
newStatus = newStatus.withInnermostRecord(record->getParent());
|
|
|
|
if (fn) {
|
|
fn(oldStatus, newStatus);
|
|
}
|
|
});
|
|
return;
|
|
}
|
|
|
|
// Nobody holds the lock, and the record is the innermost record. Attempt to
|
|
// remove it locklessly.
|
|
auto newStatus = oldStatus.withInnermostRecord(record->getParent());
|
|
|
|
if (fn) {
|
|
fn(oldStatus, newStatus);
|
|
}
|
|
|
|
if (task->_private()._status().compare_exchange_weak(
|
|
oldStatus, newStatus,
|
|
/*success*/ std::memory_order_relaxed,
|
|
/*failure*/ std::memory_order_relaxed)) {
|
|
newStatus.traceStatusChanged(task, false);
|
|
return;
|
|
}
|
|
|
|
// We failed to remove the record locklessly. Go back to the top and retry
|
|
// removing it.
|
|
}
|
|
}
|
|
|
|
// For when we are trying to remove a record and also optionally trying to
|
|
// modify some flags in the ActiveTaskStatus at the same time.
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecordWhere(
|
|
AsyncTask *task,
|
|
ActiveTaskStatus& oldStatus,
|
|
llvm::function_ref<bool(ActiveTaskStatus, TaskStatusRecord*)> condition,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)> updateStatus) {
|
|
assert(condition && "condition is required");
|
|
SWIFT_TASK_DEBUG_LOG("remove status record where(), from task = %p",
|
|
task);
|
|
|
|
// We're expected to look at the contents of the records, so we must hold the
|
|
// status record lock to do this safely.
|
|
bool removeInnermost = false;
|
|
withStatusRecordLock(
|
|
task, oldStatus,
|
|
[&](ActiveTaskStatus status) {
|
|
for (auto curr : status.records()) {
|
|
// If the record is the innermost then we have to remove it in the
|
|
// status change function, since changing the head of the list
|
|
// requires changing the status. If it's not the innermost then we can
|
|
// remove it here.
|
|
//
|
|
// We'll check the condition on the innermost record here so that we
|
|
// only call it once on the innermost record, as callers expect it to
|
|
// be called once per record, and the status update callback can be
|
|
// called more than once. We hold the record lock throughout so we
|
|
// know that the innermost record will be the same in the status
|
|
// update callback as it was here.
|
|
if (condition(status, curr)) {
|
|
if (curr == status.getInnermostRecord())
|
|
removeInnermost = true;
|
|
else
|
|
removeNonInnermostStatusRecordLocked(status, curr);
|
|
}
|
|
}
|
|
},
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
// Remove the innermost record here, if it's a match.
|
|
if (removeInnermost) {
|
|
auto *innermost = newStatus.getInnermostRecord();
|
|
newStatus = newStatus.withInnermostRecord(innermost->getParent());
|
|
}
|
|
|
|
if (updateStatus) {
|
|
updateStatus(oldStatus, newStatus);
|
|
}
|
|
});
|
|
}
|
|
|
|
template <typename TaskStatusRecordT>
|
|
SWIFT_CC(swift)
|
|
TaskStatusRecordT* swift::popStatusRecordOfType(AsyncTask *task) {
|
|
TaskStatusRecordT *record = nullptr;
|
|
bool alreadyRemovedRecord = false;
|
|
removeStatusRecordWhere(task, [&](ActiveTaskStatus s, TaskStatusRecord *r) {
|
|
if (alreadyRemovedRecord)
|
|
return false;
|
|
|
|
if (auto *match = dyn_cast<TaskStatusRecordT>(r)) {
|
|
record = match;
|
|
alreadyRemovedRecord = true;
|
|
return true; // Remove this record.
