mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Remove the initialize_var instruction now that DI fully diagnoses initialization problems. Change String-to-NSString bridging to explicitly invoke String's default constructor; it was the last remaining user of initialize_var. Remove dead code to emit an implicit default constructor without a body. Swift SVN r11066
3230 lines
123 KiB
C++
3230 lines
123 KiB
C++
//===--- SILGenExpr.cpp - Implements Lowering of ASTs -> SIL for Exprs ----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "Scope.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/type_traits.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
namespace {
|
|
class CleanupRValue : public Cleanup {
|
|
const TypeLowering &Lowering;
|
|
SILValue Value;
|
|
public:
|
|
CleanupRValue(const TypeLowering &lowering, SILValue value)
|
|
: Lowering(lowering), Value(value) {}
|
|
|
|
void emit(SILGenFunction &gen, CleanupLocation l) override {
|
|
Lowering.emitDestroyRValue(gen.B, l, Value);
|
|
}
|
|
};
|
|
|
|
class CleanupMaterializedValue : public Cleanup {
|
|
SILValue Address;
|
|
public:
|
|
CleanupMaterializedValue(SILValue address)
|
|
: Address(address) {}
|
|
|
|
void emit(SILGenFunction &gen, CleanupLocation l) override {
|
|
gen.B.emitDestroyAddr(l, Address);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
|
|
// Destroy the value, unless it was both uniquely referenced and consumed.
|
|
auto entry = Self.OpaqueValues.find(OpaqueValue);
|
|
if (!OpaqueValue->isUniquelyReferenced() || !entry->second.second) {
|
|
SILValue &value = entry->second.first;
|
|
auto &lowering = Self.getTypeLowering(value.getType().getSwiftRValueType());
|
|
if (lowering.isTrivial()) {
|
|
// Nothing to do.
|
|
} else if (lowering.isAddressOnly()) {
|
|
Self.B.emitDestroyAddr(OpaqueValue, value);
|
|
} else {
|
|
lowering.emitDestroyRValue(Self.B, OpaqueValue, value);
|
|
}
|
|
}
|
|
|
|
// Remove the opaque value.
|
|
Self.OpaqueValues.erase(entry);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
|
|
SILValue v) {
|
|
auto &lowering = getTypeLowering(v.getType().getSwiftRValueType());
|
|
return emitManagedRetain(loc, v, lowering);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
|
|
SILValue v,
|
|
const TypeLowering &lowering) {
|
|
assert(lowering.getLoweredType() == v.getType());
|
|
if (lowering.isTrivial())
|
|
return ManagedValue(v, ManagedValue::Unmanaged);
|
|
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
|
|
|
|
v = lowering.emitCopyValue(B, loc, v);
|
|
return emitManagedRValueWithCleanup(v, lowering);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v) {
|
|
auto &lowering = getTypeLowering(v.getType());
|
|
return emitManagedRValueWithCleanup(v, lowering);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v,
|
|
const TypeLowering &lowering) {
|
|
assert(lowering.getLoweredType() == v.getType());
|
|
if (lowering.isTrivial()) {
|
|
return ManagedValue(v, ManagedValue::Unmanaged);
|
|
} else if (lowering.isAddressOnly()) {
|
|
Cleanups.pushCleanup<CleanupMaterializedValue>(v);
|
|
return ManagedValue(v, getTopCleanup());
|
|
} else {
|
|
Cleanups.pushCleanup<CleanupRValue>(lowering, v);
|
|
return ManagedValue(v, getTopCleanup());
|
|
}
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v) {
|
|
auto &lowering = getTypeLowering(v.getType());
|
|
return emitManagedBufferWithCleanup(v, lowering);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v,
|
|
const TypeLowering &lowering) {
|
|
assert(lowering.getLoweredType().getAddressType() == v.getType());
|
|
if (lowering.isTrivial())
|
|
return ManagedValue::forUnmanaged(v);
|
|
|
|
Cleanups.pushCleanup<CleanupMaterializedValue>(v);
|
|
return ManagedValue(v, getTopCleanup());
|
|
}
|
|
|
|
static void destroyRValue(SILGenFunction &SGF, CleanupLocation loc,
|
|
SILValue value, const TypeLowering &valueTL) {
|
|
if (valueTL.isTrivial()) return;
|
|
if (valueTL.isAddressOnly()) {
|
|
SGF.B.emitDestroyAddr(loc, value);
|
|
} else {
|
|
valueTL.emitDestroyRValue(SGF.B, loc, value);
|
|
}
|
|
}
|
|
|
|
static VarDecl *isLoadPropagatedValue(Expr *SubExpr, SILGenFunction &SGF) {
|
|
// Look through parens.
|
|
while (auto *PE = dyn_cast<ParenExpr>(SubExpr))
|
|
SubExpr = PE->getSubExpr();
|
|
|
|
// If this is a load of a local constant decl, just produce the value.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
|
|
if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
// FIXME: This should be a bit on vardecl, not presence in VarLocs.
|
|
auto It = SGF.VarLocs.find(VD);
|
|
if (It != SGF.VarLocs.end() && It->second.isConstant())
|
|
return VD;
|
|
}
|
|
}
|
|
|
|
// If this is a use of super that is a constant, just produce the value.
|
|
if (auto *SRE = dyn_cast<SuperRefExpr>(SubExpr)) {
|
|
if (auto *VD = dyn_cast<VarDecl>(SRE->getSelf())) {
|
|
// FIXME: This should be a bit on vardecl, not presence in VarLocs.
|
|
auto It = SGF.VarLocs.find(VD);
|
|
if (It != SGF.VarLocs.end() && It->second.isConstant())
|
|
return VD;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
void SILGenFunction::emitExprInto(Expr *E, Initialization *I) {
|
|
// Handle the special case of copying an lvalue.
|
|
if (auto load = dyn_cast<LoadExpr>(E))
|
|
if (!isLoadPropagatedValue(load->getSubExpr(), *this)) {
|
|
auto lv = emitLValue(load->getSubExpr());
|
|
emitCopyLValueInto(E, lv, I);
|
|
return;
|
|
}
|
|
|
|
RValue result = emitRValue(E, SGFContext(I));
|
|
if (result)
|
|
std::move(result).forwardInto(*this, I, E);
|
|
}
|
|
|
|
namespace {
|
|
class RValueEmitter
|
|
: public Lowering::ExprVisitor<RValueEmitter, RValue, SGFContext> {
|
|
SILGenFunction &SGF;
|
|
typedef Lowering::ExprVisitor<RValueEmitter,RValue,SGFContext> super;
|
|
public:
|
|
RValueEmitter(SILGenFunction &SGF) : SGF(SGF) {}
|
|
|
|
using super::visit;
|
|
RValue visit(Expr *E) {
|
|
return visit(E, SGFContext());
|
|
}
|
|
|
|
RValue visitApplyExpr(ApplyExpr *E, SGFContext C);
|
|
|
|
RValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *E, SGFContext C);
|
|
RValue visitDeclRefExpr(DeclRefExpr *E, SGFContext C);
|
|
RValue visitSuperRefExpr(SuperRefExpr *E, SGFContext C);
|
|
RValue visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E,
|
|
SGFContext C);
|
|
|
|
RValue visitIntegerLiteralExpr(IntegerLiteralExpr *E, SGFContext C);
|
|
RValue visitFloatLiteralExpr(FloatLiteralExpr *E, SGFContext C);
|
|
RValue visitCharacterLiteralExpr(CharacterLiteralExpr *E, SGFContext C);
|
|
|
|
RValue emitStringLiteral(Expr *E, StringRef Str, SGFContext C);
|
|
|
|
RValue visitStringLiteralExpr(StringLiteralExpr *E, SGFContext C);
|
|
RValue visitLoadExpr(LoadExpr *E, SGFContext C);
|
|
RValue visitMaterializeExpr(MaterializeExpr *E, SGFContext C);
|
|
RValue visitDerivedToBaseExpr(DerivedToBaseExpr *E, SGFContext C);
|
|
RValue visitMetatypeConversionExpr(MetatypeConversionExpr *E,
|
|
SGFContext C);
|
|
RValue visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E, SGFContext C);
|
|
RValue visitRequalifyExpr(RequalifyExpr *E, SGFContext C);
|
|
RValue visitFunctionConversionExpr(FunctionConversionExpr *E,
|
|
SGFContext C);
|
|
RValue visitErasureExpr(ErasureExpr *E, SGFContext C);
|
|
RValue visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
|
|
SGFContext C);
|
|
RValue visitIsaExpr(IsaExpr *E, SGFContext C);
|
|
RValue visitCoerceExpr(CoerceExpr *E, SGFContext C);
|
|
RValue visitTupleExpr(TupleExpr *E, SGFContext C);
|
|
RValue visitScalarToTupleExpr(ScalarToTupleExpr *E, SGFContext C);
|
|
RValue visitAddressOfExpr(AddressOfExpr *E, SGFContext C);
|
|
RValue visitMemberRefExpr(MemberRefExpr *E, SGFContext C);
|
|
RValue visitDynamicMemberRefExpr(DynamicMemberRefExpr *E, SGFContext C);
|
|
RValue visitArchetypeMemberRefExpr(ArchetypeMemberRefExpr *E,
|
|
SGFContext C);
|
|
RValue visitExistentialMemberRefExpr(ExistentialMemberRefExpr *E,
|
|
SGFContext C);
|
|
RValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E,
|
|
SGFContext C);
|
|
RValue visitModuleExpr(ModuleExpr *E, SGFContext C);
|
|
RValue visitTupleElementExpr(TupleElementExpr *E, SGFContext C);
|
|
RValue visitSubscriptExpr(SubscriptExpr *E, SGFContext C);
|
|
RValue visitArchetypeSubscriptExpr(ArchetypeSubscriptExpr *E,
|
|
SGFContext C);
|
|
RValue visitDynamicSubscriptExpr(DynamicSubscriptExpr *E,
|
|
SGFContext C);
|
|
RValue visitExistentialSubscriptExpr(ExistentialSubscriptExpr *E,
|
|
SGFContext C);
|
|
RValue visitTupleShuffleExpr(TupleShuffleExpr *E, SGFContext C);
|
|
RValue visitNewArrayExpr(NewArrayExpr *E, SGFContext C);
|
|
RValue visitMetatypeExpr(MetatypeExpr *E, SGFContext C);
|
|
RValue visitClosureExpr(ClosureExpr *E, SGFContext C);
|
|
RValue visitAutoClosureExpr(AutoClosureExpr *E, SGFContext C);
|
|
RValue visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
|
|
SGFContext C);
|
|
RValue visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E,
|
|
SGFContext C);
|
|
RValue visitCollectionExpr(CollectionExpr *E, SGFContext C);
|
|
RValue visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E,
|
|
SGFContext C);
|
|
RValue visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E, SGFContext C);
|
|
RValue visitBridgeToBlockExpr(BridgeToBlockExpr *E, SGFContext C);
|
|
RValue visitIfExpr(IfExpr *E, SGFContext C);
|
|
RValue visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C);
|
|
RValue visitAssignExpr(AssignExpr *E, SGFContext C);
|
|
|
|
RValue visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C);
|
|
RValue visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
|
|
SGFContext C);
|
|
RValue visitForceValueExpr(ForceValueExpr *E, SGFContext C);
|
|
|
|
RValue visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C);
|
|
|
|
RValue emitUnconditionalCheckedCast(Expr *source,
|
|
SILLocation loc,
|
|
Type destType,
|
|
CheckedCastKind castKind,
|
|
SGFContext C);
|
|
};
|
|
}
|
|
|
|
RValue RValueEmitter::visitApplyExpr(ApplyExpr *E, SGFContext C) {
|
|
return SGF.emitApplyExpr(E, C);
|
|
}
|
|
|
|
SILValue SILGenFunction::emitEmptyTuple(SILLocation loc) {
|
|
return B.createTuple(loc,
|
|
getLoweredType(TupleType::getEmpty(SGM.M.getASTContext())), {});
|
|
}
|
|
|
|
SILValue SILGenFunction::emitGlobalFunctionRef(SILLocation loc,
|
|
SILDeclRef constant,
|
|
SILConstantInfo constantInfo) {
|
|
assert(constantInfo == getConstantInfo(constant));
|
|
|
|
assert(!LocalFunctions.count(constant) &&
|
|
"emitting ref to local constant without context?!");
|
|
if (constant.hasDecl() &&
|
|
isa<BuiltinUnit>(constant.getDecl()->getDeclContext())) {
|
|
return B.createBuiltinFunctionRef(loc, constant.getDecl()->getName(),
|
|
constantInfo.getSILType());
|
|
}
|
|
|
|
// If the constant is a curry thunk we haven't emitted yet, emit it.
