Files
swift-mirror/lib/Serialization/SerializedModuleLoader.cpp
Allan Shortlidge 4841bcffa1 ModuleInterface: Print imports with @preconcurrency in swiftinterface files.
When a module has been imported `@preconcurrency` in source, when it is printed
in a `swiftinterface` file it should be printed along with the attribute to
ensure that type checking of the module's public declarations behaves
consistently.

This fix is a little unsatisfying because it adds another a linear scan over
all imports in the source for each printed import. This should be improved, but
it can be done later.

Resolves rdar://136857313.
2025-09-15 17:33:13 -07:00

2048 lines
76 KiB
C++

//===--- SerializedModuleLoader.cpp - Import Swift modules ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Serialization/SerializedModuleLoader.h"
#include "ModuleFile.h"
#include "ModuleFileSharedCore.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleDependencies.h"
#include "swift/AST/PluginLoader.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FileTypes.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Version.h"
#include "swift/Frontend/ModuleInterfaceLoader.h"
#include "swift/Option/Options.h"
#include "swift/Serialization/Validation.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/ArgList.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/CommandLine.h"
#include <memory>
#include <optional>
#include <system_error>
using namespace swift;
using swift::version::Version;
namespace {
/// Apply \c body for each target-specific module file base name to search from
/// most to least desirable.
void forEachTargetModuleBasename(const ASTContext &Ctx,
llvm::function_ref<void(StringRef)> body) {
auto normalizedTarget = getTargetSpecificModuleTriple(Ctx.LangOpts.Target);
// An arm64 module can import an arm64e module.
std::optional<llvm::Triple> normalizedAltTarget;
if ((normalizedTarget.getArch() == llvm::Triple::ArchType::aarch64) &&
(normalizedTarget.getSubArch() !=
llvm::Triple::SubArchType::AArch64SubArch_arm64e)) {
auto altTarget = normalizedTarget;
altTarget.setArchName("arm64e");
normalizedAltTarget = getTargetSpecificModuleTriple(altTarget);
}
body(normalizedTarget.str());
if (normalizedAltTarget) {
body(normalizedAltTarget->str());
}
// We used the un-normalized architecture as a target-specific
// module name. Fall back to that behavior.
body(Ctx.LangOpts.Target.getArchName());
// FIXME: We used to use "major architecture" names for these files---the
// names checked in "#if arch(...)". Fall back to that name in the one case
// where it's different from what Swift 4.2 supported:
// - 32-bit ARM platforms (formerly "arm")
// We should be able to drop this once there's an Xcode that supports the
// new names.
if (Ctx.LangOpts.Target.getArch() == llvm::Triple::ArchType::arm) {
body("arm");
}
if (normalizedAltTarget) {
body(normalizedAltTarget->getArchName());
}
}
/// Apply \p body for each module search path in \p Ctx until \p body returns
/// non-None value. Returns the return value from \p body, or \c None.
std::optional<bool> forEachModuleSearchPath(
const ASTContext &Ctx,
llvm::function_ref<std::optional<bool>(StringRef, ModuleSearchPathKind,
bool isSystem)>
callback) {
for (const auto &path : Ctx.SearchPathOpts.getImportSearchPaths())
if (auto result =
callback(path.Path, ModuleSearchPathKind::Import, path.IsSystem))
return result;
for (const auto &path : Ctx.SearchPathOpts.getFrameworkSearchPaths())
if (auto result =
callback(path.Path, ModuleSearchPathKind::Framework, path.IsSystem))
return result;
for (const auto &path :
Ctx.SearchPathOpts.getImplicitFrameworkSearchPaths()) {
if (auto result = callback(path, ModuleSearchPathKind::ImplicitFramework,
/*isSystem=*/true))
return result;
}
for (const auto &importPath :
Ctx.SearchPathOpts.getRuntimeLibraryImportPaths()) {
if (auto result = callback(importPath, ModuleSearchPathKind::RuntimeLibrary,
/*isSystem=*/true))
return result;
}
return std::nullopt;
}
} // end unnamed namespace
// Defined out-of-line so that we can see ~ModuleFile.
SerializedModuleLoaderBase::SerializedModuleLoaderBase(
ASTContext &ctx, DependencyTracker *tracker, ModuleLoadingMode loadMode,
bool IgnoreSwiftSourceInfoFile)
: ModuleLoader(tracker), Ctx(ctx), LoadMode(loadMode),
IgnoreSwiftSourceInfoFile(IgnoreSwiftSourceInfoFile) {}
SerializedModuleLoaderBase::~SerializedModuleLoaderBase() = default;
ImplicitSerializedModuleLoader::~ImplicitSerializedModuleLoader() = default;
MemoryBufferSerializedModuleLoader::~MemoryBufferSerializedModuleLoader() =
default;
void SerializedModuleLoaderBase::collectVisibleTopLevelModuleNamesImpl(
SmallVectorImpl<Identifier> &names, StringRef extension) const {
llvm::SmallString<16> moduleSuffix;
moduleSuffix += '.';
moduleSuffix += file_types::getExtension(file_types::TY_SwiftModuleFile);
llvm::SmallString<16> suffix;
suffix += '.';
suffix += extension;
SmallVector<SmallString<64>, 2> targetFiles;
forEachTargetModuleBasename(Ctx, [&](StringRef targetName) {
targetFiles.emplace_back(targetName);
targetFiles.back() += suffix;
});
auto &fs = *Ctx.SourceMgr.getFileSystem();
// Apply \p body for each directory entry in \p dirPath.
auto forEachDirectoryEntryPath =
[&](StringRef dirPath, llvm::function_ref<void(StringRef)> body) {
std::error_code errorCode;
llvm::vfs::directory_iterator DI = fs.dir_begin(dirPath, errorCode);
llvm::vfs::directory_iterator End;
for (; !errorCode && DI != End; DI.increment(errorCode))
body(DI->path());
};
// Check whether target specific module file exists or not in given directory.
// $PATH/{arch}.{extension}
auto checkTargetFiles = [&](StringRef path) -> bool {
llvm::SmallString<256> scratch;
for (auto targetFile : targetFiles) {
scratch.clear();
llvm::sys::path::append(scratch, path, targetFile);
// If {arch}.{extension} exists, consider it's visible. Technically, we
// should check the file type, permission, format, etc., but it's too
// heavy to do that for each files.
if (fs.exists(scratch))
return true;
}
return false;
};
forEachModuleSearchPath(Ctx, [&](StringRef searchPath,
ModuleSearchPathKind Kind, bool isSystem) {
switch (Kind) {
case ModuleSearchPathKind::Import: {
// Look for:
// $PATH/{name}.swiftmodule/{arch}.{extension} or
// $PATH/{name}.{extension}
forEachDirectoryEntryPath(searchPath, [&](StringRef path) {
auto pathExt = llvm::sys::path::extension(path);
if (pathExt != moduleSuffix && pathExt != suffix)
return;
auto stat = fs.status(path);
if (!stat)
return;
if (pathExt == moduleSuffix && stat->isDirectory()) {
if (!checkTargetFiles(path))
return;
} else if (pathExt != suffix || stat->isDirectory()) {
return;
}
// Extract module name.
auto name = llvm::sys::path::filename(path).drop_back(pathExt.size());
names.push_back(Ctx.getIdentifier(name));
});
return std::nullopt;
}
case ModuleSearchPathKind::RuntimeLibrary: {
// Look for:
// (Darwin OS) $PATH/{name}.swiftmodule/{arch}.{extension}
// (Other OS) $PATH/{name}.{extension}
bool requireTargetSpecificModule = Ctx.LangOpts.Target.isOSDarwin();
forEachDirectoryEntryPath(searchPath, [&](StringRef path) {
auto pathExt = llvm::sys::path::extension(path);
if (pathExt != moduleSuffix)
if (requireTargetSpecificModule || pathExt != suffix)
return;
if (!checkTargetFiles(path)) {
if (requireTargetSpecificModule)
return;
auto stat = fs.status(path);
if (!stat || stat->isDirectory())
return;
}
// Extract module name.
auto name = llvm::sys::path::filename(path).drop_back(pathExt.size());
names.push_back(Ctx.getIdentifier(name));
});
return std::nullopt;
}
case ModuleSearchPathKind::Framework:
case ModuleSearchPathKind::ImplicitFramework: {
// Look for:
// $PATH/{name}.framework/Modules/{name}.swiftmodule/{arch}.{extension}
forEachDirectoryEntryPath(searchPath, [&](StringRef path) {
if (llvm::sys::path::extension(path) != ".framework")
return;
// Extract Framework name.
auto name = llvm::sys::path::filename(path).drop_back(
StringLiteral(".framework").size());
SmallString<256> moduleDir;
llvm::sys::path::append(moduleDir, path, "Modules",
name + moduleSuffix);
if (!checkTargetFiles(moduleDir))
return;
names.push_back(Ctx.getIdentifier(name));
});
return std::nullopt;
}
}
llvm_unreachable("covered switch");
});
}
void ImplicitSerializedModuleLoader::collectVisibleTopLevelModuleNames(
SmallVectorImpl<Identifier> &names) const {
collectVisibleTopLevelModuleNamesImpl(
names, file_types::getExtension(file_types::TY_SwiftModuleFile));
}
std::error_code SerializedModuleLoaderBase::openModuleDocFileIfPresent(
ImportPath::Element ModuleID,
const SerializedModuleBaseName &BaseName,
std::unique_ptr<llvm::MemoryBuffer> *ModuleDocBuffer) {
if (!ModuleDocBuffer)
return std::error_code();
llvm::vfs::FileSystem &FS = *Ctx.SourceMgr.getFileSystem();
// Try to open the module documentation file. If it does not exist, ignore
// the error. However, pass though all other errors.