|
|
}
|
|
|
|
return false;
|
|
});
|
|
return record;
|
|
}
|
|
|
|
// Convenience wrapper for when client hasn't already done the load of the
|
|
// status
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecord(AsyncTask *task, TaskStatusRecord *record,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>fn) {
|
|
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
|
|
return removeStatusRecord(task, record, oldStatus, fn);
|
|
}
|
|
|
|
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecordWhere(
|
|
AsyncTask *task,
|
|
llvm::function_ref<bool(ActiveTaskStatus, TaskStatusRecord*)> condition,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>updateStatus) {
|
|
auto status = task->_private()._status().load(std::memory_order_relaxed);
|
|
return removeStatusRecordWhere(task, status, condition, updateStatus);
|
|
}
|
|
|
|
// Convenience wrapper for modifications on current task
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecordFromSelf(TaskStatusRecord *record, ActiveTaskStatus &status,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>fn) {
|
|
return removeStatusRecord(swift_task_getCurrent(), record, status, fn);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
void swift::removeStatusRecordFromSelf(TaskStatusRecord *record,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>fn) {
|
|
return removeStatusRecord(swift_task_getCurrent(), record, fn);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
void swift::updateStatusRecord(AsyncTask *task, TaskStatusRecord *record,
|
|
llvm::function_ref<void()>updateRecord,
|
|
ActiveTaskStatus& status,
|
|
llvm::function_ref<void(ActiveTaskStatus, ActiveTaskStatus&)>fn) {
|
|
|
|
SWIFT_TASK_DEBUG_LOG("Updating status record %p of task %p", record, task);
|
|
withStatusRecordLock(task, status, [&](ActiveTaskStatus lockedStatus) {
|
|
#ifndef NDEBUG
|
|
bool foundRecord = false;
|
|
for (auto cur: lockedStatus.records()) {
|
|
if (cur == record) {
|
|
foundRecord = true;
|
|
break;
|
|
}
|
|
}
|
|
assert(foundRecord);
|
|
#endif
|
|
updateRecord();
|
|
}, fn);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static bool swift_task_hasTaskGroupStatusRecordImpl() {
|
|
auto task = swift_task_getCurrent();
|
|
|
|
// a group must be in a task, so if we're not in a task...
|
|
// then, we certainly are not in a group either!
|
|
if (!task)
|
|
return false;
|
|
|
|
bool foundTaskGroupRecord = false;
|
|
withStatusRecordLock(task, [&](ActiveTaskStatus status) {
|
|
// Scan for the task group record within all the active records.
|
|
for (auto record: status.records()) {
|
|
if (record->getKind() == TaskStatusRecordKind::TaskGroup) {
|
|
foundTaskGroupRecord = true;
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
|
|
return foundTaskGroupRecord;
|
|
}
|
|
|
|
///**************************************************************************/
|
|
///************************** TASK EXECUTORS ********************************/
|
|
///**************************************************************************/
|
|
|
|
TaskExecutorRef AsyncTask::getPreferredTaskExecutor(bool assumeHasRecord) {
|
|
// We first check the executor preference status flag, in order to avoid
|
|
// having to scan through the records of the task checking if there was
|
|
// such record.
|
|
//
|
|
// This is an optimization in order to make the enqueue/run
|
|
// path of a task avoid excessive work if a task had many records.
|
|
if (!hasTaskExecutorPreferenceRecord()) {
|
|
return TaskExecutorRef::undefined(); // "no executor preference"
|
|
}
|
|
|
|
TaskExecutorRef preference = TaskExecutorRef::undefined();
|
|
withStatusRecordLock(this, [&](ActiveTaskStatus status) {
|
|
for (auto record : status.records()) {
|
|
if (record->getKind() == TaskStatusRecordKind::TaskExecutorPreference) {
|
|
auto executorPreferenceRecord =
|
|
cast<TaskExecutorPreferenceStatusRecord>(record);
|
|
preference = executorPreferenceRecord->getPreferredExecutor();
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
|
|
return preference;
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static TaskExecutorRef
|
|
swift_task_getPreferredTaskExecutorImpl() {
|
|
if (auto task = swift_task_getCurrent()) {
|
|
return task->getPreferredTaskExecutor();
|
|
}
|
|
|
|
return TaskExecutorRef::undefined(); // "no executor preference"
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static TaskExecutorPreferenceStatusRecord *
|
|
swift_task_pushTaskExecutorPreferenceImpl(TaskExecutorRef taskExecutor) {
|
|
auto task = swift_task_getCurrent();
|
|
if (!task) {
|
|
// we cannot push a preference if we're not in a task (including in
|
|
// compatibility tests), so we return eagerly.