|
|
if (constant.isCurried) {
|
|
if (!SGM.hasFunction(constant)) {
|
|
// Non-functions can't be referenced uncurried.
|
|
FuncDecl *fd = cast<FuncDecl>(constant.getDecl());
|
|
|
|
// Getters and setters can't be referenced uncurried.
|
|
assert(!fd->isGetterOrSetter());
|
|
|
|
// FIXME: Thunks for instance methods of generics.
|
|
assert(!(fd->isInstanceMember() && isa<ProtocolDecl>(fd->getDeclContext()))
|
|
&& "currying generic method not yet supported");
|
|
|
|
// FIXME: Curry thunks for generic methods don't work right yet, so skip
|
|
// emitting thunks for them
|
|
assert(!(fd->getType()->is<AnyFunctionType>() &&
|
|
fd->getType()->castTo<AnyFunctionType>()->getResult()
|
|
->is<PolymorphicFunctionType>()));
|
|
|
|
// Reference the next uncurrying level of the function.
|
|
SILDeclRef next = SILDeclRef(fd, SILDeclRef::Kind::Func,
|
|
constant.uncurryLevel + 1);
|
|
// If the function is fully uncurried and natively foreign, reference its
|
|
// foreign entry point.
|
|
if (!next.isCurried && fd->hasClangNode())
|
|
next = next.asForeign();
|
|
|
|
SGM.emitCurryThunk(constant, next, fd);
|
|
}
|
|
}
|
|
// Otherwise, if this is a foreign thunk we haven't emitted yet, emit it.
|
|
else if (constant.isForeignThunk()) {
|
|
if (!SGM.hasFunction(constant))
|
|
SGM.emitForeignThunk(constant);
|
|
}
|
|
|
|
return B.createFunctionRef(loc, SGM.getFunction(constant));
|
|
}
|
|
|
|
SILValue SILGenFunction::emitUnmanagedFunctionRef(SILLocation loc,
|
|
SILDeclRef constant) {
|
|
// If this is a reference to a local constant, grab it.
|
|
if (LocalFunctions.count(constant)) {
|
|
return LocalFunctions[constant];
|
|
}
|
|
|
|
// Otherwise, use a global FunctionRefInst.
|
|
return emitGlobalFunctionRef(loc, constant);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitFunctionRef(SILLocation loc,
|
|
SILDeclRef constant) {
|
|
return emitFunctionRef(loc, constant, getConstantInfo(constant));
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitFunctionRef(SILLocation loc,
|
|
SILDeclRef constant,
|
|
SILConstantInfo constantInfo) {
|
|
// If this is a reference to a local constant, grab it.
|
|
if (LocalFunctions.count(constant)) {
|
|
SILValue v = LocalFunctions[constant];
|
|
return emitManagedRetain(loc, v);
|
|
}
|
|
|
|
// Otherwise, use a global FunctionRefInst.
|
|
SILValue c = emitGlobalFunctionRef(loc, constant, constantInfo);
|
|
return ManagedValue(c, ManagedValue::Unmanaged);
|
|
}
|
|
|
|
/// True if the global stored property requires lazy initialization.
|
|
static bool isGlobalLazilyInitialized(VarDecl *var) {
|
|
assert(!var->getDeclContext()->isLocalContext() &&
|
|
"not a global variable!");
|
|
assert(!var->isComputed() &&
|
|
"not a stored global variable!");
|
|
|
|
return !isa<SourceFile>(var->getDeclContext())
|
|
|| cast<SourceFile>(var->getDeclContext())->Kind != SourceFileKind::Main;
|
|
}
|
|
|
|
static ManagedValue emitGlobalVariableRef(SILGenFunction &gen,
|
|
SILLocation loc, VarDecl *var) {
|
|
if (isGlobalLazilyInitialized(var)
|
|
&& gen.getASTContext().LangOpts.EmitLazyGlobalInitializers) {
|
|
// Call the global accessor to get the variable's address.
|
|
SILFunction *accessorFn = gen.SGM.getFunction(
|
|
SILDeclRef(var, SILDeclRef::Kind::GlobalAccessor));
|
|
SILValue accessor = gen.B.createFunctionRef(loc, accessorFn);
|
|
SILValue addr = gen.B.createApply(loc, accessor, accessor.getType(),
|
|
accessor.getType().castTo<SILFunctionType>()
|
|
->getResult().getSILType(),
|
|
{}, {});
|
|
// FIXME: It'd be nice if the result of the accessor was natively an address.
|
|
addr = gen.B.createPointerToAddress(loc, addr,
|
|
gen.getLoweredType(var->getType()).getAddressType());
|
|
return ManagedValue(addr, ManagedValue::LValue);
|
|
}
|
|
|
|
// Global variables in main source files can be accessed directly.
|
|
// FIXME: And all global variables when lazy initialization is disabled.
|
|
SILValue addr = gen.B.createGlobalAddr(loc, var,
|
|
gen.getLoweredType(var->getType()).getAddressType());
|
|
return ManagedValue(addr, ManagedValue::LValue);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitReferenceToDecl(SILLocation loc,
|
|
ConcreteDeclRef declRef,
|
|
Type ncRefType,
|
|
unsigned uncurryLevel) {
|
|
ValueDecl *decl = declRef.getDecl();
|
|
if (!ncRefType) ncRefType = decl->getType();
|
|
CanType refType = ncRefType->getCanonicalType();
|
|
|
|
// If this is a reference to a type, produce a metatype.
|
|
if (isa<TypeDecl>(decl)) {
|
|
assert(!declRef.isSpecialized() &&
|
|
"Cannot handle specialized type references");
|
|
assert(decl->getType()->is<MetaTypeType>() &&
|
|
"type declref does not have metatype type?!");
|
|
assert((uncurryLevel == SILDeclRef::ConstructAtNaturalUncurryLevel
|
|
|| uncurryLevel == 0)
|
|
&& "uncurry level doesn't make sense for types");
|
|
return ManagedValue(B.createMetatype(loc, getLoweredType(refType)),
|
|
ManagedValue::Unmanaged);
|
|
}
|
|
|
|
// If this is a reference to a var, produce an address.
|
|
if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
|
|
assert(!declRef.isSpecialized() &&
|
|
"Cannot handle specialized variable references");
|
|
assert((uncurryLevel == SILDeclRef::ConstructAtNaturalUncurryLevel
|
|
|| uncurryLevel == 0)
|
|
&& "uncurry level doesn't make sense for vars");
|
|
|
|
assert(!var->isComputed() &&
|
|
"computed variables should be handled elsewhere");
|
|
|
|
// For local decls, use the address we allocated or the value if we have it.
|
|
auto It = VarLocs.find(decl);
|
|
if (It != VarLocs.end()) {
|
|
if (It->second.isConstant())
|
|
return ManagedValue(It->second.getConstant(), ManagedValue::Unmanaged);
|
|
return ManagedValue(It->second.getAddress(), ManagedValue::LValue);
|
|
}
|
|
|
|
// If this is a global variable, invoke its accessor function to get its
|
|
// address.
|
|
return emitGlobalVariableRef(*this, loc, var);
|
|
}
|
|
|
|
// If the referenced decl isn't a VarDecl, it should be a constant of some
|
|
// sort.
|
|
assert(!decl->isReferencedAsLValue());
|
|
|
|
// If the referenced decl is a local func with context, then the SILDeclRef
|
|
// uncurry level is one deeper (for the context vars).
|
|
bool hasLocalCaptures = false;
|
|
if (auto *fd = dyn_cast<FuncDecl>(decl)) {
|
|
hasLocalCaptures = fd->getCaptureInfo().hasLocalCaptures();
|
|
if (hasLocalCaptures &&
|
|
uncurryLevel != SILDeclRef::ConstructAtNaturalUncurryLevel)
|
|
++uncurryLevel;
|
|
}
|
|
|
|
auto silDeclRef = SILDeclRef(decl, uncurryLevel);
|
|
auto constantInfo = getConstantInfo(silDeclRef);
|
|
|
|
unsigned uncurryLevelWithoutCaptures =
|
|
silDeclRef.uncurryLevel - unsigned(hasLocalCaptures);
|
|
|
|
ManagedValue result = emitFunctionRef(loc, silDeclRef, constantInfo);
|
|
|
|
// Get the lowered AST types:
|
|
// - the original type
|
|
auto origLoweredFormalType = AbstractionPattern(constantInfo.LoweredType);
|
|
if (hasLocalCaptures) {
|
|
auto formalTypeWithoutCaptures =
|
|
cast<AnyFunctionType>(constantInfo.FormalType.getResult());
|
|
origLoweredFormalType =
|
|
AbstractionPattern(
|
|
SGM.Types.getLoweredASTFunctionType(formalTypeWithoutCaptures,
|
|
uncurryLevelWithoutCaptures));
|
|
}
|
|
|
|
// - the substituted type
|
|
auto substFormalType = cast<AnyFunctionType>(refType);
|
|
auto substLoweredFormalType =
|
|
SGM.Types.getLoweredASTFunctionType(substFormalType,
|
|
uncurryLevelWithoutCaptures);
|
|
|
|
// If the declaration reference is specialized, create the partial
|
|
// application.