SmallString<256>
ModuleDocPath{BaseName.getName(file_types::TY_SwiftModuleDocFile)};
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ModuleDocOrErr =
FS.getBufferForFile(ModuleDocPath);
if (ModuleDocOrErr) {
*ModuleDocBuffer = std::move(*ModuleDocOrErr);
} else if (ModuleDocOrErr.getError() !=
std::errc::no_such_file_or_directory) {
return ModuleDocOrErr.getError();
}
return std::error_code();
}
std::unique_ptr<llvm::MemoryBuffer>
SerializedModuleLoaderBase::getModuleName(ASTContext &Ctx, StringRef modulePath,
std::string &Name) {
return ModuleFile::getModuleName(Ctx, modulePath, Name);
}
std::optional<std::string> SerializedModuleLoaderBase::invalidModuleReason(serialization::Status status) {
using namespace serialization;
switch (status) {
case Status::FormatTooOld:
return "compiled with an older version of the compiler";
case Status::FormatTooNew:
return "compiled with a newer version of the compiler";
case Status::RevisionIncompatible:
return "compiled with a different version of the compiler";
case Status::ChannelIncompatible:
return "compiled for a different distribution channel";
case Status::NotInOSSA:
return "module was not built with OSSA";
case Status::MissingDependency:
return "missing dependency";
case Status::MissingUnderlyingModule:
return "missing underlying module";
case Status::CircularDependency:
return "circular dependency";
case Status::FailedToLoadBridgingHeader:
return "failed to load bridging header";
case Status::Malformed:
return "malformed";
case Status::MalformedDocumentation:
return "malformed documentation";
case Status::NameMismatch:
return "name mismatch";
case Status::TargetIncompatible:
return "compiled for a different target platform";
case Status::TargetTooNew:
return "target platform newer than current platform";
case Status::SDKMismatch:
return "SDK does not match";
case Status::Valid:
return std::nullopt;
}
llvm_unreachable("bad status");
}
llvm::ErrorOr<std::vector<ScannerImportStatementInfo>>
SerializedModuleLoaderBase::getMatchingPackageOnlyImportsOfModule(
Twine modulePath, bool isFramework, bool isRequiredOSSAModules,
StringRef SDKName, const llvm::Triple &target, StringRef packageName,
llvm::vfs::FileSystem *fileSystem, PathObfuscator &recoverer) {
auto moduleBuf = fileSystem->getBufferForFile(modulePath);
if (!moduleBuf)
return moduleBuf.getError();
std::vector<ScannerImportStatementInfo> importedModuleNames;
// Load the module file without validation.
std::shared_ptr<const ModuleFileSharedCore> loadedModuleFile;
serialization::ValidationInfo loadInfo = ModuleFileSharedCore::load(
"", "", std::move(moduleBuf.get()), nullptr, nullptr, isFramework,
isRequiredOSSAModules, SDKName, target, recoverer, loadedModuleFile);
if (loadedModuleFile->getModulePackageName() != packageName)
return importedModuleNames;
for (const auto &dependency : loadedModuleFile->getDependencies()) {
if (dependency.isHeader())
continue;
if (!dependency.isPackageOnly())
continue;
// Find the top-level module name.
auto modulePathStr = dependency.getPrettyPrintedPath();
StringRef moduleName = modulePathStr;
auto dotPos = moduleName.find('.');
if (dotPos != std::string::npos)
moduleName = moduleName.slice(0, dotPos);
importedModuleNames.push_back({moduleName.str(), dependency.isExported(),
dependency.isInternalOrBelow() ? AccessLevel::Internal : AccessLevel::Public});
}
return importedModuleNames;
}
std::error_code
SerializedModuleLoaderBase::openModuleSourceInfoFileIfPresent(
ImportPath::Element ModuleID,
const SerializedModuleBaseName &BaseName,
std::unique_ptr<llvm::MemoryBuffer> *ModuleSourceInfoBuffer) {
if (IgnoreSwiftSourceInfoFile || !ModuleSourceInfoBuffer)
return std::error_code();
llvm::vfs::FileSystem &FS = *Ctx.SourceMgr.getFileSystem();
llvm::SmallString<128>
PathWithoutProjectDir{BaseName.getName(file_types::TY_SwiftSourceInfoFile)};
llvm::SmallString<128> PathWithProjectDir = PathWithoutProjectDir;
// Insert "Project" before the filename in PathWithProjectDir.
StringRef FileName = llvm::sys::path::filename(PathWithoutProjectDir);
llvm::sys::path::remove_filename(PathWithProjectDir);
llvm::sys::path::append(PathWithProjectDir, "Project");
llvm::sys::path::append(PathWithProjectDir, FileName);
// Try to open the module source info file from the "Project" directory.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
ModuleSourceInfoOrErr = FS.getBufferForFile(PathWithProjectDir);
// If it does not exist, try to open the module source info file adjacent to
// the .swiftmodule file.
if (ModuleSourceInfoOrErr.getError() == std::errc::no_such_file_or_directory)
ModuleSourceInfoOrErr = FS.getBufferForFile(PathWithoutProjectDir);
// If we ended up with a different file system error, return it.
if (ModuleSourceInfoOrErr)
*ModuleSourceInfoBuffer = std::move(*ModuleSourceInfoOrErr);
else if (ModuleSourceInfoOrErr.getError() !=
std::errc::no_such_file_or_directory)
return ModuleSourceInfoOrErr.getError();
return std::error_code();
}
std::error_code SerializedModuleLoaderBase::openModuleFile(
ImportPath::Element ModuleID, const SerializedModuleBaseName &BaseName,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer) {
llvm::vfs::FileSystem &FS = *Ctx.SourceMgr.getFileSystem();
// Try to open the module file first. If we fail, don't even look for the
// module documentation file.
SmallString<256> ModulePath{BaseName.getName(file_types::TY_SwiftModuleFile)};
// If there's no buffer to load into, simply check for the existence of
// the module file.
if (!ModuleBuffer) {
llvm::ErrorOr<llvm::vfs::Status> statResult = FS.status(ModulePath);
if (!statResult)
return statResult.getError();
if (!statResult->exists())
return std::make_error_code(std::errc::no_such_file_or_directory);
// FIXME: llvm::vfs::FileSystem doesn't give us information on whether or
// not we can /read/ the file without actually trying to do so.
return std::error_code();
}
// Actually load the file and error out if necessary.
//
// Use the default arguments except for IsVolatile that is set by the
// frontend option -enable-volatile-modules. If set, we avoid the use of
// mmap to workaround issues on NFS when the swiftmodule file loaded changes
// on disk while it's in use.
//
// In practice, a swiftmodule file can chane when a client uses a
// swiftmodule file from a framework while the framework is recompiled and
// installed over existing files. Or when many processes rebuild the same
// module interface.
//
// We have seen these scenarios leading to deserialization errors that on
// the surface look like memory corruption.
//
// rdar://63755989
bool enableVolatileModules = Ctx.LangOpts.EnableVolatileModules;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ModuleOrErr =
FS.getBufferForFile(ModulePath,
/*FileSize=*/-1,
/*RequiresNullTerminator=*/true,
/*IsVolatile=*/enableVolatileModules);
if (!ModuleOrErr)
return ModuleOrErr.getError();
*ModuleBuffer = std::move(ModuleOrErr.get());
return std::error_code();
}
llvm::ErrorOr<SerializedModuleLoaderBase::BinaryModuleImports>
SerializedModuleLoaderBase::getImportsOfModule(
const ModuleFileSharedCore &loadedModuleFile,
ModuleLoadingBehavior transitiveBehavior, StringRef packageName,
bool isTestableImport) {
std::vector<ScannerImportStatementInfo> moduleImports;
std::string importedHeader = "";
for (const auto &dependency : loadedModuleFile.getDependencies()) {
if (dependency.isHeader()) {
assert(importedHeader.empty() &&
"Unexpected more than one header dependency");
importedHeader = dependency.RawPath;
continue;
}
ModuleLoadingBehavior dependencyTransitiveBehavior =
loadedModuleFile.getTransitiveLoadingBehavior(
dependency,
/*importPrivateDependencies*/ false,
/*isPartialModule*/ false, packageName,
/*resolveInPackageModuleDependencies */ true,
isTestableImport);
if (dependencyTransitiveBehavior > transitiveBehavior)
continue;
// Find the top-level module name.
auto modulePathStr = dependency.getPrettyPrintedPath();
StringRef moduleName = modulePathStr;
auto dotPos = moduleName.find('.');
if (dotPos != std::string::npos)
moduleName = moduleName.slice(0, dotPos);
// Reverse rewrite of user-specified C++ standard
// library module name to one used in the modulemap.