|
|
return nullptr;
|
|
}
|
|
|
|
void *allocation = _swift_task_alloc_specific(
|
|
task, sizeof(class TaskExecutorPreferenceStatusRecord));
|
|
auto record =
|
|
::new (allocation) TaskExecutorPreferenceStatusRecord(
|
|
taskExecutor,
|
|
// we don't retain the executor by the task/record, because the "push"
|
|
// is implemented as a scope which keeps the executor alive by itself
|
|
// already, so we save the retain/release pair by the task doing it
|
|
// as well. In contrast, unstructured task creation always retains
|
|
// the executor.
|
|
/*retainedExecutor=*/false);
|
|
SWIFT_TASK_DEBUG_LOG("[TaskExecutorPreference] Create task executor "
|
|
"preference record %p for task:%p",
|
|
allocation, task);
|
|
|
|
|
|
addStatusRecord(task, record,
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
// We use a flag to mark a task executor preference is
|
|
// present in order to avoid looking for task executor
|
|
// records when running the task, and we know there is no
|
|
// task executor preference present.
|
|
newStatus = newStatus.withTaskExecutorPreference();
|
|
|
|
return true; // always add the record
|
|
});
|
|
|
|
return record;
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static void swift_task_popTaskExecutorPreferenceImpl(
|
|
TaskExecutorPreferenceStatusRecord *record) {
|
|
SWIFT_TASK_DEBUG_LOG("[TaskExecutorPreference] Remove task executor "
|
|
"preference record %p from task:%p",
|
|
record, swift_task_getCurrent());
|
|
// We keep count of how many records there are because if there is more than
|
|
// one, it means the task status flag should still be "has task preference".
|
|
int preferenceRecordsCount = 0;
|
|
|
|
auto task = swift_task_getCurrent();
|
|
if (!task)
|
|
return;
|
|
|
|
removeStatusRecordWhere(
|
|
task,
|
|
/*condition=*/[&](ActiveTaskStatus status, TaskStatusRecord *cur) {
|
|
assert(status.hasTaskExecutorPreference() && "does not have record!");
|
|
|
|
if (cur->getKind() == TaskStatusRecordKind::TaskExecutorPreference) {
|
|
preferenceRecordsCount += 1;
|
|
|
|
return preferenceRecordsCount == 1 &&
|
|
record == cast<TaskExecutorPreferenceStatusRecord>(cur);
|
|
}
|
|
return false;
|
|
},
|
|
/*updateStatus==*/[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
if (preferenceRecordsCount == 1) {
|
|
// if this was the last record removed, we flip the flag to off.
|
|
assert(oldStatus.hasTaskExecutorPreference());
|
|
newStatus = newStatus.withoutTaskExecutorPreference();
|
|
}
|
|
});
|
|
|
|
swift_task_dealloc(record);
|
|
}
|
|
|
|
// Since the header would have incomplete declarations, we instead instantiate a concrete version of the function here
|
|
template SWIFT_CC(swift)
|
|
CancellationNotificationStatusRecord* swift::popStatusRecordOfType<CancellationNotificationStatusRecord>(AsyncTask *);
|
|
|
|
void AsyncTask::pushInitialTaskExecutorPreference(
|
|
TaskExecutorRef preferredExecutor, bool owned) {
|
|
void *allocation = _swift_task_alloc_specific(
|
|
this, sizeof(class TaskExecutorPreferenceStatusRecord));
|
|
auto record =
|
|
::new (allocation) TaskExecutorPreferenceStatusRecord(
|
|
preferredExecutor, /*ownsExecutor=*/owned);
|
|
SWIFT_TASK_DEBUG_LOG("[InitialTaskExecutorPreference] Create a task "
|
|
"preference record %p for task:%p",
|
|
record, this);
|
|
|
|
addStatusRecord(this, record,
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
// We use a flag to mark a task executor preference is
|
|
// present in order to avoid looking for task executor
|
|
// records when running the task, and we know there is no
|
|
// task executor preference present.
|
|
newStatus = newStatus.withTaskExecutorPreference();
|
|
|
|
return true;
|
|
});
|
|
}
|
|
|
|
// ONLY use this method while destroying task and removing the "initial"
|
|
// preference. In all other situations prefer a balanced "push / pop" pair of
|
|
// calls.