|
|
if (declRef.isSpecialized()) {
|
|
// Substitute the function type.
|
|
auto origFnType = result.getType().castTo<SILFunctionType>();
|
|
auto substFnType = origFnType->substGenericArgs(SGM.M, SGM.SwiftModule,
|
|
declRef.getSubstitutions());
|
|
auto closureType = getThickFunctionType(substFnType);
|
|
|
|
SILValue spec = B.createPartialApply(loc, result.forward(*this),
|
|
SILType::getPrimitiveObjectType(substFnType),
|
|
declRef.getSubstitutions(),
|
|
{ },
|
|
SILType::getPrimitiveObjectType(closureType));
|
|
result = emitManagedRValueWithCleanup(spec);
|
|
}
|
|
|
|
// Generalize if necessary.
|
|
return emitGeneralizedFunctionValue(loc, result, origLoweredFormalType,
|
|
substLoweredFormalType);
|
|
}
|
|
|
|
RValue RValueEmitter::visitDiscardAssignmentExpr(DiscardAssignmentExpr *E,
|
|
SGFContext C) {
|
|
llvm_unreachable("cannot appear in rvalue");
|
|
}
|
|
|
|
RValue RValueEmitter::visitDeclRefExpr(DeclRefExpr *E, SGFContext C) {
|
|
if (E->getType()->is<LValueType>())
|
|
return SGF.emitLValueAsRValue(E);
|
|
|
|
return RValue(SGF, E,
|
|
SGF.emitReferenceToDecl(E, E->getDeclRef(), E->getType(), 0));
|
|
}
|
|
|
|
RValue RValueEmitter::visitSuperRefExpr(SuperRefExpr *E, SGFContext C) {
|
|
if (E->getType()->is<LValueType>())
|
|
return SGF.emitLValueAsRValue(E);
|
|
return RValue(SGF, E,
|
|
SGF.emitReferenceToDecl(E, E->getSelf(), E->getType(), 0));
|
|
}
|
|
|
|
RValue RValueEmitter::visitOtherConstructorDeclRefExpr(
|
|
OtherConstructorDeclRefExpr *E, SGFContext C) {
|
|
// This should always be a child of an ApplyExpr and so will be emitted by
|
|
// SILGenApply.
|
|
llvm_unreachable("unapplied reference to constructor?!");
|
|
}
|
|
|
|
RValue RValueEmitter::visitIntegerLiteralExpr(IntegerLiteralExpr *E,
|
|
SGFContext C) {
|
|
return RValue(SGF, E, ManagedValue(SGF.B.createIntegerLiteral(E),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
RValue RValueEmitter::visitFloatLiteralExpr(FloatLiteralExpr *E,
|
|
SGFContext C) {
|
|
return RValue(SGF, E, ManagedValue(SGF.B.createFloatLiteral(E),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
RValue RValueEmitter::visitCharacterLiteralExpr(CharacterLiteralExpr *E,
|
|
SGFContext C) {
|
|
return RValue(SGF, E, ManagedValue(SGF.B.createIntegerLiteral(E),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
|
|
RValue RValueEmitter::emitStringLiteral(Expr *E, StringRef Str,
|
|
SGFContext C) {
|
|
StringLiteralInst *string = SGF.B.createStringLiteral(E, Str);
|
|
CanType ty = E->getType()->getCanonicalType();
|
|
|
|
ManagedValue Elts[] = {
|
|
ManagedValue(SILValue(string, 0), ManagedValue::Unmanaged),
|
|
ManagedValue(SILValue(string, 1), ManagedValue::Unmanaged),
|
|
ManagedValue(SILValue(string, 2), ManagedValue::Unmanaged)
|
|
};
|
|
|
|
return RValue(Elts, ty);
|
|
}
|
|
|
|
|
|
RValue RValueEmitter::visitStringLiteralExpr(StringLiteralExpr *E,
|
|
SGFContext C) {
|
|
return emitStringLiteral(E, E->getValue(), C);
|
|
}
|
|
|
|
RValue RValueEmitter::visitLoadExpr(LoadExpr *E, SGFContext C) {
|
|
// If we can and must fold this, do so.
|
|
if (VarDecl *VD = isLoadPropagatedValue(E->getSubExpr(), SGF)) {
|
|
auto &Entry = SGF.VarLocs[VD];
|
|
assert(Entry.isConstant() && "Not a load propagated vardecl");
|
|
SILValue V = Entry.getConstant();
|
|
|
|
auto &TL = SGF.getTypeLowering(VD->getType());
|
|
// The value must be copied for the duration of the expression.
|
|
V = TL.emitLoweredCopyValue(SGF.B, E, V, false);
|
|
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(V, TL));
|
|
}
|
|
|
|
LValue lv = SGF.emitLValue(E->getSubExpr());
|
|
auto result = SGF.emitLoadOfLValue(E, lv, C);
|
|
return (result ? RValue(SGF, E, result) : RValue());
|
|
}
|
|
|
|
SILValue SILGenFunction::emitTemporaryAllocation(SILLocation loc,
|
|
SILType ty) {
|
|
ty = ty.getObjectType();
|
|
auto alloc = B.createAllocStack(loc, ty);
|
|
enterDeallocStackCleanup(loc, alloc->getContainerResult());
|
|
return alloc->getAddressResult();
|
|
}
|
|
|
|
SILValue SILGenFunction::getBufferForExprResult(
|
|
SILLocation loc, SILType ty, SGFContext C) {
|
|
// If you change this, change manageBufferForExprResult below as well.
|
|
|
|
// If we have a single-buffer "emit into" initialization, use that for the
|
|
// result.
|
|
if (Initialization *I = C.getEmitInto()) {
|
|
switch (I->kind) {
|
|
case Initialization::Kind::AddressBinding:
|
|
llvm_unreachable("can't emit into address binding");
|
|
|
|
case Initialization::Kind::Translating:
|
|
break;
|
|
|
|
case Initialization::Kind::Ignored:
|
|
break;
|
|
|
|
case Initialization::Kind::Tuple:
|
|
// FIXME: For a single-element tuple, we could emit into the single field.
|
|
|
|
// The tuple initialization isn't contiguous, so we can't emit directly
|
|
// into it.
|
|
break;
|
|
|
|
case Initialization::Kind::SingleBuffer:
|
|
// Emit into the buffer.
|
|
return I->getAddress();
|
|
}
|
|
}
|
|
|
|
// If we couldn't emit into an Initialization, emit into a temporary
|
|
// allocation.
|
|
return emitTemporaryAllocation(loc, ty.getObjectType());
|
|
}
|
|
|
|
ManagedValue SILGenFunction::manageBufferForExprResult(SILValue buffer,
|
|
const TypeLowering &bufferTL,
|
|
SGFContext C) {
|
|
if (Initialization *I = C.getEmitInto()) {
|
|
switch (I->kind) {
|
|
case Initialization::Kind::AddressBinding:
|
|
llvm_unreachable("can't emit into address binding");
|
|
case Initialization::Kind::Ignored:
|
|
case Initialization::Kind::Translating:
|
|
case Initialization::Kind::Tuple:
|
|
break;
|
|
case Initialization::Kind::SingleBuffer:
|
|
I->finishInitialization(*this);
|
|
return ManagedValue();
|
|
}
|
|
}
|
|
|
|
// Add a cleanup for the temporary we allocated.
|
|
if (bufferTL.isTrivial())
|
|
return ManagedValue::forUnmanaged(buffer);
|
|
|
|
Cleanups.pushCleanup<CleanupMaterializedValue>(buffer);
|
|
return ManagedValue(buffer, getTopCleanup());
|
|
}
|
|
|
|
Materialize SILGenFunction::emitMaterialize(SILLocation loc, ManagedValue v) {
|
|
assert(!v.isLValue() && "materializing an lvalue?!");
|
|
// Address-only values are already materialized.
|
|
if (v.getType().isAddress()) {
|
|
assert(v.getType().isAddressOnly(SGM.M) && "can't materialize an l-value");
|
|
return Materialize{v.getValue(), v.getCleanup()};
|
|
}
|
|
|
|
auto &lowering = getTypeLowering(v.getType().getSwiftType());
|
|
|
|
// We don't use getBufferForExprResult here because the result of a
|
|
// MaterializeExpr is *not* the value, but an lvalue reference to the value.
|
|
SILValue tmpMem = emitTemporaryAllocation(loc, v.getType());
|
|
v.forwardInto(*this, loc, tmpMem);
|
|
|
|
CleanupHandle valueCleanup = CleanupHandle::invalid();
|
|
if (!lowering.isTrivial()) {
|
|
Cleanups.pushCleanup<CleanupMaterializedValue>(tmpMem);
|
|
valueCleanup = getTopCleanup();
|
|
}
|
|
|
|
return Materialize{tmpMem, valueCleanup};
|
|
}
|
|
|
|
RValue RValueEmitter::visitMaterializeExpr(MaterializeExpr *E, SGFContext C) {
|
|
// Always an lvalue.
|
|
return SGF.emitLValueAsRValue(E);
|
|
}
|
|
|
|
RValue RValueEmitter::visitDerivedToBaseExpr(DerivedToBaseExpr *E,
|
|
SGFContext C) {
|
|
ManagedValue original = visit(E->getSubExpr()).getAsSingleValue(SGF,
|
|
E->getSubExpr());
|
|
SILValue converted = SGF.B.createUpcast(E,
|
|
original.getValue(),
|
|
SGF.getLoweredType(E->getType()));
|
|
return RValue(SGF, E, ManagedValue(converted, original.getCleanup()));
|
|
}
|
|
|
|
RValue RValueEmitter::visitMetatypeConversionExpr(MetatypeConversionExpr *E,
|
|
SGFContext C) {
|
|
SILValue metaBase = visit(E->getSubExpr()).getUnmanagedSingleValue(SGF,
|
|
E->getSubExpr());
|
|
return RValue(SGF, E,
|
|
ManagedValue(SGF.B.createUpcast(E, metaBase,
|
|
SGF.getLoweredLoadableType(E->getType())),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
|
|
RValue RValueEmitter::visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E,
|
|
SGFContext C) {
|
|
ManagedValue archetype = visit(E->getSubExpr()).getAsSingleValue(SGF,
|
|
E->getSubExpr());
|
|
// Replace the cleanup with a new one on the superclass value so we always use
|
|
// concrete retain/release operations.
|
|
SILValue base = SGF.B.createArchetypeRefToSuper(E,
|
|
archetype.forward(SGF),
|
|
SGF.getLoweredLoadableType(E->getType()));
|
|
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(base));
|
|
}
|
|
|
|
RValue RValueEmitter::visitRequalifyExpr(RequalifyExpr *E, SGFContext C) {
|
|
assert(E->getType()->is<LValueType>() && "non-lvalue requalify");
|
|
// Ignore lvalue qualifiers.