// TODO: If we are going to do this for more than this module,
// we will need a centralized system for doing module import name remap.
if (moduleName == Ctx.Id_CxxStdlib.str())
moduleName = "std";
moduleImports.push_back(ScannerImportStatementInfo(
moduleName.str(), dependency.isExported(),
dependency.isInternalOrBelow() ? AccessLevel::Internal
: AccessLevel::Public));
}
return SerializedModuleLoaderBase::BinaryModuleImports{moduleImports,
importedHeader};
}
std::optional<MacroPluginDependency>
SerializedModuleLoaderBase::resolveMacroPlugin(const ExternalMacroPlugin &macro,
StringRef packageName) {
if (macro.MacroAccess == ExternalMacroPlugin::Access::Internal)
return std::nullopt;
if (macro.MacroAccess == ExternalMacroPlugin::Access::Package &&
packageName != Ctx.LangOpts.PackageName)
return std::nullopt;
auto &loader = Ctx.getPluginLoader();
auto &entry =
loader.lookupPluginByModuleName(Ctx.getIdentifier(macro.ModuleName));
if (entry.libraryPath.empty() && entry.executablePath.empty())
return std::nullopt;
return MacroPluginDependency{entry.libraryPath.str(),
entry.executablePath.str()};
}
std::error_code ImplicitSerializedModuleLoader::findModuleFilesInDirectory(
ImportPath::Element ModuleID, const SerializedModuleBaseName &BaseName,
SmallVectorImpl<char> *ModuleInterfacePath,
SmallVectorImpl<char> *ModuleInterfaceSourcePath,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleDocBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleSourceInfoBuffer,
bool skipBuildingInterface, bool IsFramework, bool IsTestableDependencyLookup) {
if (LoadMode == ModuleLoadingMode::OnlyInterface ||
Ctx.IgnoreAdjacentModules)
return std::make_error_code(std::errc::not_supported);
auto ModuleErr = openModuleFile(ModuleID, BaseName, ModuleBuffer);
if (ModuleErr)
return ModuleErr;
if (ModuleInterfaceSourcePath) {
if (auto InterfacePath =
BaseName.findInterfacePath(*Ctx.SourceMgr.getFileSystem(), Ctx))
ModuleInterfaceSourcePath->assign(InterfacePath->begin(),
InterfacePath->end());
}
if (auto ModuleSourceInfoError = openModuleSourceInfoFileIfPresent(
ModuleID, BaseName, ModuleSourceInfoBuffer))
return ModuleSourceInfoError;
if (auto ModuleDocErr =
openModuleDocFileIfPresent(ModuleID, BaseName, ModuleDocBuffer))
return ModuleDocErr;
return std::error_code();
}
bool ImplicitSerializedModuleLoader::maybeDiagnoseTargetMismatch(
SourceLoc sourceLocation, StringRef moduleName,
const SerializedModuleBaseName &absoluteBaseName) {
llvm::vfs::FileSystem &fs = *Ctx.SourceMgr.getFileSystem();
// Get the last component of the base name, which is the target-specific one.
auto target = llvm::sys::path::filename(absoluteBaseName.baseName);
// Strip off the last component to get the .swiftmodule folder.
auto dir = absoluteBaseName.baseName;
llvm::sys::path::remove_filename(dir);
std::error_code errorCode;
std::string foundArchs;
for (llvm::vfs::directory_iterator directoryIterator =
fs.dir_begin(dir, errorCode), endIterator;
directoryIterator != endIterator;
directoryIterator.increment(errorCode)) {
if (errorCode)
return false;
StringRef filePath = directoryIterator->path();
StringRef extension = llvm::sys::path::extension(filePath);
if (file_types::lookupTypeForExtension(extension) ==
file_types::TY_SwiftModuleFile) {
if (!foundArchs.empty())
foundArchs += ", ";
foundArchs += llvm::sys::path::stem(filePath).str();
}
}
if (foundArchs.empty()) {
// Maybe this swiftmodule directory only contains swiftinterfaces, or
// maybe something else is going on. Regardless, we shouldn't emit a
// possibly incorrect diagnostic.
return false;
}
Ctx.Diags.diagnose(sourceLocation, diag::sema_no_import_target, moduleName,
target, foundArchs, dir);
return true;
}
SerializedModuleBaseName::SerializedModuleBaseName(
StringRef parentDir, const SerializedModuleBaseName &name)
: baseName(parentDir) {
llvm::sys::path::append(baseName, name.baseName);
}
std::string SerializedModuleBaseName::getName(file_types::ID fileTy) const {
auto result = baseName;
result += '.';
result += file_types::getExtension(fileTy);
return std::string(result.str());
}
std::optional<std::string>
SerializedModuleBaseName::getPackageInterfacePathIfInSamePackage(
llvm::vfs::FileSystem &fs, ASTContext &ctx) const {
std::string packagePath{
getName(file_types::TY_PackageSwiftModuleInterfaceFile)};
if (fs.exists(packagePath)) {
// Read the interface file and extract its package-name argument value
if (auto packageName = getPackageNameFromInterface(packagePath, fs)) {
// Return the .package.swiftinterface path if the package name applies to
// the importer module.
if (*packageName == ctx.LangOpts.PackageName)
return packagePath;
}
}
return std::nullopt;
}
std::optional<std::string>
SerializedModuleBaseName::getPackageNameFromInterface(
StringRef interfacePath, llvm::vfs::FileSystem &fs) const {
std::optional<std::string> result;
if (auto interfaceFile = fs.getBufferForFile(interfacePath)) {
llvm::BumpPtrAllocator alloc;
llvm::StringSaver argSaver(alloc);
SmallVector<const char *, 8> args;
(void)extractCompilerFlagsFromInterface(
interfacePath, (*interfaceFile)->getBuffer(), argSaver, args);
for (unsigned I = 0, N = args.size(); I + 1 < N; I++) {
StringRef current(args[I]), next(args[I + 1]);
if (current == "-package-name") {
// Instead of `break` here, continue to get the last value in case of
// dupes, to be consistent with the default parsing logic.
result = next;
}
}
}
return result;
}
std::optional<std::string>
SerializedModuleBaseName::findInterfacePath(llvm::vfs::FileSystem &fs,
ASTContext &ctx) const {
std::string interfacePath{getName(file_types::TY_SwiftModuleInterfaceFile)};
// Ensure the public swiftinterface already exists, otherwise bail early
// as it's considered the module doesn't exist.
if (!fs.exists(interfacePath))
return std::nullopt;
// If both -package-name and -experimental-package-interface-load
// are passed to the client, try to look for the package interface
// to load; if either flag is missing, fall back to loading private
// or public interface.
if (!ctx.LangOpts.PackageName.empty() &&
ctx.LangOpts.EnablePackageInterfaceLoad) {
if (auto found =
getPackageInterfacePathIfInSamePackage(fs, ctx))
return *found;
// If package interface is not found, check if we can load the
// public/private interface file by checking:
// * if AllowNonPackageInterfaceImportFromSamePackage is true
// * if the package name is not equal so not in the same package.
if (!ctx.LangOpts.AllowNonPackageInterfaceImportFromSamePackage) {
if (auto packageName = getPackageNameFromInterface(interfacePath, fs)) {
if (*packageName == ctx.LangOpts.PackageName)
return std::nullopt;
}
}
}
// Otherwise, use the private interface instead of the public one.
std::string privatePath{
getName(file_types::TY_PrivateSwiftModuleInterfaceFile)};
if (fs.exists(privatePath))
return privatePath;
// Otherwise return the public .swiftinterface path
return interfacePath;
}
bool SerializedModuleLoaderBase::findModule(
ImportPath::Element moduleID, SmallVectorImpl<char> *moduleInterfacePath,
SmallVectorImpl<char> *moduleInterfaceSourcePath,
std::unique_ptr<llvm::MemoryBuffer> *moduleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *moduleDocBuffer,
std::unique_ptr<llvm::MemoryBuffer> *moduleSourceInfoBuffer,
bool skipBuildingInterface, bool isTestableDependencyLookup,
bool &isFramework, bool &isSystemModule) {
// Find a module with an actual, physical name on disk, in case
// -module-alias is used (otherwise same).
//
// For example, if '-module-alias Foo=Bar' is passed in to the frontend,
// and a source file has 'import Foo', a module called Bar (real name)
// should be searched.
StringRef moduleNameRef = Ctx.getRealModuleName(moduleID.Item).str();
SmallString<32> moduleName(moduleNameRef);
SerializedModuleBaseName genericBaseName(moduleName);
auto genericModuleFileName =
genericBaseName.getName(file_types::TY_SwiftModuleFile);
SmallVector<SerializedModuleBaseName, 4> targetSpecificBaseNames;
forEachTargetModuleBasename(Ctx, [&](StringRef targetName) {
// Construct a base name like ModuleName.swiftmodule/arch-vendor-os
SmallString<64> targetBaseName{genericModuleFileName};
llvm::sys::path::append(targetBaseName, targetName);
targetSpecificBaseNames.emplace_back(targetBaseName.str());
});
auto &fs = *Ctx.SourceMgr.getFileSystem();
llvm::SmallString<256> currPath;
enum class SearchResult { Found, NotFound, Error };
/// Returns true if a target-specific module file was found, false if an error
/// was diagnosed, or None if neither one happened and the search should
/// continue.
auto findTargetSpecificModuleFiles = [&](bool IsFramework) -> SearchResult {
std::optional<SerializedModuleBaseName> firstAbsoluteBaseName;
for (const auto &targetSpecificBaseName : targetSpecificBaseNames) {
SerializedModuleBaseName absoluteBaseName{currPath,
targetSpecificBaseName};
if (!firstAbsoluteBaseName.has_value())
firstAbsoluteBaseName.emplace(absoluteBaseName);
auto result = findModuleFilesInDirectory(
moduleID, absoluteBaseName, moduleInterfacePath,
moduleInterfaceSourcePath, moduleBuffer, moduleDocBuffer,
moduleSourceInfoBuffer, skipBuildingInterface, IsFramework,
isTestableDependencyLookup);
if (!result)
return SearchResult::Found;
if (result == std::errc::not_supported)
return SearchResult::Error;
if (result != std::errc::no_such_file_or_directory)
return SearchResult::NotFound;
}
// We can only get here if all targetFileNamePairs failed with
// 'std::errc::no_such_file_or_directory'.
if (firstAbsoluteBaseName &&
maybeDiagnoseTargetMismatch(moduleID.Loc, moduleName,
*firstAbsoluteBaseName))
return SearchResult::Error;
return SearchResult::NotFound;
};
SmallVector<std::string, 4> InterestingFilenames = {
(moduleName + ".framework").str(),
genericBaseName.getName(file_types::TY_SwiftModuleInterfaceFile),
genericBaseName.getName(file_types::TY_PrivateSwiftModuleInterfaceFile),
genericBaseName.getName(file_types::TY_PackageSwiftModuleInterfaceFile),
genericBaseName.getName(file_types::TY_SwiftModuleFile)};
auto searchPaths = Ctx.SearchPathOpts.moduleSearchPathsContainingFile(
InterestingFilenames, Ctx.SourceMgr.getFileSystem().get(),
Ctx.LangOpts.Target.isOSDarwin());
for (const auto &searchPath : searchPaths) {
currPath = searchPath->getPath();
isSystemModule = searchPath->isSystem();
switch (searchPath->getKind()) {
case ModuleSearchPathKind::Import:
case ModuleSearchPathKind::RuntimeLibrary: {
isFramework = false;
// On Apple platforms, we can assume that the runtime libraries use
// target-specific module files within a `.swiftmodule` directory.