|
|
void AsyncTask::dropInitialTaskExecutorPreferenceRecord() {
|
|
SWIFT_TASK_DEBUG_LOG("[InitialTaskExecutorPreference] Drop initial task "
|
|
"preference record from task:%p",
|
|
this);
|
|
assert(hasInitialTaskExecutorPreferenceRecord());
|
|
|
|
TaskExecutorPreferenceStatusRecord *record =
|
|
popStatusRecordOfType<TaskExecutorPreferenceStatusRecord>(this);
|
|
|
|
assert(record && "dropInitialTaskExecutorPreferenceRecord must only be "
|
|
"called when there is an executor preference record");
|
|
|
|
if (record->hasRetainedExecutor()) {
|
|
// Release the "initial" preferred task executor, because it was
|
|
// specifically set in a Task initializer, which retained it.
|
|
//
|
|
// This should not be done for withTaskExecutorPreference executors,
|
|
// however in that case, we would not enter this function here to clean up.
|
|
//
|
|
// NOTE: This MUST NOT assume that the object is a swift object (and use
|
|
// swift_release), because a dispatch_queue_t conforms to TaskExecutor,
|
|
// and may be passed in here; in which case swift_releasing it would be
|
|
// incorrect.
|
|
HeapObject *executorIdentityToRelease =
|
|
record->getPreferredExecutor().getIdentity();
|
|
SWIFT_TASK_DEBUG_LOG("Destroying executor %p", executorIdentityToRelease);
|
|
swift_unknownObjectRelease(executorIdentityToRelease);
|
|
}
|
|
|
|
_swift_task_dealloc_specific(this, record);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/************************** TASK NAMING ***************************************/
|
|
/******************************************************************************/
|
|
|
|
void AsyncTask::pushInitialTaskName(const char* _taskName) {
|
|
assert(_taskName && "Task name must not be null!");
|
|
assert(hasInitialTaskNameRecord() && "Attempted pushing name but task has no initial task name flag!");
|
|
|
|
void *allocation = _swift_task_alloc_specific(
|
|
this, sizeof(class TaskNameStatusRecord));
|
|
|
|
// TODO: Copy the string maybe into the same allocation at an offset or retain the swift string?
|
|
auto taskNameLen = strlen(_taskName);
|
|
char* taskNameCopy = reinterpret_cast<char*>(
|
|
_swift_task_alloc_specific(this, taskNameLen + 1/*null terminator*/));
|
|
(void) strncpy(/*dst=*/taskNameCopy, /*src=*/_taskName, taskNameLen);
|
|
taskNameCopy[taskNameLen] = '\0'; // make sure we null-terminate
|
|
|
|
auto record =
|
|
::new (allocation) TaskNameStatusRecord(taskNameCopy);
|
|
SWIFT_TASK_DEBUG_LOG("[TaskName] Create initial task name record %p "
|
|
"for task:%p, name:%s", record, this, taskNameCopy);
|
|
|
|
addStatusRecord(this, record,
|
|
[&](ActiveTaskStatus oldStatus, ActiveTaskStatus &newStatus) {
|
|
return true; // always add the record
|
|
});
|
|
}
|
|
|
|
void AsyncTask::dropInitialTaskNameRecord() {
|
|
if (!hasInitialTaskNameRecord()) {
|
|
return;
|
|
}
|
|
|
|
SWIFT_TASK_DEBUG_LOG("[TaskName] Drop initial task name record for task:%p", this);
|
|
TaskNameStatusRecord *record =
|
|
popStatusRecordOfType<TaskNameStatusRecord>(this);
|
|
assert(record &&
|
|
"hasInitialTaskNameRecord is true but we did not find a name record");
|
|
// Since we first allocated the record, and then the string copy, deallocate
|
|
// in LIFO order.
|
|
char *name = const_cast<char *>(record->getName());
|
|
_swift_task_dealloc_specific(this, name);
|
|
_swift_task_dealloc_specific(this, record);
|
|
}
|
|
|
|
const char*
|
|
AsyncTask::getTaskName() {
|
|
// We first check the executor preference status flag, in order to avoid
|
|
// having to scan through the records of the task checking if there was
|
|
// such record.
|
|
//
|
|
// This is an optimization in order to make the enqueue/run
|
|
// path of a task avoid excessive work if a task had many records.