|
|
return visit(E->getSubExpr());
|
|
}
|
|
|
|
RValue RValueEmitter::visitFunctionConversionExpr(FunctionConversionExpr *e,
|
|
SGFContext C)
|
|
{
|
|
ManagedValue original = visit(e->getSubExpr()).getAsSingleValue(SGF,
|
|
e->getSubExpr());
|
|
|
|
// Retain the thinness of the original function type.
|
|
CanAnyFunctionType destTy =
|
|
cast<AnyFunctionType>(e->getType()->getCanonicalType());
|
|
if (original.getType().castTo<SILFunctionType>()->isThin())
|
|
destTy = getThinFunctionType(destTy);
|
|
|
|
SILType resultType = SGF.getLoweredType(destTy);
|
|
ManagedValue result;
|
|
if (resultType == original.getType()) {
|
|
// Don't make a conversion instruction if it's unnecessary.
|
|
result = original;
|
|
} else {
|
|
SILValue converted =
|
|
SGF.B.createConvertFunction(e, original.getValue(), resultType);
|
|
result = ManagedValue(converted, original.getCleanup());
|
|
}
|
|
|
|
return RValue(SGF, e, result);
|
|
}
|
|
|
|
namespace {
|
|
/// An Initialization representing the concrete value buffer inside an
|
|
/// existential container.
|
|
class ExistentialValueInitialization : public SingleBufferInitialization {
|
|
SILValue valueAddr;
|
|
public:
|
|
ExistentialValueInitialization(SILValue valueAddr)
|
|
: valueAddr(valueAddr)
|
|
{}
|
|
|
|
SILValue getAddressOrNull() override {
|
|
return valueAddr;
|
|
}
|
|
|
|
void finishInitialization(SILGenFunction &gen) {
|
|
// FIXME: Disable the DeinitExistential cleanup and enable the
|
|
// DestroyAddr cleanup for the existential container.
|
|
}
|
|
};
|
|
}
|
|
|
|
static RValue emitClassBoundErasure(SILGenFunction &gen, ErasureExpr *E) {
|
|
ManagedValue sub = gen.emitRValue(E->getSubExpr()).getAsSingleValue(gen,
|
|
E->getSubExpr());
|
|
SILType resultTy = gen.getLoweredLoadableType(E->getType());
|
|
|
|
SILValue v;
|
|
|
|
if (E->getSubExpr()->getType()->isExistentialType())
|
|
// If the source value is already of protocol type, we can use
|
|
// upcast_existential_ref to steal the already-initialized witness tables
|
|
// and concrete value.
|
|
v = gen.B.createUpcastExistentialRef(E, sub.getValue(), resultTy);
|
|
else
|
|
// Otherwise, create a new existential container value around the class
|
|
// instance.
|
|
v = gen.B.createInitExistentialRef(E, resultTy, sub.getValue(),
|
|
E->getConformances());
|
|
|
|
return RValue(gen, E, ManagedValue(v, sub.getCleanup()));
|
|
}
|
|
|
|
static RValue emitAddressOnlyErasure(SILGenFunction &gen, ErasureExpr *E,
|
|
SGFContext C) {
|
|
// FIXME: Need to stage cleanups here. If code fails between
|
|
// InitExistential and initializing the value, clean up using
|
|
// DeinitExistential.
|
|
|
|
// Allocate the existential.
|
|
auto &existentialTL = gen.getTypeLowering(E->getType());
|
|
SILValue existential =
|
|
gen.getBufferForExprResult(E, existentialTL.getLoweredType(), C);
|
|
|
|
if (E->getSubExpr()->getType()->isExistentialType()) {
|
|
// If the source value is already of a protocol type, we can use
|
|
// upcast_existential to steal its already-initialized witness tables and
|
|
// concrete value.
|
|
ManagedValue subExistential
|
|
= gen.emitRValue(E->getSubExpr()).getAsSingleValue(gen, E->getSubExpr());
|
|
|
|
IsTake_t isTake = IsTake_t(subExistential.hasCleanup());
|
|
|
|
gen.B.createUpcastExistential(E, subExistential.getValue(), existential,
|
|
isTake);
|
|
} else {
|
|
// Otherwise, we need to initialize a new existential container from
|
|
// scratch.
|
|
|
|
// Allocate the concrete value inside the container.
|
|
SILValue valueAddr = gen.B.createInitExistential(E, existential,
|
|
gen.getLoweredType(E->getSubExpr()->getType()),
|
|
E->getConformances());
|
|
// Initialize the concrete value in-place.
|
|
InitializationPtr init(new ExistentialValueInitialization(valueAddr));
|
|
gen.emitExprInto(E->getSubExpr(), init.get());
|
|
}
|
|
|
|
auto result = gen.manageBufferForExprResult(existential, existentialTL, C);
|
|
return (result ? RValue(gen, E, result) : RValue());
|
|
}
|
|
|
|
RValue RValueEmitter::visitErasureExpr(ErasureExpr *E, SGFContext C) {
|
|
if (E->getType()->isClassExistentialType())
|
|
return emitClassBoundErasure(SGF, E);
|
|
return emitAddressOnlyErasure(SGF, E, C);
|
|
}
|
|
|
|
namespace {
|
|
class CleanupUsedExistentialContainer : public Cleanup {
|
|
SILValue existential;
|
|
public:
|
|
CleanupUsedExistentialContainer(SILValue existential)
|
|
: existential(existential) {}
|
|
|
|
void emit(SILGenFunction &gen, CleanupLocation l) override {
|
|
gen.B.createDeinitExistential(l, existential);
|
|
}
|
|
};
|
|
}
|
|
|
|
SILValue SILGenFunction::emitUnconditionalCheckedCast(SILLocation loc,
|
|
SILValue original,
|
|
Type origTy,
|
|
Type castTy,
|
|
CheckedCastKind kind) {
|
|
auto &origLowering = getTypeLowering(origTy);
|
|
auto &castLowering = getTypeLowering(castTy);
|
|
|
|
// Spill to a temporary if casting from loadable to address-only.
|
|
if (origLowering.isLoadable() && castLowering.isAddressOnly()) {
|
|
SILValue temp = emitTemporaryAllocation(loc, origLowering.getLoweredType());
|
|
B.createStore(loc, original, temp);
|
|
original = temp;
|
|
}
|
|
|
|
// Get the cast destination type at the least common denominator abstraction
|
|
// level.
|
|
SILType destTy = castLowering.getLoweredType();
|
|
if (origLowering.isAddressOnly())
|
|
destTy = destTy.getAddressType();
|
|
|
|
// Emit the cast.
|
|
SILValue result = B.createUnconditionalCheckedCast(loc, kind, original,
|
|
destTy);
|
|
|
|
// Load from the address if casting from address-only to loadable.
|
|
if (origLowering.isAddressOnly() && castLowering.isLoadable())
|
|
result = B.createLoad(loc, result);
|
|
|
|
return result;
|
|
}
|
|
|
|
SILValue
|
|
SILGenFunction::emitCheckedCastAbstractionChange(SILLocation loc,
|
|
SILValue original,
|
|
const TypeLowering &origTL,
|
|
ArrayRef<const TypeLowering *> castTLs) {
|
|
// If the original type is already address-only, we don't need to abstract
|
|
// further.
|
|
if (origTL.isAddressOnly()) {
|
|
return SILValue();
|
|
}
|
|
|
|
// If any of the cast-to types are address-only, spill to a temporary.
|
|
if (std::find_if(castTLs.begin(), castTLs.end(),
|
|
[](const TypeLowering *tl){ return tl->isAddressOnly(); })
|
|
!= castTLs.end()) {
|
|
SILValue temp = emitTemporaryAllocation(loc, origTL.getLoweredType());
|
|
B.createStore(loc, original, temp);
|
|
return temp;
|
|
}
|
|
|
|
// Otherwise, no abstraction change is needed.
|
|
return SILValue();
|
|
}
|
|
|
|
std::pair<SILBasicBlock*, SILBasicBlock*>
|
|
SILGenFunction::emitCheckedCastBranch(SILLocation loc,
|
|
SILValue original,
|
|
SILValue originalAbstracted,
|
|
const TypeLowering &origLowering,
|
|
const TypeLowering &castLowering,
|
|
CheckedCastKind kind) {
|
|
// Spill to a temporary if casting from loadable to address-only.
|
|
if (origLowering.isLoadable() && castLowering.isAddressOnly()) {
|
|
assert(originalAbstracted && "no abstracted value for cast");
|
|
original = originalAbstracted;
|
|
}
|
|
|
|
// Get the cast destination type at the least common denominator abstraction
|
|
// level.
|
|
SILType destTy = castLowering.getLoweredType();
|
|
if (origLowering.isAddressOnly())
|
|
destTy = destTy.getAddressType();
|
|
|
|
// Set up BBs for the cast.
|
|
auto success = createBasicBlock();
|
|
new (SGM.M) SILArgument(destTy, success);
|
|
auto failure = createBasicBlock();
|
|
|
|
// Emit the cast.
|
|
B.createCheckedCastBranch(loc, kind, original, destTy,
|
|
success, failure);
|
|
|
|
return {success, failure};
|
|
}
|
|
|
|
RValue RValueEmitter::visitConditionalCheckedCastExpr(
|
|
ConditionalCheckedCastExpr *E,
|
|
SGFContext C) {
|
|
ManagedValue original = visit(E->getSubExpr()).getAsSingleValue(SGF,
|
|
E->getSubExpr());
|
|
|
|
SILBasicBlock *contBB = SGF.createBasicBlock();
|
|
|
|
// The optional injection intrinsics return indirectly regardless of
|
|
// whether the result is address-only, so go ahead and always emit
|
|
// to a temporary.
|
|
auto &resultTL = SGF.getTypeLowering(E->getType());
|
|
SILValue resultBuffer =
|
|
SGF.getBufferForExprResult(E, resultTL.getLoweredType(), C);
|
|
|
|
SILValue origVal = original.forward(SGF);
|
|
SILBasicBlock *success, *failure;
|
|
auto &origTL = SGF.getTypeLowering(E->getSubExpr()->getType());
|
|
auto castTy = E->getCastTypeLoc().getType()->getCanonicalType();
|
|
auto &castTL = SGF.getTypeLowering(castTy);
|
|
SILValue origAbs = SGF.emitCheckedCastAbstractionChange(E, origVal,
|
|
origTL,
|
|
&castTL);
|
|
std::tie(success, failure) = SGF.emitCheckedCastBranch(E, origVal, origAbs,
|
|
origTL, castTL,
|
|
E->getCastKind());
|
|
|
|
// Handle the cast success case.
|
|
{
|
|
SGF.B.emitBlock(success);
|
|
SILValue castResult = success->bbarg_begin()[0];
|
|
|
|
// Load the BB argument if casting from address-only to loadable type.