// This was not always true on non-Apple platforms, and in order to
// ease the transition, check both layouts.
bool checkTargetSpecificModule = true;
if (searchPath->getKind() != ModuleSearchPathKind::RuntimeLibrary ||
!Ctx.LangOpts.Target.isOSDarwin()) {
auto modulePath = currPath;
llvm::sys::path::append(modulePath, genericModuleFileName);
llvm::ErrorOr<llvm::vfs::Status> statResult = fs.status(modulePath);
// Even if stat fails, we can't just return the error; the path
// we're looking for might not be "Foo.swiftmodule".
checkTargetSpecificModule = statResult && statResult->isDirectory();
}
if (checkTargetSpecificModule) {
// A .swiftmodule directory contains architecture-specific files.
switch (findTargetSpecificModuleFiles(isFramework)) {
case SearchResult::Found:
return true;
case SearchResult::NotFound:
continue;
case SearchResult::Error:
return false;
}
}
SerializedModuleBaseName absoluteBaseName{currPath, genericBaseName};
auto result = findModuleFilesInDirectory(
moduleID, absoluteBaseName, moduleInterfacePath,
moduleInterfaceSourcePath, moduleBuffer, moduleDocBuffer,
moduleSourceInfoBuffer, skipBuildingInterface, isFramework,
isTestableDependencyLookup);
if (!result)
return true;
if (result == std::errc::not_supported)
return false;
continue;
}
case ModuleSearchPathKind::Framework:
case ModuleSearchPathKind::ImplicitFramework: {
isFramework = true;
llvm::sys::path::append(currPath, moduleName + ".framework");
// Check if the framework directory exists.
if (!fs.exists(currPath)) {
continue;
}
// Frameworks always use architecture-specific files within a
// .swiftmodule directory.
llvm::sys::path::append(currPath, "Modules");
switch (findTargetSpecificModuleFiles(isFramework)) {
case SearchResult::Found:
return true;
case SearchResult::NotFound:
continue;
case SearchResult::Error:
return false;
}
}
}
llvm_unreachable("covered switch");
}
return false;
}
static std::pair<StringRef, clang::VersionTuple>
getOSAndVersionForDiagnostics(const llvm::Triple &triple) {
StringRef osName;
llvm::VersionTuple osVersion;
if (triple.isMacOSX()) {
// macOS triples represent their versions differently, so we have to use the
// special accessor.
triple.getMacOSXVersion(osVersion);
osName = swift::prettyPlatformString(PlatformKind::macOS);
} else {
osVersion = triple.getOSVersion();
if (triple.isWatchOS()) {
osName = swift::prettyPlatformString(PlatformKind::watchOS);
} else if (triple.isTvOS()) {
assert(triple.isiOS() &&
"LLVM treats tvOS as a kind of iOS, so tvOS is checked first");
osName = swift::prettyPlatformString(PlatformKind::tvOS);
} else if (triple.isiOS()) {
osName = swift::prettyPlatformString(PlatformKind::iOS);
} else if (triple.isXROS()) {
osName = swift::prettyPlatformString(PlatformKind::visionOS);
} else {
assert(!triple.isOSDarwin() && "unknown Apple OS");
// Fallback to the LLVM triple name. This isn't great (it won't be
// capitalized or anything), but it's better than nothing.
osName = triple.getOSName();
}
}
assert(!osName.empty());
return {osName, osVersion};
}
LoadedFile *SerializedModuleLoaderBase::loadAST(
ModuleDecl &M, std::optional<SourceLoc> diagLoc,
StringRef moduleInterfacePath, StringRef moduleInterfaceSourcePath,
std::unique_ptr<llvm::MemoryBuffer> moduleInputBuffer,
std::unique_ptr<llvm::MemoryBuffer> moduleDocInputBuffer,
std::unique_ptr<llvm::MemoryBuffer> moduleSourceInfoInputBuffer,
bool isFramework) {
assert(moduleInputBuffer);
// The buffers are moved into the shared core, so grab their IDs now in case
// they're needed for diagnostics later.
StringRef moduleBufferID = moduleInputBuffer->getBufferIdentifier();
StringRef moduleDocBufferID;
if (moduleDocInputBuffer)
moduleDocBufferID = moduleDocInputBuffer->getBufferIdentifier();
StringRef moduleSourceInfoID;
if (moduleSourceInfoInputBuffer)
moduleSourceInfoID = moduleSourceInfoInputBuffer->getBufferIdentifier();
if (moduleInputBuffer->getBufferSize() % 4 != 0) {
if (diagLoc)
Ctx.Diags.diagnose(*diagLoc, diag::serialization_malformed_module,
moduleBufferID);
return nullptr;
}
std::unique_ptr<ModuleFile> loadedModuleFile;
std::shared_ptr<const ModuleFileSharedCore> loadedModuleFileCore;
serialization::ValidationInfo loadInfo = ModuleFileSharedCore::load(
moduleInterfacePath, moduleInterfaceSourcePath,
std::move(moduleInputBuffer), std::move(moduleDocInputBuffer),
std::move(moduleSourceInfoInputBuffer), isFramework,
isRequiredOSSAModules(),
Ctx.LangOpts.SDKName, Ctx.LangOpts.Target,
Ctx.SearchPathOpts.DeserializedPathRecoverer, loadedModuleFileCore);
SerializedASTFile *fileUnit = nullptr;
if (loadInfo.status == serialization::Status::Valid) {
loadedModuleFile =
std::make_unique<ModuleFile>(std::move(loadedModuleFileCore));
M.setResilienceStrategy(loadedModuleFile->getResilienceStrategy());
// We've loaded the file. Now try to bring it into the AST.
fileUnit = new (Ctx) SerializedASTFile(M, *loadedModuleFile);
M.setStaticLibrary(loadedModuleFile->isStaticLibrary());
M.setHasHermeticSealAtLink(loadedModuleFile->hasHermeticSealAtLink());
M.setIsEmbeddedSwiftModule(loadedModuleFile->isEmbeddedSwiftModule());
if (loadedModuleFile->isTestable())
M.setTestingEnabled();
if (loadedModuleFile->arePrivateImportsEnabled())
M.setPrivateImportsEnabled();
if (loadedModuleFile->isImplicitDynamicEnabled())
M.setImplicitDynamicEnabled();
if (loadedModuleFile->hasIncrementalInfo())
M.setHasIncrementalInfo();
if (loadedModuleFile->isBuiltFromInterface())
M.setIsBuiltFromInterface();
if (loadedModuleFile->allowNonResilientAccess())
M.setAllowNonResilientAccess();
if (loadedModuleFile->serializePackageEnabled())
M.setSerializePackageEnabled();
if (!loadedModuleFile->getModuleABIName().empty())
M.setABIName(Ctx.getIdentifier(loadedModuleFile->getModuleABIName()));
if (!loadedModuleFile->getPublicModuleName().empty())
M.setPublicModuleName(Ctx.getIdentifier(loadedModuleFile->getPublicModuleName()));
if (loadedModuleFile->isConcurrencyChecked())
M.setIsConcurrencyChecked();
if (loadedModuleFile->strictMemorySafety())
M.setStrictMemorySafety();
if (loadedModuleFile->deferredCodeGen())
M.setDeferredCodeGen();
if (loadedModuleFile->hasCxxInteroperability()) {
M.setHasCxxInteroperability();
M.setCXXStdlibKind(loadedModuleFile->getCXXStdlibKind());
}
if (!loadedModuleFile->getModulePackageName().empty()) {
M.setPackageName(Ctx.getIdentifier(loadedModuleFile->getModulePackageName()));
}
M.setUserModuleVersion(loadedModuleFile->getUserModuleVersion());
M.setSwiftInterfaceCompilerVersion(
loadedModuleFile->getSwiftInterfaceCompilerVersion());
for (auto name: loadedModuleFile->getAllowableClientNames()) {
M.addAllowableClientName(Ctx.getIdentifier(name));
}
if (Ctx.LangOpts.BypassResilienceChecks)
M.setBypassResilience();
auto diagLocOrInvalid = diagLoc.value_or(SourceLoc());
loadInfo.status = loadedModuleFile->associateWithFileContext(
fileUnit, diagLocOrInvalid, Ctx.LangOpts.AllowModuleWithCompilerErrors);
// FIXME: This seems wrong. Overlay for system Clang module doesn't
// necessarily mean it's "system" module. User can make their own overlay
// in non-system directory.