|
|
if (!hasInitialTaskNameRecord()) {
|
|
return nullptr;
|
|
}
|
|
|
|
const char *data = nullptr;
|
|
withStatusRecordLock(this, [&](ActiveTaskStatus status) {
|
|
for (auto record : status.records()) {
|
|
if (record->getKind() == TaskStatusRecordKind::TaskName) {
|
|
auto nameRecord = cast<TaskNameStatusRecord>(record);
|
|
data = nameRecord->getName();
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
|
|
return data;
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/************************** CHILD TASK MANAGEMENT *************************/
|
|
/**************************************************************************/
|
|
|
|
// ==== Child tasks ------------------------------------------------------------
|
|
|
|
/// Called in the path of linking a child into a parent/group synchronously with
|
|
/// the parent task.
|
|
//
|
|
/// When called to link a child into a parent directly, this does not hold the
|
|
/// parent's task status record lock. When called to link a child into a task
|
|
/// group, this holds the parent's task status record lock.
|
|
SWIFT_CC(swift)
|
|
void swift::updateNewChildWithParentAndGroupState(AsyncTask *child,
|
|
ActiveTaskStatus parentStatus,
|
|
TaskGroup *group) {
|
|
// We can take the fast path of just modifying the ActiveTaskStatus in the
|
|
// child task since we know that it won't have any task status records and
|
|
// cannot be accessed by anyone else since it hasn't been linked in yet.
|
|
// Avoids the extra logic in `swift_task_cancel` and `swift_task_escalate`
|
|
auto oldChildTaskStatus =
|
|
child->_private()._status().load(std::memory_order_relaxed);
|
|
assert(oldChildTaskStatus.getInnermostRecord() == NULL);
|
|
|
|
auto newChildTaskStatus = oldChildTaskStatus;
|
|
|
|
if (parentStatus.isCancelled() || (group && group->isCancelled())) {
|
|
newChildTaskStatus = newChildTaskStatus.withCancelled();
|
|
}
|
|
|
|
// Propagate max priority of parent to child task's active status
|
|
JobPriority pri = parentStatus.getStoredPriority();
|
|
newChildTaskStatus =
|
|
newChildTaskStatus.withNewPriority(withUserInteractivePriorityDowngrade(pri));
|
|
|
|
child->_private()._status().store(newChildTaskStatus, std::memory_order_relaxed);
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static void swift_taskGroup_attachChildImpl(TaskGroup *group,
|
|
AsyncTask *child) {
|
|
|
|
// We are always called from the context of the parent
|
|
//
|
|
// Acquire the status record lock of parent - we want to synchronize with
|
|
// concurrent cancellation or escalation as we're adding new tasks to the
|
|
// group.
|
|
auto parent = child->childFragment()->getParent();
|
|
assert(parent == swift_task_getCurrent());
|
|
|
|
withStatusRecordLock(parent, [&](ActiveTaskStatus parentStatus) {
|
|
group->addChildTask(child);
|
|
|
|
// After getting parent's status record lock, do some soundness checks to
|
|
// see if parent task or group has state changes that need to be
|
|
// propagated to the child.
|
|
//
|
|
// This is the same logic that we would do if we were adding a child
|
|
// task status record - see also asyncLet_addImpl. Since we attach a
|
|
// child task to a TaskGroupRecord instead, we synchronize on the
|
|
// parent's task status and then update the child.
|
|
updateNewChildWithParentAndGroupState(child, parentStatus, group);
|
|
});
|
|
}
|
|
|
|
void swift::_swift_taskGroup_detachChild(TaskGroup *group,
|
|
AsyncTask *child) {
|
|
// We are called synchronously from the perspective of the owning task.
|
|
// That doesn't necessarily mean the owning task *is* the current task,
|
|
// though, just that it's not concurrently running.
|
|
auto parent = child->childFragment()->getParent();
|
|
|
|
withStatusRecordLock(parent, [&](ActiveTaskStatus unused) {
|
|
group->removeChildTask(child);
|
|
});
|
|
}
|
|
|
|
/// Cancel the task group and all the child tasks that belong to `group`.
|
|
///
|
|
/// The caller must guarantee that this is called while holding the owning
|
|
/// task's status record lock.
|
|
void swift::_swift_taskGroup_cancel(TaskGroup *group) {
|
|
(void) group->statusCancel();
|
|
|
|
// Because only the owning task of the task group can modify the
|
|
// child list of a task group status record, and it can only do so
|
|
// while holding the owning task's status record lock, we do not need
|
|
// any additional synchronization within this function.