|
|
if (castResult.getType().isAddress() && !castTL.isAddressOnly())
|
|
castResult = SGF.B.createLoad(E, castResult);
|
|
|
|
RValue castRV(SGF, E, castTy,
|
|
SGF.emitManagedRValueWithCleanup(castResult, castTL));
|
|
|
|
// Wrap it in an Optional.
|
|
SGF.emitInjectOptionalValueInto(E, { E->getSubExpr(), std::move(castRV) },
|
|
resultBuffer, resultTL);
|
|
SGF.B.createBranch(E, contBB);
|
|
}
|
|
|
|
// Handle the cast failure case.
|
|
{
|
|
SGF.B.emitBlock(failure);
|
|
|
|
// Destroy the original value.
|
|
destroyRValue(SGF, E, origVal, origTL);
|
|
|
|
SGF.emitInjectOptionalNothingInto(E, resultBuffer, resultTL);
|
|
SGF.B.createBranch(E, contBB);
|
|
}
|
|
|
|
SGF.B.emitBlock(contBB);
|
|
|
|
// Manage the optional buffer.
|
|
auto result = SGF.manageBufferForExprResult(resultBuffer, resultTL, C);
|
|
if (!result) return RValue();
|
|
|
|
if (!resultTL.isAddressOnly()) {
|
|
auto resultValue = SGF.B.createLoad(E, result.forward(SGF));
|
|
result = SGF.emitManagedRValueWithCleanup(resultValue, resultTL);
|
|
}
|
|
|
|
return RValue(SGF, E, result);
|
|
}
|
|
|
|
RValue RValueEmitter::emitUnconditionalCheckedCast(Expr *source,
|
|
SILLocation loc,
|
|
Type destType,
|
|
CheckedCastKind castKind,
|
|
SGFContext C) {
|
|
ManagedValue original = visit(source).getAsSingleValue(SGF, source);
|
|
|
|
// Disable the original cleanup because the cast-to type is more specific and
|
|
// should have a more efficient cleanup.
|
|
SILValue originalVal = original.forward(SGF);
|
|
SILValue cast = SGF.emitUnconditionalCheckedCast(loc, originalVal,
|
|
source->getType(),
|
|
destType,
|
|
castKind);
|
|
|
|
// If casting from an opaque existential, we'll forward the concrete value,
|
|
// but the existential container husk still needs cleanup.
|
|
if (originalVal.getType().isExistentialType()
|
|
&& !originalVal.getType().isClassExistentialType())
|
|
SGF.Cleanups.pushCleanup<CleanupUsedExistentialContainer>(originalVal);
|
|
|
|
return RValue(SGF, loc, destType->getCanonicalType(),
|
|
SGF.emitManagedRValueWithCleanup(cast));
|
|
}
|
|
|
|
RValue RValueEmitter::visitIsaExpr(IsaExpr *E, SGFContext C) {
|
|
// Cast the value using a conditional cast.
|
|
ManagedValue original = visit(E->getSubExpr()).getAsSingleValue(SGF,
|
|
E->getSubExpr());
|
|
auto &origTL = SGF.getTypeLowering(E->getSubExpr()->getType());
|
|
auto &castTL = SGF.getTypeLowering(E->getCastTypeLoc().getType());
|
|
SILValue origAbs = SGF.emitCheckedCastAbstractionChange(E,original.getValue(),
|
|
origTL,
|
|
&castTL);
|
|
|
|
SILBasicBlock *success, *failure;
|
|
std::tie(success, failure)
|
|
= SGF.emitCheckedCastBranch(E, original.getValue(), origAbs,
|
|
origTL, castTL,
|
|
E->getCastKind());
|
|
|
|
// Join the branches into an i1 value representing the success of the cast.
|
|
auto contBB = SGF.createBasicBlock();
|
|
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
|
|
auto isa = new (SGF.SGM.M) SILArgument(i1Ty, contBB);
|
|
|
|
SGF.B.emitBlock(success);
|
|
SILValue yes = SGF.B.createIntegerLiteral(E, i1Ty, 1);
|
|
SGF.B.createBranch(E, contBB, yes);
|
|
|
|
SGF.B.emitBlock(failure);
|
|
SILValue no = SGF.B.createIntegerLiteral(E, i1Ty, 0);
|
|
SGF.B.createBranch(E, contBB, no);
|
|
|
|
SGF.B.emitBlock(contBB);
|
|
|
|
// Call the _getBool library intrinsic.
|
|
ASTContext &ctx = SGF.SGM.M.getASTContext();
|
|
auto result =
|
|
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
|
|
ManagedValue(isa,
|
|
ManagedValue::Unmanaged),
|
|
C);
|
|
return (result ? RValue(SGF, E, result) : RValue());
|
|
}
|
|
|
|
RValue RValueEmitter::visitCoerceExpr(CoerceExpr *E, SGFContext C) {
|
|
return visit(E->getSubExpr(), C);
|
|
}
|
|
|
|
static ManagedValue emitVarargs(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
Type baseTy,
|
|
ArrayRef<ManagedValue> elements,
|
|
Expr *VarargsInjectionFn) {
|
|
SILValue numEltsVal = gen.B.createIntegerLiteral(loc,
|
|
SILType::getBuiltinIntegerType(64, gen.F.getASTContext()),
|
|
elements.size());
|
|
AllocArrayInst *allocArray = gen.B.createAllocArray(loc,
|
|
gen.getLoweredType(baseTy),
|
|
numEltsVal);
|
|
// The first result is the owning ObjectPointer for the array.
|
|
ManagedValue objectPtr
|
|
= gen.emitManagedRValueWithCleanup(SILValue(allocArray, 0));
|
|
// The second result is a RawPointer to the base address of the array.
|
|
SILValue basePtr(allocArray, 1);
|
|
|
|
for (size_t i = 0, size = elements.size(); i < size; ++i) {
|
|
SILValue eltPtr = basePtr;
|
|
if (i != 0) {
|
|
SILValue index = gen.B.createIntegerLiteral(loc,
|
|
SILType::getBuiltinIntegerType(64, gen.F.getASTContext()), i);
|
|
eltPtr = gen.B.createIndexAddr(loc, basePtr, index);
|
|
}
|
|
ManagedValue v = elements[i];
|
|
v.forwardInto(gen, loc, eltPtr);
|
|
}
|
|
|
|
return gen.emitArrayInjectionCall(objectPtr, basePtr,
|
|
numEltsVal, VarargsInjectionFn, loc);
|
|
}
|
|
|
|
RValue RValueEmitter::visitTupleExpr(TupleExpr *E, SGFContext C) {
|
|
auto type = cast<TupleType>(E->getType()->getCanonicalType());
|
|
|
|
// If we have an Initialization, emit the tuple elements into its elements.
|
|
if (Initialization *I = C.getEmitInto()) {
|
|
SmallVector<InitializationPtr, 4> subInitializationBuf;
|
|
auto subInitializations =
|
|
I->getSubInitializationsForTuple(SGF, type, subInitializationBuf,
|
|
RegularLocation(E));
|
|
assert(subInitializations.size() == E->getElements().size() &&
|
|
"initialization for tuple has wrong number of elements");
|
|
for (unsigned i = 0, size = subInitializations.size(); i < size; ++i) {
|
|
SGF.emitExprInto(E->getElements()[i], subInitializations[i].get());
|
|
}
|
|
return RValue();
|
|
}
|
|
|
|
RValue result(type);
|
|
for (Expr *elt : E->getElements()) {
|
|
result.addElement(visit(elt));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
RValue RValueEmitter::visitAddressOfExpr(AddressOfExpr *E,
|
|
SGFContext C) {
|
|
return SGF.emitLValueAsRValue(E);
|
|
}
|
|
|
|
/// Retrieve the outer substitutions
|
|
static ArrayRef<Substitution>
|
|
getOuterSubstitutions(Type type, Module *module,
|
|
SmallVectorImpl<Substitution> &allSubstitutions) {
|
|
if (!type)
|
|
return { };
|
|
|
|
// For a (non-generic) nominal type, just get the outer substitutions.
|
|
if (auto nominal = type->getAs<NominalType>())
|
|
return getOuterSubstitutions(nominal->getParent(), module,
|
|
allSubstitutions);
|
|
|
|
// If we don't have a bound generic type, there are no substitutions.
|
|
auto bound = type->getAs<BoundGenericType>();
|
|
if (!bound)
|
|
return { };
|
|
|
|
// Retrieve the parent's substitutions.
|
|
auto outer = getOuterSubstitutions(bound->getParent(),
|
|
module, allSubstitutions);
|
|
|
|
// If the parent had no substitutions, just use our substitutions.
|
|
auto subs = bound->getSubstitutions(module, nullptr);
|
|
if (outer.empty())
|
|
return subs;
|
|
|
|
// If the parent had substitutions, add our own substitutions to it.
|
|
if (allSubstitutions.empty())
|
|
allSubstitutions.append(outer.begin(), outer.end());
|
|
allSubstitutions.append(subs.begin(), subs.end());
|
|
return allSubstitutions;
|
|
}
|
|
|
|
std::tuple<ManagedValue, SILType, ArrayRef<Substitution>>
|
|
SILGenFunction::emitSiblingMethodRef(SILLocation loc,
|
|
SILValue selfValue,
|
|
SILDeclRef methodConstant,
|
|
ArrayRef<Substitution> innerSubs) {
|
|
SILValue methodValue = B.createFunctionRef(loc,
|
|
SGM.getFunction(methodConstant));
|
|
|
|
/// Collect substitutions from a generic 'self' type, so we can
|
|
/// specialize the method with its forwarding substitutions.
|
|
SmallVector<Substitution, 4> allSubsVec;
|
|
auto subs = getOuterSubstitutions(selfValue.getType().getSwiftType(),
|
|
F.getDeclContext()->getParentModule(),
|
|
allSubsVec);
|
|
|
|
// Add the inner substitutions, if we have any.
|
|
if (!innerSubs.empty()) {
|
|
if (subs.empty())
|
|
subs = innerSubs;
|
|
else {
|
|
if (allSubsVec.empty())
|
|
allSubsVec.append(subs.begin(), subs.end());
|
|
allSubsVec.append(innerSubs.begin(), innerSubs.end());
|
|
subs = F.getASTContext().AllocateCopy(allSubsVec);
|
|
}
|
|
}
|
|
|
|
SILType methodTy = methodValue.getType();
|
|
|
|
if (!subs.empty()) {
|
|
// Specialize the generic method.
|
|
methodTy = getLoweredLoadableType(
|
|
methodTy.castTo<SILFunctionType>()
|
|
->substGenericArgs(SGM.M, SGM.SwiftModule, subs));
|
|
}
|
|
|
|
return std::make_tuple(ManagedValue(methodValue, ManagedValue::Unmanaged),
|
|
methodTy, subs);
|
|
}
|
|
|
|
RValue RValueEmitter::visitMemberRefExpr(MemberRefExpr *E,
|
|
SGFContext C) {
|
|
if (E->getBase()->getType()->is<MetaTypeType>()) {
|
|
// Emit the metatype for the associated type.