// Remove this block after we fix the test suite.
if (auto shadowed = loadedModuleFile->getUnderlyingModule())
if (shadowed->isSystemModule())
M.setIsSystemModule(true);
if (loadInfo.status == serialization::Status::Valid ||
(Ctx.LangOpts.AllowModuleWithCompilerErrors &&
(loadInfo.status == serialization::Status::TargetTooNew ||
loadInfo.status == serialization::Status::TargetIncompatible))) {
if (loadedModuleFile->hasSourceInfoFile() &&
!loadedModuleFile->hasSourceInfo())
Ctx.Diags.diagnose(diagLocOrInvalid,
diag::serialization_malformed_sourceinfo,
moduleSourceInfoID);
Ctx.bumpGeneration();
LoadedModuleFiles.emplace_back(std::move(loadedModuleFile),
Ctx.getCurrentGeneration());
findOverlayFiles(diagLoc.value_or(SourceLoc()), &M, fileUnit);
} else {
fileUnit = nullptr;
}
}
if (loadInfo.status != serialization::Status::Valid) {
if (diagLoc)
serialization::diagnoseSerializedASTLoadFailure(
Ctx, *diagLoc, loadInfo, moduleBufferID, moduleDocBufferID,
loadedModuleFile.get(), M.getName());
// Even though the module failed to load, it's possible its contents
// include a source buffer that need to survive because it's already been
// used for diagnostics.
// Note this is only necessary in case a bridging header failed to load
// during the `associateWithFileContext()` call.
if (loadedModuleFile &&
loadedModuleFile->mayHaveDiagnosticsPointingAtBuffer())
OrphanedModuleFiles.push_back(std::move(loadedModuleFile));
} else {
// Report non-fatal compiler tag mismatch on stderr only to avoid
// polluting the IDE UI.
if (!loadInfo.problematicRevision.empty()) {
llvm::errs() << "remark: compiled module was created by a different " <<
"version of the compiler '" <<
loadInfo.problematicRevision <<
"': " << moduleBufferID << "\n";
}
}
// The -experimental-hermetic-seal-at-link flag turns on dead-stripping
// optimizations assuming library code can be optimized against client code.
// If the imported module was built with -experimental-hermetic-seal-at-link
// but the current module isn't, error out.
if (M.hasHermeticSealAtLink() && !Ctx.LangOpts.HermeticSealAtLink) {
Ctx.Diags.diagnose(diagLoc.value_or(SourceLoc()),
diag::need_hermetic_seal_to_import_module, M.getName());
}
if (M.isEmbeddedSwiftModule() &&
!Ctx.LangOpts.hasFeature(Feature::Embedded)) {
Ctx.Diags.diagnose(diagLoc.value_or(SourceLoc()),
diag::cannot_import_embedded_module, M.getName());
}
if (!M.isEmbeddedSwiftModule() &&
Ctx.LangOpts.hasFeature(Feature::Embedded)) {
Ctx.Diags.diagnose(diagLoc.value_or(SourceLoc()),
diag::cannot_import_non_embedded_module, M.getName());
}
// Non-resilient modules built with C++ interoperability enabled
// are typically incompatible with clients that do not enable
// C++ interoperability.
if (M.hasCxxInteroperability() &&
M.getResilienceStrategy() != ResilienceStrategy::Resilient &&
!Ctx.LangOpts.EnableCXXInterop &&
Ctx.LangOpts.RequireCxxInteropToImportCxxInteropModule &&
M.getName().str() != CXX_MODULE_NAME) {
auto loc = diagLoc.value_or(SourceLoc());
Ctx.Diags.diagnose(loc, diag::need_cxx_interop_to_import_module,
M.getName());
Ctx.Diags.diagnose(loc, diag::enable_cxx_interop_docs);
}
// Modules built with libc++ cannot be imported into modules that are built
// with libstdc++, and vice versa. Make an exception for Cxx.swiftmodule since
// it doesn't refer to any C++ stdlib symbols, and for CxxStdlib.swiftmodule
// since we skipped loading the overlay for the module.
if (M.hasCxxInteroperability() && Ctx.LangOpts.EnableCXXInterop &&
M.getCXXStdlibKind() != Ctx.LangOpts.CXXStdlib &&
M.getName() != Ctx.Id_Cxx && M.getName() != Ctx.Id_CxxStdlib) {
auto loc = diagLoc.value_or(SourceLoc());
Ctx.Diags.diagnose(loc, diag::cxx_stdlib_kind_mismatch, M.getName(),
to_string(M.getCXXStdlibKind()),
to_string(Ctx.LangOpts.CXXStdlib));
}
return fileUnit;
}
bool SerializedModuleLoaderBase::isRequiredOSSAModules() const {
return Ctx.SILOpts.EnableOSSAModules;
}
void swift::serialization::diagnoseSerializedASTLoadFailure(
ASTContext &Ctx, SourceLoc diagLoc,
const serialization::ValidationInfo &loadInfo,
StringRef moduleBufferID, StringRef moduleDocBufferID,
ModuleFile *loadedModuleFile, Identifier ModuleName) {
auto diagnoseDifferentLanguageVersion = [&](StringRef shortVersion) -> bool {
if (shortVersion.empty())
return false;
SmallString<32> versionBuf;
llvm::raw_svector_ostream versionString(versionBuf);
versionString << Version::getCurrentLanguageVersion();
if (versionString.str() == shortVersion)
return false;
Ctx.Diags.diagnose(
diagLoc, diag::serialization_module_language_version_mismatch,
loadInfo.shortVersion, versionString.str(), moduleBufferID);
return true;
};
switch (loadInfo.status) {
case serialization::Status::Valid:
llvm_unreachable("At this point we know loading has failed");
case serialization::Status::FormatTooNew:
if (diagnoseDifferentLanguageVersion(loadInfo.shortVersion))
break;
Ctx.Diags.diagnose(diagLoc, diag::serialization_module_too_new,
moduleBufferID);
break;
case serialization::Status::FormatTooOld:
if (diagnoseDifferentLanguageVersion(loadInfo.shortVersion))
break;
Ctx.Diags.diagnose(diagLoc, diag::serialization_module_too_old, ModuleName,
moduleBufferID);
break;
case serialization::Status::NotInOSSA:
if (Ctx.SerializationOpts.ExplicitModuleBuild ||
Ctx.SILOpts.EnableOSSAModules) {
Ctx.Diags.diagnose(diagLoc,
diag::serialization_non_ossa_module_incompatible,
ModuleName);
}
break;
case serialization::Status::RevisionIncompatible:
Ctx.Diags.diagnose(diagLoc, diag::serialization_module_incompatible_revision,
loadInfo.problematicRevision, ModuleName, moduleBufferID);
break;
case serialization::Status::ChannelIncompatible:
Ctx.Diags.diagnose(diagLoc, diag::serialization_module_incompatible_channel,
loadInfo.problematicChannel,
version::getCurrentCompilerChannel(),
ModuleName, moduleBufferID);
break;
case serialization::Status::Malformed:
Ctx.Diags.diagnose(diagLoc, diag::serialization_malformed_module,
moduleBufferID);
break;
case serialization::Status::MalformedDocumentation:
assert(!moduleDocBufferID.empty());
Ctx.Diags.diagnose(diagLoc, diag::serialization_malformed_module,
moduleDocBufferID);
break;
case serialization::Status::MissingDependency:
case serialization::Status::CircularDependency:
case serialization::Status::MissingUnderlyingModule:
serialization::diagnoseSerializedASTLoadFailureTransitive(
Ctx, diagLoc, loadInfo.status,
loadedModuleFile, ModuleName, /*forTestable*/false);
break;
case serialization::Status::FailedToLoadBridgingHeader:
// We already emitted a diagnostic about the bridging header. Just emit
// a generic message here.
Ctx.Diags.diagnose(diagLoc, diag::serialization_load_failed,
ModuleName.str());
break;
case serialization::Status::NameMismatch: {
// FIXME: This doesn't handle a non-debugger REPL, which should also treat
// this as a non-fatal error.
auto diagKind = diag::serialization_name_mismatch;
if (Ctx.LangOpts.DebuggerSupport)
diagKind = diag::serialization_name_mismatch_repl;
Ctx.Diags.diagnose(diagLoc, diagKind, loadInfo.name, ModuleName.str());
break;
}
case serialization::Status::TargetIncompatible: {
// FIXME: This doesn't handle a non-debugger REPL, which should also treat
// this as a non-fatal error.
auto diagKind = diag::serialization_target_incompatible;
if (Ctx.LangOpts.DebuggerSupport ||
Ctx.LangOpts.AllowModuleWithCompilerErrors)
diagKind = diag::serialization_target_incompatible_repl;
Ctx.Diags.diagnose(diagLoc, diagKind, ModuleName, loadInfo.targetTriple,
moduleBufferID);
break;
}
case serialization::Status::TargetTooNew: {
llvm::Triple moduleTarget(llvm::Triple::normalize(loadInfo.targetTriple));
std::pair<StringRef, clang::VersionTuple> moduleOSInfo =
getOSAndVersionForDiagnostics(moduleTarget);
std::pair<StringRef, clang::VersionTuple> compilationOSInfo =
getOSAndVersionForDiagnostics(Ctx.LangOpts.Target);
// FIXME: This doesn't handle a non-debugger REPL, which should also treat
// this as a non-fatal error.