|
|
for (auto childTask : group->getTaskRecord()->children())
|
|
swift_task_cancel(childTask);
|
|
}
|
|
|
|
/// Cancel the task group and all the child tasks that belong to `group`.
|
|
///
|
|
/// The caller must guarantee that this is called from the owning task.
|
|
void swift::_swift_taskGroup_cancel_unlocked(TaskGroup *group,
|
|
AsyncTask *owningTask) {
|
|
// Early out. If there are no children, there's nothing to do. We can safely
|
|
// check this without locking, since this can only be concurrently mutated
|
|
// from a child task. If there are no children then no more can be added.
|
|
if (!group->getTaskRecord()->getFirstChild())
|
|
return;
|
|
|
|
withStatusRecordLock(owningTask, [&group](ActiveTaskStatus status) {
|
|
_swift_taskGroup_cancel(group);
|
|
});
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/****************************** CANCELLATION ******************************/
|
|
/**************************************************************************/
|
|
|
|
/// Perform any cancellation actions required by the given record.
|
|
static void performCancellationAction(TaskStatusRecord *record) {
|
|
switch (record->getKind()) {
|
|
// Child tasks need to be recursively cancelled.
|
|
case TaskStatusRecordKind::ChildTask: {
|
|
auto childRecord = cast<ChildTaskStatusRecord>(record);
|
|
for (AsyncTask *child: childRecord->children())
|
|
swift_task_cancel(child);
|
|
return;
|
|
}
|
|
|
|
// Task groups need their children to be cancelled. Note that we do
|
|
// not want to formally cancel the task group itself; that property is
|
|
// under the synchronous control of the task that owns the group.
|
|
case TaskStatusRecordKind::TaskGroup: {
|
|
auto groupRecord = cast<TaskGroupTaskStatusRecord>(record);
|
|
_swift_taskGroup_cancel(groupRecord->getGroup());
|
|
return;
|
|
}
|
|
|
|
// Cancellation notifications need to be called.
|
|
case TaskStatusRecordKind::CancellationNotification: {
|
|
auto notification =
|
|
cast<CancellationNotificationStatusRecord>(record);
|
|
notification->run();
|
|
return;
|
|
}
|
|
|
|
// Escalation notifications can be ignored.
|
|
case TaskStatusRecordKind::EscalationNotification:
|
|
return;
|
|
|
|
// No cancellation action needs to be taken for dependency status records
|
|
case TaskStatusRecordKind::TaskDependency:
|
|
break;
|
|
|
|
// Cancellation has no impact on executor preference.
|
|
case TaskStatusRecordKind::TaskExecutorPreference:
|
|
break;
|
|
|
|
// Cancellation has no impact on task names.
|
|
case TaskStatusRecordKind::TaskName:
|
|
break;
|
|
|
|
// This should never be found, but the compiler complains if we don't check.
|
|
case TaskStatusRecordKind::First_Reserved:
|
|
break;
|
|
}
|
|
|
|
// Other cases can fall through here and be ignored.
|
|
// FIXME: allow dynamic extension/correction?
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
static void swift_task_cancelImpl(AsyncTask *task) {
|
|
SWIFT_TASK_DEBUG_LOG("cancel task = %p", task);
|
|
|
|
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
|
|
auto newStatus = oldStatus;
|
|
while (true) {
|
|
if (oldStatus.isCancelled()) {
|
|
return;
|
|
}
|
|
|
|
// Set cancelled bit even if oldStatus.isStatusRecordLocked()
|
|
newStatus = oldStatus.withCancelled();
|
|
|
|
// consume here pairs with the release in addStatusRecord.
|
|
if (task->_private()._status().compare_exchange_weak(oldStatus, newStatus,
|
|
/*success*/ SWIFT_MEMORY_ORDER_CONSUME,
|
|
/*failure*/ std::memory_order_relaxed)) {
|
|
_swift_tsan_consume(task);
|
|
break;
|
|
}
|
|
}
|
|
|
|
newStatus.traceStatusChanged(task, false);
|
|
if (newStatus.getInnermostRecord() == nullptr) {
|
|
// No records, nothing to propagate
|
|
return;
|
|
}
|
|
|
|
withStatusRecordLock(task, newStatus, [&](ActiveTaskStatus status) {
|
|
for (auto cur : status.records()) {
|
|
// Some of the cancellation actions can cause us to recursively
|
|
// modify this list that is being iterated. However, cancellation is
|
|
// happening from outside of the task so we know that no new records will
|
|
// be added since that's only possible while on task.