|
|
assert(E->getType()->is<MetaTypeType>() &&
|
|
"generic_member_ref of metatype should give metatype");
|
|
visit(E->getBase());
|
|
return RValue(SGF, E,
|
|
ManagedValue(SGF.B.createMetatype(E,
|
|
SGF.getLoweredLoadableType(E->getType())),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
|
|
return SGF.emitLValueAsRValue(E);
|
|
}
|
|
|
|
RValue RValueEmitter::visitDynamicMemberRefExpr(DynamicMemberRefExpr *E,
|
|
SGFContext C) {
|
|
return SGF.emitDynamicMemberRefExpr(E, C);
|
|
}
|
|
|
|
RValue RValueEmitter::visitArchetypeMemberRefExpr(ArchetypeMemberRefExpr *E,
|
|
SGFContext C) {
|
|
SILValue archetype = visit(E->getBase()).getUnmanagedSingleValue(SGF,
|
|
E->getBase());
|
|
assert((archetype.getType().isAddress() ||
|
|
archetype.getType().is<MetaTypeType>()) &&
|
|
"archetype must be an address or metatype");
|
|
// FIXME: curried archetype
|
|
// FIXME: archetype properties
|
|
(void)archetype;
|
|
llvm_unreachable("unapplied archetype method not implemented");
|
|
}
|
|
|
|
RValue RValueEmitter::visitExistentialMemberRefExpr(
|
|
ExistentialMemberRefExpr *E,
|
|
SGFContext C) {
|
|
SILValue existential = visit(E->getBase()).getUnmanagedSingleValue(SGF,
|
|
E->getBase());
|
|
//SILValue projection = B.createProjectExistential(E, existential);
|
|
//SILValue method = emitProtocolMethod(E, existential);
|
|
// FIXME: curried existential
|
|
// FIXME: existential properties
|
|
(void)existential;
|
|
llvm_unreachable("unapplied protocol method not implemented");
|
|
}
|
|
|
|
RValue RValueEmitter::visitDotSyntaxBaseIgnoredExpr(
|
|
DotSyntaxBaseIgnoredExpr *E,
|
|
SGFContext C) {
|
|
visit(E->getLHS());
|
|
return visit(E->getRHS());
|
|
}
|
|
|
|
RValue RValueEmitter::visitModuleExpr(ModuleExpr *E, SGFContext C) {
|
|
// Produce an undef value. The module value should never actually be used.
|
|
SILValue module = SILUndef::get(SGF.getLoweredLoadableType(E->getType()),
|
|
SGF.SGM.M);
|
|
return RValue(SGF, E, ManagedValue(module, ManagedValue::Unmanaged));
|
|
}
|
|
|
|
RValue RValueEmitter::visitSubscriptExpr(SubscriptExpr *E,
|
|
SGFContext C) {
|
|
return SGF.emitLValueAsRValue(E);
|
|
}
|
|
|
|
RValue RValueEmitter::visitTupleElementExpr(TupleElementExpr *E,
|
|
SGFContext C) {
|
|
if (E->getType()->is<LValueType>()) {
|
|
return SGF.emitLValueAsRValue(E);
|
|
} else {
|
|
return visit(E->getBase()).extractElement(E->getFieldNumber());
|
|
}
|
|
}
|
|
|
|
RValue RValueEmitter::visitTupleShuffleExpr(TupleShuffleExpr *E,
|
|
SGFContext C) {
|
|
/* TODO:
|
|
// If we're emitting into an initialization, we can try shuffling the
|
|
// elements of the initialization.
|
|
if (Initialization *I = C.getEmitInto()) {
|
|
emitTupleShuffleExprInto(*this, E, I);
|
|
return RValue();
|
|
}
|
|
*/
|
|
|
|
// Emit the sub-expression tuple and destructure it into elements.
|
|
SmallVector<RValue, 4> elements;
|
|
visit(E->getSubExpr()).extractElements(elements);
|
|
|
|
// Prepare a new tuple to hold the shuffled result.
|
|
RValue result(E->getType()->getCanonicalType());
|
|
|
|
auto outerFields = E->getType()->castTo<TupleType>()->getFields();
|
|
auto shuffleIndexIterator = E->getElementMapping().begin();
|
|
auto shuffleIndexEnd = E->getElementMapping().end();
|
|
unsigned callerDefaultArgIndex = 0;
|
|
for (auto &field : outerFields) {
|
|
assert(shuffleIndexIterator != shuffleIndexEnd &&
|
|
"ran out of shuffle indexes before running out of fields?!");
|
|
int shuffleIndex = *shuffleIndexIterator++;
|
|
|
|
// If the shuffle index is DefaultInitialize, we're supposed to use the
|
|
// default value.
|
|
if (shuffleIndex == TupleShuffleExpr::DefaultInitialize) {
|
|
unsigned destIndex
|
|
= shuffleIndexIterator - E->getElementMapping().begin() - 1;
|
|
SILDeclRef generator
|
|
= SILDeclRef::getDefaultArgGenerator(E->getDefaultArgsOwner(),
|
|
destIndex);
|
|
auto fnRef = SGF.emitFunctionRef(E, generator);
|
|
auto resultType = field.getType()->getCanonicalType();
|
|
auto apply = SGF.emitMonomorphicApply(E, fnRef, {}, resultType,
|
|
generator.isTransparent());
|
|
result.addElement(SGF, apply, resultType, E);
|
|
continue;
|
|
}
|
|
|
|
// If the shuffle index is CallerDefaultInitialize, we're supposed to
|
|
// use the caller-provided default value. This is used only in special
|
|
// cases, e.g., __FILE__, __LINE__, and __COLUMN__.
|
|
if (shuffleIndex == TupleShuffleExpr::CallerDefaultInitialize) {
|
|
auto arg = E->getCallerDefaultArgs()[callerDefaultArgIndex++];
|
|
result.addElement(visit(arg));
|
|
continue;
|
|
}
|
|
|
|
// If the shuffle index is FirstVariadic, it is the beginning of the list of
|
|
// varargs inputs. Save this case for last.
|
|
if (shuffleIndex != TupleShuffleExpr::FirstVariadic) {
|
|
// Map from a different tuple element.
|
|
result.addElement(std::move(elements[shuffleIndex]));
|
|
continue;
|
|
}
|
|
|
|
assert(field.isVararg() && "Cannot initialize nonvariadic element");
|
|
|
|
// Okay, we have a varargs tuple element. All the remaining elements feed
|
|
// into the varargs portion of this, which is then constructed into a Slice
|
|
// through an informal protocol captured by the InjectionFn in the
|
|
// TupleShuffleExpr.
|
|
assert(E->getVarargsInjectionFunction() &&
|
|
"no injection function for varargs tuple?!");
|
|
SmallVector<ManagedValue, 4> variadicValues;
|
|
|
|
while (shuffleIndexIterator != shuffleIndexEnd) {
|
|
unsigned sourceField = *shuffleIndexIterator++;
|
|
variadicValues.push_back(
|
|
std::move(elements[sourceField]).getAsSingleValue(SGF, E));
|
|
}
|
|
|
|
ManagedValue varargs = emitVarargs(SGF, E, field.getVarargBaseTy(),
|
|
variadicValues,
|
|
E->getVarargsInjectionFunction());
|
|
result.addElement(RValue(SGF, E, field.getType()->getCanonicalType(),
|
|
varargs));
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void emitScalarToTupleExprInto(SILGenFunction &gen,
|
|
ScalarToTupleExpr *E,
|
|
Initialization *I) {
|
|
auto tupleType = cast<TupleType>(E->getType()->getCanonicalType());
|
|
auto outerFields = tupleType->getFields();
|
|
unsigned scalarField = E->getScalarField();
|
|
bool isScalarFieldVariadic = outerFields[scalarField].isVararg();
|
|
|
|
// Decompose the initialization.
|
|
SmallVector<InitializationPtr, 4> subInitializationBuf;
|
|
auto subInitializations = I->getSubInitializationsForTuple(gen, tupleType,
|
|
subInitializationBuf,
|
|
RegularLocation(E));
|
|
assert(subInitializations.size() == outerFields.size() &&
|
|
"initialization size does not match tuple size?!");
|
|
|
|
// If the scalar field isn't variadic, emit it into the destination field of
|
|
// the tuple.
|
|
Initialization *scalarInit = subInitializations[E->getScalarField()].get();
|
|
if (!isScalarFieldVariadic) {
|
|
gen.emitExprInto(E->getSubExpr(), scalarInit);
|
|
} else {
|
|
// Otherwise, create the vararg and store it to the vararg field.
|
|
ManagedValue scalar = gen.emitRValue(E->getSubExpr()).getAsSingleValue(gen,
|
|
E->getSubExpr());
|
|
ManagedValue varargs = emitVarargs(gen, E, E->getSubExpr()->getType(),
|
|
scalar, E->getVarargsInjectionFunction());
|
|
varargs.forwardInto(gen, E, scalarInit->getAddress());
|
|
scalarInit->finishInitialization(gen);
|
|
}
|
|
|
|
// Emit the non-scalar fields.
|
|
for (unsigned i = 0, e = outerFields.size(); i != e; ++i) {
|
|
if (i == E->getScalarField())
|
|
continue;
|
|
|
|
// Fill the vararg field with an empty array.
|
|
if (outerFields[i].isVararg()) {
|
|
assert(i == e - 1 && "vararg isn't last?!");
|
|
ManagedValue varargs = emitVarargs(gen, E, outerFields[i].getVarargBaseTy(),
|
|
{}, E->getVarargsInjectionFunction());
|
|
varargs.forwardInto(gen, E, subInitializations[i]->getAddress());
|
|
subInitializations[i]->finishInitialization(gen);
|
|
continue;
|
|
}
|
|
|
|
auto &element = E->getElements()[i];
|
|
// If this element comes from a default argument generator, emit a call to
|
|
// that generator in-place.
|
|
assert(outerFields[i].hasInit() &&
|
|
"no default initializer in non-scalar field of scalar-to-tuple?!");
|
|
if (auto defaultArgOwner = element.dyn_cast<ValueDecl *>()) {
|
|
SILDeclRef generator
|
|
= SILDeclRef::getDefaultArgGenerator(defaultArgOwner, i);
|
|
auto fnRef = gen.emitFunctionRef(E, generator);
|
|
auto resultType = tupleType.getElementType(i);
|
|
auto apply = gen.emitMonomorphicApply(E, fnRef, {}, resultType,
|
|
generator.isTransparent());
|
|
apply.forwardInto(gen, E,
|
|
subInitializations[i].get()->getAddressOrNull());
|
|
subInitializations[i]->finishInitialization(gen);
|
|
continue;
|
|
}
|
|
|
|
// We have an caller-side default argument. Emit it in-place.