auto diagKind = diag::serialization_target_too_new;
if (Ctx.LangOpts.DebuggerSupport ||
Ctx.LangOpts.AllowModuleWithCompilerErrors)
diagKind = diag::serialization_target_too_new_repl;
Ctx.Diags.diagnose(diagLoc, diagKind, compilationOSInfo.first,
compilationOSInfo.second, ModuleName,
moduleOSInfo.second, moduleBufferID);
break;
}
case serialization::Status::SDKMismatch:
auto currentSDK = Ctx.LangOpts.SDKName;
auto moduleSDK = loadInfo.sdkName;
Ctx.Diags.diagnose(diagLoc, diag::serialization_sdk_mismatch,
ModuleName, moduleSDK, currentSDK, moduleBufferID);
break;
}
}
void swift::serialization::diagnoseSerializedASTLoadFailureTransitive(
ASTContext &Ctx, SourceLoc diagLoc, const serialization::Status status,
ModuleFile *loadedModuleFile, Identifier ModuleName, bool forTestable) {
switch (status) {
case serialization::Status::Valid:
case serialization::Status::FormatTooNew:
case serialization::Status::FormatTooOld:
case serialization::Status::NotInOSSA:
case serialization::Status::RevisionIncompatible:
case serialization::Status::ChannelIncompatible:
case serialization::Status::Malformed:
case serialization::Status::MalformedDocumentation:
case serialization::Status::FailedToLoadBridgingHeader:
case serialization::Status::NameMismatch:
case serialization::Status::TargetIncompatible:
case serialization::Status::TargetTooNew:
case serialization::Status::SDKMismatch:
llvm_unreachable("status not handled by "
"diagnoseSerializedASTLoadFailureTransitive");
case serialization::Status::MissingDependency: {
// Figure out /which/ dependencies are missing.
// FIXME: Dependencies should be de-duplicated at serialization time,
// not now.
llvm::StringSet<> duplicates;
llvm::SmallVector<ModuleFile::Dependency, 4> missing;
std::copy_if(
loadedModuleFile->getDependencies().begin(),
loadedModuleFile->getDependencies().end(), std::back_inserter(missing),
[&duplicates, &loadedModuleFile, forTestable](
const ModuleFile::Dependency &dependency) -> bool {
if (dependency.isLoaded() || dependency.isHeader() ||
loadedModuleFile->getTransitiveLoadingBehavior(dependency,
forTestable)
!= ModuleLoadingBehavior::Required) {
return false;
}
return duplicates.insert(dependency.Core.RawPath).second;
});
// FIXME: only show module part of RawAccessPath
assert(!missing.empty() && "unknown missing dependency?");
if (missing.size() == 1) {
Ctx.Diags.diagnose(diagLoc, diag::serialization_missing_single_dependency,
missing.front().Core.getPrettyPrintedPath());
} else {
llvm::SmallString<64> missingNames;
missingNames += '\'';
interleave(missing,
[&](const ModuleFile::Dependency &next) {
missingNames += next.Core.getPrettyPrintedPath();
},
[&] { missingNames += "', '"; });
missingNames += '\'';
Ctx.Diags.diagnose(diagLoc, diag::serialization_missing_dependencies,
missingNames);
}
if (Ctx.SearchPathOpts.getSDKPath().empty() &&
llvm::Triple(llvm::sys::getProcessTriple()).isMacOSX()) {
Ctx.Diags.diagnose(SourceLoc(), diag::sema_no_import_no_sdk);
Ctx.Diags.diagnose(SourceLoc(), diag::sema_no_import_no_sdk_xcrun);
}
break;
}
case serialization::Status::CircularDependency: {
auto circularDependencyIter = llvm::find_if(
loadedModuleFile->getDependencies(),
[](const ModuleFile::Dependency &next) {
return next.isLoaded() &&
!(next.Import.has_value() &&
next.Import->importedModule->hasResolvedImports());
});
assert(circularDependencyIter !=
loadedModuleFile->getDependencies().end() &&
"circular dependency reported, but no module with unresolved "
"imports found");
// FIXME: We should include the path of the circularity as well, but that's
// hard because we're discovering this /while/ resolving imports, which
// means the problematic modules haven't been recorded yet.
Ctx.Diags.diagnose(diagLoc, diag::serialization_circular_dependency,
circularDependencyIter->Core.getPrettyPrintedPath(),
ModuleName);
break;
}
case serialization::Status::MissingUnderlyingModule: {
Ctx.Diags.diagnose(diagLoc, diag::serialization_missing_underlying_module,
ModuleName);
if (Ctx.SearchPathOpts.getSDKPath().empty() &&
llvm::Triple(llvm::sys::getProcessTriple()).isMacOSX()) {
Ctx.Diags.diagnose(SourceLoc(), diag::sema_no_import_no_sdk);
Ctx.Diags.diagnose(SourceLoc(), diag::sema_no_import_no_sdk_xcrun);
}
break;
}
}
}
static std::optional<StringRef> getFlagsFromInterfaceFile(StringRef &file,
StringRef prefix) {
StringRef line, buffer = file;
while (!buffer.empty()) {
std::tie(line, buffer) = buffer.split('\n');
// If the line is no longer comments, return not found.
if (!line.consume_front("// "))
return std::nullopt;
if (line.consume_front(prefix) && line.consume_front(":")) {
file = buffer;
return line;
}
}
return std::nullopt;
}
bool swift::extractCompilerFlagsFromInterface(
StringRef interfacePath, StringRef buffer, llvm::StringSaver &ArgSaver,
SmallVectorImpl<const char *> &SubArgs,
std::optional<llvm::Triple> PreferredTarget, DiagnosticEngine *Diag) {
auto FlagMatch = getFlagsFromInterfaceFile(buffer, SWIFT_MODULE_FLAGS_KEY);
if (!FlagMatch)
return true;
llvm::cl::TokenizeGNUCommandLine(*FlagMatch, ArgSaver, SubArgs);
for (unsigned I = 1; I < SubArgs.size(); ++I) {
if (strcmp(SubArgs[I - 1], "-target") != 0 &&
strcmp(SubArgs[I - 1], "-target-variant") != 0)
continue;
llvm::Triple triple(SubArgs[I]);
bool shouldModify = false;
// If the target triple parsed from the swiftinterface file differs
// only in subarchitecture from the compatible target triple, then
// we have loaded a Swift interface from a different-but-compatible
// architecture slice. Use the compatible subarchitecture.
if (PreferredTarget && triple.getArch() == PreferredTarget->getArch() &&
triple.getSubArch() != PreferredTarget->getSubArch()) {
triple.setArch(PreferredTarget->getArch(), PreferredTarget->getSubArch());
shouldModify = true;
}
// Canonicalize the version in the target triple parsed from the
// swiftinterface.
auto canonicalTriple = getCanonicalTriple(triple);
if (!canonicalTriple.has_value()) {
if (Diag) {
const llvm::VersionTuple OSVersion = triple.getOSVersion();
const bool isOSVersionInValidRange =
llvm::Triple::isValidVersionForOS(triple.getOS(), OSVersion);
const llvm::VersionTuple canonicalVersion =
llvm::Triple::getCanonicalVersionForOS(
triple.getOS(), triple.getOSVersion(), isOSVersionInValidRange);
Diag->diagnose(SourceLoc(),
diag::map_os_version_from_textual_interface_failed,
OSVersion.getAsString(), canonicalVersion.getAsString(),
interfacePath);
}
break;
}
// Update the triple to use if it differs.
if (!areTriplesStrictlyEqual(triple, *canonicalTriple)) {
triple = *canonicalTriple;
shouldModify = true;
}
if (shouldModify)
SubArgs[I] = ArgSaver.save(triple.str()).data();
}
auto IgnFlagMatch =
getFlagsFromInterfaceFile(buffer, SWIFT_MODULE_FLAGS_IGNORABLE_KEY);
auto IgnPrivateFlagMatch = getFlagsFromInterfaceFile(
buffer, SWIFT_MODULE_FLAGS_IGNORABLE_PRIVATE_KEY);
// It's OK the interface doesn't have the ignorable list (private or not), we just
// ignore them all.
if (!IgnFlagMatch && !IgnPrivateFlagMatch)
return false;
SmallVector<const char *, 8> IgnSubArgs;
if (IgnFlagMatch)
llvm::cl::TokenizeGNUCommandLine(*IgnFlagMatch, ArgSaver, IgnSubArgs);
if (IgnPrivateFlagMatch)
llvm::cl::TokenizeGNUCommandLine(*IgnPrivateFlagMatch, ArgSaver,
IgnSubArgs);
std::unique_ptr<llvm::opt::OptTable> table = swift::createSwiftOptTable();
unsigned missingArgIdx = 0;
unsigned missingArgCount = 0;
auto parsedIgns = table->ParseArgs(IgnSubArgs, missingArgIdx, missingArgCount);
for (auto parse: parsedIgns) {
// Check if the option is a frontend option. This will filter out unknown
// options and input-like options.
if (!parse->getOption().hasFlag(options::FrontendOption))
continue;
auto spelling = ArgSaver.save(parse->getSpelling());
auto &values = parse->getValues();
if (spelling.ends_with("=")) {
// Handle the case like -tbd-install_name=Foo. This should be rare because
// most equal-separated arguments are alias to the separate form.
assert(values.size() == 1);
SubArgs.push_back(ArgSaver.save((llvm::Twine(spelling) + values[0]).str()).data());
} else {
// Push the supported option and its value to the list.