|
|
performCancellationAction(cur);
|
|
}
|
|
});
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/******************************* ESCALATION *******************************/
|
|
/**************************************************************************/
|
|
|
|
/// Perform any escalation actions required by the given record.
|
|
static void performEscalationAction(TaskStatusRecord *record,
|
|
JobPriority oldPriority,
|
|
JobPriority newPriority) {
|
|
switch (record->getKind()) {
|
|
// Child tasks need to be recursively escalated.
|
|
case TaskStatusRecordKind::ChildTask: {
|
|
auto childRecord = cast<ChildTaskStatusRecord>(record);
|
|
for (AsyncTask *child: childRecord->children())
|
|
swift_task_escalate(child, newPriority);
|
|
return;
|
|
}
|
|
case TaskStatusRecordKind::TaskGroup: {
|
|
auto childRecord = cast<TaskGroupTaskStatusRecord>(record);
|
|
for (AsyncTask *child: childRecord->children())
|
|
swift_task_escalate(child, newPriority);
|
|
return;
|
|
}
|
|
|
|
// Escalation notifications need to be called.
|
|
case TaskStatusRecordKind::EscalationNotification: {
|
|
auto notification =
|
|
cast<EscalationNotificationStatusRecord>(record);
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Trigger task escalation handler record %p, escalate from %#x to %#x",
|
|
record, oldPriority, newPriority);
|
|
notification->run(oldPriority, newPriority);
|
|
return;
|
|
}
|
|
|
|
case TaskStatusRecordKind::TaskDependency: {
|
|
auto dependencyRecord = cast<TaskDependencyStatusRecord>(record);
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Escalating a task dependency record %p from %#x to %#x",
|
|
record, oldPriority, newPriority);
|
|
dependencyRecord->performEscalationAction(oldPriority, newPriority);
|
|
return;
|
|
}
|
|
|
|
// Cancellation notifications can be ignore.
|
|
case TaskStatusRecordKind::CancellationNotification:
|
|
return;
|
|
/// Executor preference we can ignore.
|
|
case TaskStatusRecordKind::TaskExecutorPreference:
|
|
return;
|
|
/// Task names don't matter to priority escalation.
|
|
case TaskStatusRecordKind::TaskName:
|
|
return;
|
|
// This should never be found, but the compiler complains if we don't check.
|
|
case TaskStatusRecordKind::First_Reserved:
|
|
break;
|
|
}
|
|
|
|
// Other cases can fall through here and be ignored.
|
|
// FIXME: allow dynamic extension/correction?
|
|
}
|
|
|
|
SWIFT_CC(swift)
|
|
JobPriority
|
|
static swift_task_escalateImpl(AsyncTask *task, JobPriority newPriority) {
|
|
SWIFT_TASK_DEBUG_LOG("Escalating %p to %#zx priority", task, newPriority);
|
|
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
|
|
auto oldPriority = oldStatus.getStoredPriority();
|
|
auto newStatus = oldStatus;
|
|
|
|
while (true) {
|
|
// Ensure oldPriority is up to date if we retry the compare_exchange.
|
|
oldPriority = oldStatus.getStoredPriority();
|
|
|
|
// Fast path: check that the stored priority is already at least
|
|
// as high as the desired priority.
|
|
if (oldPriority >= newPriority) {
|
|
SWIFT_TASK_DEBUG_LOG("Task is already at %#zx priority", oldPriority);
|
|
return oldPriority;
|
|
}
|
|
|
|
if (oldStatus.isRunning() || oldStatus.isEnqueued()) {
|
|
// Regardless of whether status record is locked or not, update the
|
|
// priority and RO bit on the task status
|
|
newStatus = oldStatus.withEscalatedPriority(newPriority);
|
|
} else if (oldStatus.isComplete()) {
|
|
// We raced with concurrent completion, nothing to escalate
|
|
SWIFT_TASK_DEBUG_LOG("Escalated a task %p which had completed, do nothing", task);
|
|
return oldStatus.getStoredPriority();
|
|
} else {
|
|
// Task is suspended.
|
|
newStatus = oldStatus.withNewPriority(newPriority);
|
|
}
|
|
|
|
// consume here pairs with the release in addStatusRecord.