|
|
Expr *defArg = element.get<Expr *>();
|
|
gen.emitExprInto(defArg, subInitializations[i].get());
|
|
}
|
|
}
|
|
|
|
RValue RValueEmitter::visitScalarToTupleExpr(ScalarToTupleExpr *E,
|
|
SGFContext C) {
|
|
// If we're emitting into an Initialization, we can decompose the
|
|
// initialization.
|
|
if (Initialization *I = C.getEmitInto()) {
|
|
emitScalarToTupleExprInto(SGF, E, I);
|
|
return RValue();
|
|
}
|
|
|
|
// Emit the scalar member.
|
|
RValue scalar = visit(E->getSubExpr());
|
|
|
|
// Prepare a tuple rvalue to house the result.
|
|
RValue result(E->getType()->getCanonicalType());
|
|
|
|
// Create a tuple from the scalar along with any default values or varargs.
|
|
auto outerFields = E->getType()->castTo<TupleType>()->getFields();
|
|
for (unsigned i = 0, e = outerFields.size(); i != e; ++i) {
|
|
// Handle the variadic argument. If we didn't emit the scalar field yet,
|
|
// it goes into the variadic array; otherwise, the variadic array is empty.
|
|
if (outerFields[i].isVararg()) {
|
|
assert(i == e - 1 && "vararg isn't last?!");
|
|
ManagedValue varargs;
|
|
if (!scalar.isUsed())
|
|
varargs = emitVarargs(SGF, E, outerFields[i].getVarargBaseTy(),
|
|
std::move(scalar).getAsSingleValue(SGF, E),
|
|
E->getVarargsInjectionFunction());
|
|
else
|
|
varargs = emitVarargs(SGF, E, outerFields[i].getVarargBaseTy(),
|
|
{}, E->getVarargsInjectionFunction());
|
|
result.addElement(RValue(SGF, E,
|
|
outerFields[i].getType()->getCanonicalType(),
|
|
varargs));
|
|
break;
|
|
}
|
|
|
|
auto &element = E->getElements()[i];
|
|
|
|
// A null element indicates that this is the position of the scalar. Add
|
|
// the scalar here.
|
|
if (element.isNull()) {
|
|
result.addElement(std::move(scalar));
|
|
continue;
|
|
}
|
|
|
|
// If this element comes from a default argument generator, emit a call to
|
|
// that generator.
|
|
assert(outerFields[i].hasInit() &&
|
|
"no default initializer in non-scalar field of scalar-to-tuple?!");
|
|
if (auto defaultArgOwner = element.dyn_cast<ValueDecl *>()) {
|
|
SILDeclRef generator
|
|
= SILDeclRef::getDefaultArgGenerator(defaultArgOwner, i);
|
|
auto fnRef = SGF.emitFunctionRef(E, generator);
|
|
auto resultType = outerFields[i].getType()->getCanonicalType();
|
|
auto apply = SGF.emitMonomorphicApply(E, fnRef, {}, resultType,
|
|
generator.isTransparent());
|
|
result.addElement(SGF, apply, resultType, E);
|
|
continue;
|
|
}
|
|
|
|
// We have an caller-side default argument. Emit it.
|
|
Expr *defArg = element.get<Expr *>();
|
|
result.addElement(visit(defArg));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
RValue RValueEmitter::visitNewArrayExpr(NewArrayExpr *E, SGFContext C) {
|
|
SILValue NumElements = visit(E->getBounds()[0].Value)
|
|
.getAsSingleValue(SGF, E->getBounds()[0].Value)
|
|
.getValue();
|
|
|
|
// Allocate the array.
|
|
AllocArrayInst *AllocArray = SGF.B.createAllocArray(E,
|
|
SGF.getLoweredType(E->getElementType()),
|
|
NumElements);
|
|
|
|
ManagedValue ObjectPtr
|
|
= SGF.emitManagedRValueWithCleanup(SILValue(AllocArray, 0));
|
|
SILValue BasePtr(AllocArray, 1);
|
|
|
|
// FIXME: We need to initialize the elements of the array that are now
|
|
// allocated.
|
|
|
|
// Finally, build and return a Slice instance using the object
|
|
// header/base/count.
|
|
return RValue(SGF, E,
|
|
SGF.emitArrayInjectionCall(ObjectPtr, BasePtr, NumElements,
|
|
E->getInjectionFunction(), E));
|
|
}
|
|
|
|
SILValue SILGenFunction::emitMetatypeOfValue(SILLocation loc, SILValue base) {
|
|
// For class, archetype, and protocol types, look up the dynamic metatype.
|
|
SILType metaTy = getLoweredLoadableType(
|
|
MetaTypeType::get(base.getType().getSwiftRValueType(), F.getASTContext()));
|
|
if (base.getType().getSwiftType()->getClassOrBoundGenericClass()) {
|
|
return B.createClassMetatype(loc, metaTy, base);
|
|
} else if (base.getType().getSwiftRValueType()->is<ArchetypeType>()) {
|
|
return B.createArchetypeMetatype(loc, metaTy, base);
|
|
} else if (base.getType().getSwiftRValueType()->isExistentialType()) {
|
|
return B.createProtocolMetatype(loc, metaTy, base);
|
|
}
|
|
// Otherwise, ignore the base and return the static metatype.
|
|
return B.createMetatype(loc, metaTy);
|
|
}
|
|
|
|
RValue RValueEmitter::visitMetatypeExpr(MetatypeExpr *E, SGFContext C) {
|
|
// Evaluate the base if present.
|
|
SILValue metatype;
|
|
|
|
if (E->getBase()) {
|
|
SILValue base = visit(E->getBase()).getAsSingleValue(SGF,
|
|
E->getBase()).getValue();
|
|
metatype = SGF.emitMetatypeOfValue(E, base);
|
|
} else {
|
|
metatype = SGF.B.createMetatype(E, SGF.getLoweredLoadableType(E->getType()));
|
|
}
|
|
|
|
return RValue(SGF, E, ManagedValue(metatype, ManagedValue::Unmanaged));
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitClosureValue(SILLocation loc, SILDeclRef constant,
|
|
ArrayRef<Substitution> forwardSubs,
|
|
AnyFunctionRef TheClosure) {
|
|
// FIXME: Stash the capture args somewhere and curry them on demand rather
|
|
// than here.
|
|
assert(((constant.uncurryLevel == 1 &&
|
|
TheClosure.getCaptureInfo().hasLocalCaptures()) ||
|
|
(constant.uncurryLevel == 0 &&
|
|
!TheClosure.getCaptureInfo().hasLocalCaptures())) &&
|
|
"curried local functions not yet supported");
|
|
|
|
auto constantInfo = getConstantInfo(constant);
|
|
SILValue functionRef = emitGlobalFunctionRef(loc, constant, constantInfo);
|
|
SILType functionTy = functionRef.getType();
|
|
|
|
auto expectedType =
|
|
cast<FunctionType>(TheClosure.getType()->getCanonicalType());
|
|
|
|
// Forward substitutions from the outer scope.
|
|
|
|
// FIXME: AutoClosureExprs appear to always have null parent decl contexts,
|
|
// so getFunctionTypeWithCaptures is unable to find contextual generic
|
|
// parameters for them. The getAs null check here should be unnecessary.
|
|
auto pft = constantInfo.SILFnType;
|
|
|
|
if (pft->isPolymorphic() && !forwardSubs.empty()) {
|
|
auto info = FunctionType::ExtInfo()
|
|
.withCallingConv(pft->getAbstractCC())
|
|
.withIsThin(true);
|
|
|
|
auto specialized = SILFunctionType::get(nullptr,
|
|
info,
|
|
pft->getCalleeConvention(),
|
|
pft->getParameters(),
|
|
pft->getResult(),
|
|
F.getASTContext());
|
|
functionTy = getLoweredLoadableType(specialized);
|
|
}
|
|
|
|
if (!TheClosure.getCaptureInfo().hasLocalCaptures()) {
|
|
auto result = ManagedValue::forUnmanaged(functionRef);
|
|
return emitGeneralizedFunctionValue(loc, result,
|
|
AbstractionPattern(expectedType), expectedType);
|
|
}
|
|
|
|
SmallVector<ValueDecl*, 4> captures;
|
|
TheClosure.getCaptureInfo().getLocalCaptures(captures);
|
|
SmallVector<SILValue, 4> capturedArgs;
|
|
for (ValueDecl *capture : captures) {
|
|
switch (getDeclCaptureKind(capture)) {
|
|
case CaptureKind::None:
|
|
break;
|
|
|
|
case CaptureKind::Box: {
|
|
// LValues are captured as both the box owning the value and the
|
|
// address of the value.
|
|
assert(VarLocs.count(capture) && "no location for captured var!");
|
|
const VarLoc &vl = VarLocs[capture];
|
|
assert(vl.box && "no box for captured var!");
|
|
assert(vl.isAddress() && vl.getAddress() &&
|
|
"no address for captured var!");
|
|
B.createStrongRetain(loc, vl.box);
|
|
capturedArgs.push_back(vl.box);
|
|
capturedArgs.push_back(vl.getAddress());
|
|
break;
|
|
}
|
|
case CaptureKind::Constant: {
|
|
// LValues captured by value.
|
|
auto &Entry = VarLocs[cast<VarDecl>(capture)];
|
|
ManagedValue v;
|
|
if (Entry.isConstant()) {
|
|
SILValue Val = B.createCopyValue(loc, Entry.getConstant());
|
|
v = ManagedValue(Val, ManagedValue::Unmanaged);
|
|
} else {
|
|
SILValue addr = Entry.getAddress();
|
|
B.createStrongRetain(loc, Entry.box);
|
|
auto &TL = getTypeLowering(capture->getType());
|
|
v = emitLoad(loc, addr, TL, SGFContext(), IsNotTake);
|
|
}
|
|
|
|
capturedArgs.push_back(v.forward(*this));
|
|
break;
|
|
}
|
|
case CaptureKind::LocalFunction: {
|
|
// SILValue is a constant such as a local func. Pass on the reference.
|
|
ManagedValue v = emitReferenceToDecl(loc, capture);
|
|
capturedArgs.push_back(v.forward(*this));
|
|
break;
|
|
}
|
|
case CaptureKind::GetterSetter: {
|
|
// Pass the setter and getter closure references on.
|
|
ManagedValue v = emitFunctionRef(loc, SILDeclRef(capture,
|
|
SILDeclRef::Kind::Setter));
|
|
capturedArgs.push_back(v.forward(*this));
|
|
SWIFT_FALLTHROUGH;
|
|
}
|
|
case CaptureKind::Getter: {
|
|
// Pass the getter closure reference on.