SubArgs.push_back(spelling.data());
for (auto value: values)
SubArgs.push_back(value);
}
}
return false;
}
llvm::VersionTuple
swift::extractUserModuleVersionFromInterface(StringRef moduleInterfacePath) {
llvm::VersionTuple result;
// Read the interface file and extract its compiler arguments line
if (auto file = llvm::MemoryBuffer::getFile(moduleInterfacePath)) {
llvm::BumpPtrAllocator alloc;
llvm::StringSaver argSaver(alloc);
SmallVector<const char*, 8> args;
(void)extractCompilerFlagsFromInterface(moduleInterfacePath,
(*file)->getBuffer(), argSaver, args);
for (unsigned I = 0, N = args.size(); I + 1 < N; I++) {
// Check the version number specified via -user-module-version.
StringRef current(args[I]), next(args[I + 1]);
if (current == "-user-module-version") {
// Sanitize versions that are too long
while(next.count('.') > 3) {
next = next.rsplit('.').first;
}
result.tryParse(next);
break;
}
}
}
return result;
}
std::string swift::extractEmbeddedBridgingHeaderContent(
std::unique_ptr<llvm::MemoryBuffer> file, ASTContext &Context) {
std::shared_ptr<const ModuleFileSharedCore> loadedModuleFile;
serialization::ValidationInfo loadInfo = ModuleFileSharedCore::load(
"", "", std::move(file), nullptr, nullptr, false,
Context.SILOpts.EnableOSSAModules, Context.LangOpts.SDKName,
Context.LangOpts.Target,
Context.SearchPathOpts.DeserializedPathRecoverer,
loadedModuleFile);
if (loadInfo.status != serialization::Status::Valid)
return {};
return loadedModuleFile->getEmbeddedHeader();
}
bool SerializedModuleLoaderBase::canImportModule(
ImportPath::Module path, SourceLoc loc, ModuleVersionInfo *versionInfo,
bool isTestableDependencyLookup) {
// FIXME: Swift submodules?
if (path.hasSubmodule())
return false;
// Look on disk.
SmallString<256> moduleInterfaceSourcePath;
std::unique_ptr<llvm::MemoryBuffer> moduleInputBuffer;
bool isFramework = false;
bool isSystemModule = false;
auto mID = path[0];
auto found = findModule(
mID, /*moduleInterfacePath=*/nullptr, &moduleInterfaceSourcePath,
&moduleInputBuffer,
/*moduleDocBuffer=*/nullptr, /*moduleSourceInfoBuffer=*/nullptr,
/*skipBuildingInterface=*/true, isTestableDependencyLookup,
isFramework, isSystemModule);
// If we cannot find the module, don't continue.
if (!found)
return false;
if (!moduleInterfaceSourcePath.empty()) {
// If we found interface and version is not requested, we're done.
if (!versionInfo)
return true;
auto moduleVersion =
extractUserModuleVersionFromInterface(moduleInterfaceSourcePath);
// If version is requested and found in interface, return the version.
// Otherwise fallback to binary module handling.
if (!moduleVersion.empty()) {
versionInfo->setVersion(moduleVersion,
ModuleVersionSourceKind::SwiftInterface);
return true;
}
}
if (moduleInputBuffer) {
auto metaData = serialization::validateSerializedAST(
moduleInputBuffer->getBuffer(), Ctx.SILOpts.EnableOSSAModules,
Ctx.LangOpts.SDKName);
// If we only found binary module, make sure that is valid.
if (metaData.status != serialization::Status::Valid &&
moduleInterfaceSourcePath.empty()) {
// Emit warning if the canImport check location is known.
if (loc.isValid())
Ctx.Diags.diagnose(loc, diag::can_import_invalid_swiftmodule,
moduleInputBuffer->getBufferIdentifier());
return false;
}
if (versionInfo)
versionInfo->setVersion(metaData.userModuleVersion,
ModuleVersionSourceKind::SwiftBinaryModule);
}
if (versionInfo && !versionInfo->isValid()) {
// If no version is found, set it to empty version.
versionInfo->setVersion(llvm::VersionTuple(),
ModuleVersionSourceKind::SwiftBinaryModule);
}
return true;
}
bool MemoryBufferSerializedModuleLoader::canImportModule(
ImportPath::Module path, SourceLoc loc, ModuleVersionInfo *versionInfo,
bool isTestableDependencyLookup) {
// FIXME: Swift submodules?
if (path.hasSubmodule())
return false;
auto mID = path[0];
auto mIt = MemoryBuffers.find(mID.Item.str());
if (mIt == MemoryBuffers.end())
return false;
if (!versionInfo)
return true;
versionInfo->setVersion(mIt->second.userVersion,
ModuleVersionSourceKind::SwiftBinaryModule);
return true;
}
ModuleDecl *
SerializedModuleLoaderBase::loadModule(SourceLoc importLoc,
ImportPath::Module path,
bool AllowMemoryCache) {
// FIXME: Swift submodules?
if (path.size() > 1)
return nullptr;
auto moduleID = path[0];
bool isFramework = false;
bool isSystemModule = false;
llvm::SmallString<256> moduleInterfacePath;
llvm::SmallString<256> moduleInterfaceSourcePath;
std::unique_ptr<llvm::MemoryBuffer> moduleInputBuffer;
std::unique_ptr<llvm::MemoryBuffer> moduleDocInputBuffer;
std::unique_ptr<llvm::MemoryBuffer> moduleSourceInfoInputBuffer;
// Look on disk.
if (!findModule(moduleID, &moduleInterfacePath, &moduleInterfaceSourcePath,
&moduleInputBuffer, &moduleDocInputBuffer,
&moduleSourceInfoInputBuffer,
/*skipBuildingInterface=*/false,
/*isTestableDependencyLookup=*/false,
isFramework,
isSystemModule)) {
return nullptr;
}
assert(moduleInputBuffer);
LoadedFile *file = nullptr;
auto *M = ModuleDecl::create(moduleID.Item, Ctx,
[&](ModuleDecl *M, auto addFile) {
M->setIsSystemModule(isSystemModule);
if (AllowMemoryCache)
Ctx.addLoadedModule(M);
llvm::sys::path::native(moduleInterfacePath);
file = loadAST(*M, moduleID.Loc, moduleInterfacePath,
moduleInterfaceSourcePath, std::move(moduleInputBuffer),
std::move(moduleDocInputBuffer),
std::move(moduleSourceInfoInputBuffer), isFramework);
if (file) {
addFile(file);
} else {
M->setFailedToLoad();
}
M->setHasResolvedImports();
});
if (dependencyTracker && file) {
auto DepPath = file->getFilename();
// Don't record cached artifacts as dependencies.
if (!isCached(DepPath)) {
if (M->hasIncrementalInfo()) {
dependencyTracker->addIncrementalDependency(DepPath,
M->getFingerprint());
} else {
dependencyTracker->addDependency(DepPath, /*isSystem=*/false);
}
}
}
return M;
}
ModuleDecl *
MemoryBufferSerializedModuleLoader::loadModule(SourceLoc importLoc,
ImportPath::Module path,
bool AllowMemoryCache) {
// FIXME: Swift submodules?
if (path.size() > 1)
return nullptr;
auto moduleID = path[0];
// See if we find it in the registered memory buffers.
// FIXME: Right now this works only with access paths of length 1.
// Once submodules are designed, this needs to support suffix
// matching and a search path.
auto bufIter = MemoryBuffers.find(moduleID.Item.str());
if (bufIter == MemoryBuffers.end())
return nullptr;
bool isFramework = false;
std::unique_ptr<llvm::MemoryBuffer> moduleInputBuffer;
moduleInputBuffer = std::move(bufIter->second.buffer);
MemoryBuffers.erase(bufIter);
assert(moduleInputBuffer);
auto *M = ModuleDecl::create(moduleID.Item, Ctx,
[&](ModuleDecl *M, auto addFile) {
if (AllowMemoryCache)
Ctx.addLoadedModule(M);
auto *file = loadAST(*M, moduleID.Loc, /*moduleInterfacePath=*/"",
/*moduleInterfaceSourcePath=*/"",
std::move(moduleInputBuffer), {}, {}, isFramework);
if (!file) {
M->setFailedToLoad();
return;
}
addFile(file);
M->setHasResolvedImports();
});
if (M->failedToLoad()) {
Ctx.removeLoadedModule(moduleID.Item);
return nullptr;
}
// The MemoryBuffer loader is used by LLDB during debugging. Modules
// imported from .swift_ast sections are not typically produced from
// textual interfaces. By disabling resilience, the debugger can
// directly access private members.
if (BypassResilience && !M->isBuiltFromInterface())
M->setBypassResilience();
return M;
}
void SerializedModuleLoaderBase::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
for (auto &modulePair : LoadedModuleFiles) {
if (modulePair.second <= previousGeneration)
continue;
modulePair.first->loadExtensions(nominal);
}
}
void SerializedModuleLoaderBase::loadObjCMethods(
NominalTypeDecl *typeDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
for (auto &modulePair : LoadedModuleFiles) {
if (modulePair.second <= previousGeneration)
continue;
modulePair.first->loadObjCMethods(typeDecl, selector, isInstanceMethod,
methods);
}
}
void SerializedModuleLoaderBase::loadDerivativeFunctionConfigurations(
AbstractFunctionDecl *originalAFD, unsigned int previousGeneration,
llvm::SetVector<AutoDiffConfig> &results) {
for (auto &modulePair : LoadedModuleFiles) {
if (modulePair.second <= previousGeneration)
continue;
modulePair.first->loadDerivativeFunctionConfigurations(originalAFD,
results);
}
}
std::error_code MemoryBufferSerializedModuleLoader::findModuleFilesInDirectory(
ImportPath::Element ModuleID, const SerializedModuleBaseName &BaseName,
SmallVectorImpl<char> *ModuleInterfacePath,
SmallVectorImpl<char> *ModuleInterfaceSourcePath,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleDocBuffer,
std::unique_ptr<llvm::MemoryBuffer> *ModuleSourceInfoBuffer,
bool skipBuildingInterface, bool IsFramework,
bool isTestableDependencyLookup) {
// This is a soft error instead of an llvm_unreachable because this API is
// primarily used by LLDB which makes it more likely that unwitting changes to
// the Swift compiler accidentally break the contract.