|
|
if (task->_private()._status().compare_exchange_weak(oldStatus, newStatus,
|
|
/* success */ SWIFT_MEMORY_ORDER_CONSUME,
|
|
/* failure */ std::memory_order_relaxed)) {
|
|
_swift_tsan_consume(task);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (newStatus.isRunning()) {
|
|
#if SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION
|
|
// The task is running, escalate the thread that is running it.
|
|
ActiveTaskStatus *taskStatus;
|
|
dispatch_lock_t *executionLock;
|
|
|
|
taskStatus = (ActiveTaskStatus *) &task->_private()._status();
|
|
executionLock = (dispatch_lock_t *) ((char*)taskStatus + ActiveTaskStatus::executionLockOffset());
|
|
|
|
SWIFT_TASK_DEBUG_LOG("[Override] Escalating %p which is running on %#x from %#x to %#x",
|
|
task, newStatus.currentExecutionLockOwner(),
|
|
oldPriority, newPriority);
|
|
swift_dispatch_lock_override_start_with_debounce(
|
|
executionLock, newStatus.currentExecutionLockOwner(), (qos_class_t) newPriority);
|
|
#endif
|
|
} else if (newStatus.isEnqueued()) {
|
|
// Task is not running, it's enqueued somewhere waiting to be run
|
|
//
|
|
// TODO (rokhinip): Add a stealer to escalate the thread request for
|
|
// the task. Still mark the task has having been escalated so that the
|
|
// thread will self override when it starts draining the task
|
|
//
|
|
// TODO (rokhinip): Add a signpost to flag that this is a potential
|
|
// priority inversion
|
|
SWIFT_TASK_DEBUG_LOG("[Override] Escalating %p which is enqueued", task);
|
|
|
|
}
|
|
|
|
if (newStatus.getInnermostRecord() == NULL) {
|
|
return newStatus.getStoredPriority();
|
|
}
|
|
|
|
SWIFT_TASK_DEBUG_LOG("[Override] Escalating %p which is suspended from %#x to %#x",
|
|
task, oldPriority, newPriority);
|
|
// We must have at least one record - the task dependency one.
|
|
assert(newStatus.getInnermostRecord() != NULL);
|
|
|
|
withStatusRecordLock(task, newStatus, [&](ActiveTaskStatus status) {
|
|
// We know that none of the escalation actions will recursively
|
|
// modify the task status record list by adding or removing task records
|
|
for (auto cur: status.records()) {
|
|
performEscalationAction(cur, oldPriority, newPriority);
|
|
}
|
|
});
|
|
|
|
return newStatus.getStoredPriority();
|
|
}
|
|
|
|
void TaskDependencyStatusRecord::performEscalationAction(
|
|
JobPriority oldPriority, JobPriority newPriority) {
|
|
switch (this->DependencyKind) {
|
|
case WaitingOnTask:
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Escalate dependent task %p noted in %p record",
|
|
this->DependentOn.Task, this);
|
|
swift_task_escalate(this->DependentOn.Task, newPriority);
|
|
break;
|
|
case WaitingOnContinuation:
|
|
// We can't do anything meaningful to escalate this since we don't know
|
|
// who will resume the continuation
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Escalate dependent continuation %p noted in %p record -- do nothing",
|
|
this->DependentOn.Continuation, this);
|
|
break;
|
|
case WaitingOnTaskGroup:
|
|
// If a task is being escalated while waiting on a task group, the task
|
|
// should also have a TaskGroupTaskStatusRecord and the escalation
|
|
// action on that record should do the needful to propagate the
|
|
// escalation to the child tasks. We can short-circuit here.
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Escalate dependent taskgroup %p noted in %p record -- do nothing",
|
|
this->DependentOn.TaskGroup, this);
|
|
break;
|
|
case EnqueuedOnExecutor:
|
|
SWIFT_TASK_DEBUG_LOG("[Dependency] Escalate dependent executor %p noted in %p record from %#x to %#x",
|
|
this->DependentOn.Executor, this, oldPriority, newPriority);
|
|
swift_executor_escalate(this->DependentOn.Executor, this->WaitingTask, newPriority);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define OVERRIDE_TASK_STATUS COMPATIBILITY_OVERRIDE
|
|
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"
|