assert(false && "not supported");
return std::make_error_code(std::errc::not_supported);
}
bool MemoryBufferSerializedModuleLoader::maybeDiagnoseTargetMismatch(
SourceLoc sourceLocation, StringRef moduleName,
const SerializedModuleBaseName &absoluteBaseName) {
return false;
}
void SerializedModuleLoaderBase::verifyAllModules() {
#ifndef NDEBUG
for (const LoadedModulePair &loaded : LoadedModuleFiles)
loaded.first->verify();
#endif
}
//-----------------------------------------------------------------------------
// SerializedASTFile implementation
//-----------------------------------------------------------------------------
void SerializedASTFile::getImportedModules(
SmallVectorImpl<ImportedModule> &imports,
ModuleDecl::ImportFilter filter) const {
File.getImportedModules(imports, filter);
}
void SerializedASTFile::getExternalMacros(
SmallVectorImpl<ExternalMacroPlugin> &macros) const {
File.getExternalMacros(macros);
}
void SerializedASTFile::collectLinkLibrariesFromImports(
ModuleDecl::LinkLibraryCallback callback) const {
llvm::SmallVector<ImportedModule, 8> Imports;
File.getImportedModules(Imports, {ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default});
for (auto Import : Imports)
Import.importedModule->collectLinkLibraries(callback);
}
void SerializedASTFile::collectLinkLibraries(
ModuleDecl::LinkLibraryCallback callback) const {
if (isSIB()) {
collectLinkLibrariesFromImports(callback);
} else {
File.collectLinkLibraries(callback);
}
}
void SerializedASTFile::loadDependenciesForTestable(SourceLoc diagLoc) const {
serialization::Status status =
File.loadDependenciesForFileContext(this, diagLoc, /*forTestable=*/true);
if (status != serialization::Status::Valid) {
serialization::diagnoseSerializedASTLoadFailureTransitive(
getASTContext(), diagLoc, status, &File,
getParentModule()->getName(), /*forTestable*/true);
}
}
bool SerializedASTFile::isSIB() const {
return File.isSIB();
}
bool SerializedASTFile::hadLoadError() const {
return File.hasError();
}
bool SerializedASTFile::isSystemModule() const {
if (auto Mod = File.getUnderlyingModule()) {
return Mod->isSystemModule();
}
return false;
}
void SerializedASTFile::lookupValue(DeclName name, NLKind lookupKind,
OptionSet<ModuleLookupFlags> Flags,
SmallVectorImpl<ValueDecl*> &results) const{
File.lookupValue(name, Flags, results);
}
StringRef
SerializedASTFile::getFilenameForPrivateDecl(const Decl *decl) const {
return File.FilenamesForPrivateValues.lookup(decl);
}
TypeDecl *SerializedASTFile::lookupLocalType(llvm::StringRef MangledName) const{
return File.lookupLocalType(MangledName);
}
OpaqueTypeDecl *
SerializedASTFile::lookupOpaqueResultType(StringRef MangledName) {
return File.lookupOpaqueResultType(MangledName);
}
TypeDecl *
SerializedASTFile::lookupNestedType(Identifier name,
const NominalTypeDecl *parent) const {
return File.lookupNestedType(name, parent);
}
void SerializedASTFile::lookupOperatorDirect(
Identifier name, OperatorFixity fixity,
TinyPtrVector<OperatorDecl *> &results) const {
if (auto *op = File.lookupOperator(name, fixity))
results.push_back(op);
}
void SerializedASTFile::lookupPrecedenceGroupDirect(
Identifier name, TinyPtrVector<PrecedenceGroupDecl *> &results) const {
if (auto *group = File.lookupPrecedenceGroup(name))
results.push_back(group);
}
void SerializedASTFile::lookupVisibleDecls(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) const {
File.lookupVisibleDecls(accessPath, consumer, lookupKind);
}
void SerializedASTFile::lookupClassMembers(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer) const{
File.lookupClassMembers(accessPath, consumer);
}
void
SerializedASTFile::lookupClassMember(ImportPath::Access accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &decls) const {
File.lookupClassMember(accessPath, name, decls);
}
void SerializedASTFile::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
File.lookupObjCMethods(selector, results);
}
std::optional<Fingerprint>
SerializedASTFile::loadFingerprint(const IterableDeclContext *IDC) const {
return File.loadFingerprint(IDC);
}
void SerializedASTFile::lookupImportedSPIGroups(
const ModuleDecl *importedModule,
llvm::SmallSetVector<Identifier, 4> &spiGroups) const {
auto M = getParentModule();
auto &imports = M->getASTContext().getImportCache();
for (auto &dep : File.Dependencies) {
if (!dep.Import.has_value())
continue;
if (dep.Import->importedModule == importedModule ||
(imports.isImportedBy(importedModule, dep.Import->importedModule) &&
imports.isImportedByViaSwiftOnly(importedModule,
dep.Import->importedModule))) {
spiGroups.insert(dep.spiGroups.begin(), dep.spiGroups.end());
}
}
}
bool SerializedASTFile::isModuleImportedPreconcurrency(
const ModuleDecl *importedModule) const {
// This method should only be queried during `-merge-modules` jobs, which are
// deprecated, and thus no effort has been made to answer this query correctly
// (@preconcurrency is not encoded on imports in serialized modules).
return false;
}
std::optional<CommentInfo>
SerializedASTFile::getCommentForDecl(const Decl *D) const {
return File.getCommentForDecl(D);
}
bool SerializedASTFile::hasLoadedSwiftDoc() const {
return File.hasLoadedSwiftDoc();
}
std::optional<ExternalSourceLocs::RawLocs>
SerializedASTFile::getExternalRawLocsForDecl(const Decl *D) const {
return File.getExternalRawLocsForDecl(D);
}
std::optional<StringRef>
SerializedASTFile::getGroupNameForDecl(const Decl *D) const {
return File.getGroupNameForDecl(D);
}
std::optional<StringRef>
SerializedASTFile::getSourceFileNameForDecl(const Decl *D) const {
return File.getSourceFileNameForDecl(D);
}
std::optional<unsigned>
SerializedASTFile::getSourceOrderForDecl(const Decl *D) const {
return File.getSourceOrderForDecl(D);
}
void SerializedASTFile::collectAllGroups(
SmallVectorImpl<StringRef> &Names) const {
File.collectAllGroups(Names);
}
std::optional<StringRef>
SerializedASTFile::getGroupNameByUSR(StringRef USR) const {
return File.getGroupNameByUSR(USR);
}
void
SerializedASTFile::getTopLevelDecls(SmallVectorImpl<Decl*> &results) const {
File.getTopLevelDecls(results);
}
void SerializedASTFile::getExportedPrespecializations(
SmallVectorImpl<Decl *> &results) const {
File.getExportedPrespecializations(results);
}
void SerializedASTFile::getTopLevelDeclsWhereAttributesMatch(
SmallVectorImpl<Decl*> &results,
llvm::function_ref<bool(DeclAttributes)> matchAttributes) const {
File.getTopLevelDecls(results, matchAttributes);
}
void SerializedASTFile::getOperatorDecls(
SmallVectorImpl<OperatorDecl *> &results) const {
File.getOperatorDecls(results);
}
void SerializedASTFile::getPrecedenceGroups(
SmallVectorImpl<PrecedenceGroupDecl*> &results) const {
File.getPrecedenceGroups(results);
}
void
SerializedASTFile::getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &results) const{
File.getLocalTypeDecls(results);
}
void
SerializedASTFile::getOpaqueReturnTypeDecls(
SmallVectorImpl<OpaqueTypeDecl*> &results) const {
File.getOpaqueReturnTypeDecls(results);
}
void
SerializedASTFile::getDisplayDecls(SmallVectorImpl<Decl*> &results, bool recursive) const {
File.getDisplayDecls(results, recursive);
}
StringRef SerializedASTFile::getFilename() const {
return File.getModuleFilename();
}
StringRef SerializedASTFile::getLoadedFilename() const {
return File.getModuleLoadedFilename();
}
StringRef SerializedASTFile::getSourceFilename() const {
return File.getModuleSourceFilename();
}
StringRef SerializedASTFile::getTargetTriple() const {
return File.getTargetTriple();
}
ModuleDecl *SerializedASTFile::getUnderlyingModuleIfOverlay() const {
return File.getUnderlyingModule();
}
const clang::Module *SerializedASTFile::getUnderlyingClangModule() const {
if (auto *UnderlyingModule = File.getUnderlyingModule())
return UnderlyingModule->findUnderlyingClangModule();
return nullptr;
}
Identifier
SerializedASTFile::getDiscriminatorForPrivateDecl(const Decl *D) const {
Identifier discriminator = File.getDiscriminatorForPrivateDecl(D);
assert(!discriminator.empty() && "no discriminator found for value");
return discriminator;
}
void SerializedASTFile::collectBasicSourceFileInfo(
llvm::function_ref<void(const BasicSourceFileInfo &)> callback) const {
File.collectBasicSourceFileInfo(callback);
}
void SerializedASTFile::collectSerializedSearchPath(
llvm::function_ref<void(StringRef)> callback) const {
File.collectSerializedSearchPath(callback);
}