|
|
ManagedValue v = emitFunctionRef(loc, SILDeclRef(capture,
|
|
SILDeclRef::Kind::Getter));
|
|
capturedArgs.push_back(v.forward(*this));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SILType closureTy =
|
|
SILBuilder::getPartialApplyResultType(functionRef.getType(),
|
|
capturedArgs.size(), SGM.M);
|
|
auto toClosure =
|
|
B.createPartialApply(loc, functionRef, functionTy,
|
|
forwardSubs, capturedArgs, closureTy);
|
|
auto result = emitManagedRValueWithCleanup(toClosure);
|
|
|
|
return emitGeneralizedFunctionValue(loc, result,
|
|
AbstractionPattern(expectedType),
|
|
expectedType);
|
|
}
|
|
|
|
RValue RValueEmitter::visitClosureExpr(ClosureExpr *e, SGFContext C) {
|
|
// Generate the closure function.
|
|
SGF.SGM.emitClosure(e);
|
|
|
|
// Generate the closure value (if any) for the closure expr's function
|
|
// reference.
|
|
return RValue(SGF, e, SGF.emitClosureValue(e, SILDeclRef(e),
|
|
SGF.getForwardingSubstitutions(), e));
|
|
}
|
|
|
|
RValue RValueEmitter::visitAutoClosureExpr(AutoClosureExpr *e,
|
|
SGFContext C) {
|
|
// Generate the closure body.
|
|
SGF.SGM.emitClosure(e);
|
|
|
|
// Generate the closure value (if any) for the closure expr's function
|
|
// reference.
|
|
return RValue(SGF, e, SGF.emitClosureValue(e, SILDeclRef(e),
|
|
SGF.getForwardingSubstitutions(), e));
|
|
}
|
|
|
|
void SILGenFunction::emitFunction(FuncDecl *fd) {
|
|
Type resultTy = fd->getResultType();
|
|
emitProlog(fd, fd->getBodyParamPatterns(), resultTy);
|
|
prepareEpilog(resultTy, CleanupLocation(fd));
|
|
visit(fd->getBody());
|
|
emitEpilog(fd);
|
|
}
|
|
|
|
void SILGenFunction::emitClosure(ClosureExpr *ce) {
|
|
emitProlog(ce, ce->getParams(), ce->getResultType());
|
|
prepareEpilog(ce->getResultType(), CleanupLocation(ce));
|
|
visit(ce->getBody());
|
|
emitEpilog(ce);
|
|
}
|
|
|
|
void SILGenFunction::emitClosure(AutoClosureExpr *ce) {
|
|
Type resultTy = ce->getType()->castTo<FunctionType>()->getResult();
|
|
emitProlog(ce, ce->getParamPatterns(), resultTy);
|
|
prepareEpilog(resultTy, CleanupLocation(ce));
|
|
|
|
// Closure expressions implicitly return the result of their body expression.
|
|
emitReturnExpr(ImplicitReturnLocation(ce), ce->getSingleExpressionBody());
|
|
emitEpilog(ce);
|
|
}
|
|
|
|
std::pair<Optional<SILValue>, Optional<SILLocation>>
|
|
SILGenFunction::emitEpilogBB(SILLocation TopLevel) {
|
|
|
|
assert(ReturnDest.getBlock() && "no epilog bb prepared?!");
|
|
SILBasicBlock *epilogBB = ReturnDest.getBlock();
|
|
SILLocation ImplicitReturnFromTopLevel =
|
|
ImplicitReturnLocation::getImplicitReturnLoc(TopLevel);
|
|
SILValue returnValue;
|
|
Optional<SILLocation> returnLoc = Nothing;
|
|
|
|
// If the current BB isn't terminated, and we require a return, then we
|
|
// are not allowed to fall off the end of the function and can't reach here.
|
|
if (NeedsReturn && B.hasValidInsertionPoint()) {
|
|
B.createUnreachable(ImplicitReturnFromTopLevel);
|
|
}
|
|
|
|
if (epilogBB->pred_empty()) {
|
|
bool hadArg = !epilogBB->bbarg_empty();
|
|
|
|
// If the epilog was not branched to at all, kill the BB and
|
|
// just emit the epilog into the current BB.
|
|
epilogBB->eraseFromParent();
|
|
|
|
// If the current bb is terminated then the epilog is just unreachable.
|
|
if (!B.hasValidInsertionPoint())
|
|
return std::pair<Optional<SILValue>, Optional<SILLocation>>(Nothing,
|
|
Nothing);
|
|
// We emit the epilog at the current insertion point.
|
|
assert(!hadArg && "NeedsReturn is false but epilog had argument?!");
|
|
(void)hadArg;
|
|
returnLoc = ImplicitReturnFromTopLevel;
|
|
|
|
} else if (std::next(epilogBB->pred_begin()) == epilogBB->pred_end()
|
|
&& !B.hasValidInsertionPoint()) {
|
|
// If the epilog has a single predecessor and there's no current insertion
|
|
// point to fall through from, then we can weld the epilog to that
|
|
// predecessor BB.
|
|
|
|
bool needsArg = false;
|
|
if (!epilogBB->bbarg_empty()) {
|
|
assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
|
|
needsArg = true;
|
|
}
|
|
|
|
epilogBB->eraseFromParent();
|
|
|
|
// Steal the branch argument as the return value if present.
|
|
SILBasicBlock *pred = *epilogBB->pred_begin();
|
|
BranchInst *predBranch = cast<BranchInst>(pred->getTerminator());
|
|
assert(predBranch->getArgs().size() == (needsArg ? 1 : 0)
|
|
&& "epilog predecessor arguments does not match block params");
|
|
if (needsArg)
|
|
returnValue = predBranch->getArgs()[0];
|
|
|
|
// If we are optimizing, we should use the return location from the single,
|
|
// previously processed, return statement if any.
|
|
if (predBranch->getLoc().is<ReturnLocation>()) {
|
|
returnLoc = predBranch->getLoc();
|
|
} else {
|
|
returnLoc = ImplicitReturnFromTopLevel;
|
|
}
|
|
|
|
// Kill the branch to the now-dead epilog BB.
|
|
pred->getInstList().erase(predBranch);
|
|
|
|
// Emit the epilog into its former predecessor.
|
|
B.setInsertionPoint(pred);
|
|
} else {
|
|
// Emit the epilog into the epilog bb. Its argument is the return value.
|
|
if (!epilogBB->bbarg_empty()) {
|
|
assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
|
|
returnValue = epilogBB->bbarg_begin()[0];
|
|
}
|
|
|
|
// If we are falling through from the current block, the return is implicit.
|
|
B.emitBlock(epilogBB, ImplicitReturnFromTopLevel);
|
|
}
|
|
|
|
// Emit top-level cleanups into the epilog block.
|
|
assert(getCleanupsDepth() == ReturnDest.getDepth() &&
|
|
"emitting epilog in wrong scope");
|
|
// FIXME: Use proper cleanups location.
|
|
Cleanups.emitCleanupsForReturn(CleanupLocation::getCleanupLocation(TopLevel));
|
|
|
|
return std::pair<Optional<SILValue>, Optional<SILLocation>>(returnValue,
|
|
returnLoc);
|
|
}
|
|
|
|
void SILGenFunction::emitEpilog(SILLocation TopLevel, bool AutoGen) {
|
|
Optional<SILValue> maybeReturnValue;
|
|
Optional<SILLocation> optReturnLoc;
|
|
|
|
// Construct the appropriate SIL Location for the return instruction.
|
|
if (AutoGen)
|
|
TopLevel.markAutoGenerated();
|
|
|
|
llvm::tie(maybeReturnValue, optReturnLoc) = emitEpilogBB(TopLevel);
|
|
|
|
// If the epilog is unreachable, we're done.
|
|
if (!maybeReturnValue)
|
|
return;
|
|
|
|
// Otherwise, return the return value, if any.
|
|
SILValue returnValue = *maybeReturnValue;
|
|
|
|
// If the return location is known to be that of an already processed return,
|
|
// use it. (This will get triggered when epilog logic is simplified.)
|
|
SILLocation returnLoc = optReturnLoc ? *optReturnLoc
|
|
// Otherwise make the ret instruction part of the cleanups.
|
|
: CleanupLocation::getCleanupLocation(TopLevel);
|
|
|
|
// Return () if no return value was given.
|
|
if (!returnValue)
|
|
returnValue = emitEmptyTuple(CleanupLocation::getCleanupLocation(TopLevel));
|
|
|
|
B.createReturn(returnLoc, returnValue)->setDebugScope(F.getDebugScope());
|
|
}
|
|
|
|
void SILGenFunction::emitDestructor(ClassDecl *cd, DestructorDecl *dd) {
|
|
// Always emit physical property accesses in destructors.
|
|
AlwaysDirectStoredPropertyAccess = true;
|
|
|
|
RegularLocation Loc(dd);
|
|
if (dd->isImplicit())
|
|
Loc.markAutoGenerated();
|
|
|
|
SILValue selfValue = emitDestructorProlog(cd, dd);
|
|
|
|
// Create a basic block to jump to for the implicit destruction behavior
|
|
// of releasing the elements and calling the superclass destructor.
|
|
// We won't actually emit the block until we finish with the destructor body.
|
|
prepareEpilog(Type(), CleanupLocation::getCleanupLocation(Loc));
|
|
|
|
// Emit the destructor body.
|
|
visit(dd->getBody());
|
|
|
|
if (!emitEpilogBB(Loc).first)
|
|
return;
|
|
|
|
// Release our members.
|
|
// FIXME: generic params
|
|
// FIXME: Can a destructor always consider its fields fragile like this?
|
|
for (Decl *member : cd->getMembers()) {
|
|
if (VarDecl *vd = dyn_cast<VarDecl>(member)) {
|
|
if (vd->isComputed())
|
|
continue;
|
|
const TypeLowering &ti = getTypeLowering(vd->getType());
|
|
if (!ti.isTrivial()) {
|
|
SILValue addr = B.createRefElementAddr(Loc, selfValue, vd,
|
|
ti.getLoweredType().getAddressType());
|
|
B.emitDestroyAddr(Loc, addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have a superclass, invoke its destructor.
|
|
SILType objectPtrTy = SILType::getObjectPointerType(F.getASTContext());
|
|
if (Type superclassTy = cd->getSuperclass()) {
|
|
ClassDecl *superclass = superclassTy->getClassOrBoundGenericClass();
|
|
|
|
// FIXME: We can't sensibly call up to ObjC dealloc methods right now
|
|
// because they aren't really destroying destructors.
|
|
if (superclass->hasClangNode() && superclass->isObjC()) {
|
|
selfValue = B.createRefToObjectPointer(Loc, selfValue, objectPtrTy);
|
|
B.createReturn(Loc, selfValue);
|
|
return;
|
|
}
|
|
|
|
SILDeclRef dtorConstant =
|
|
SILDeclRef(superclass, SILDeclRef::Kind::Destroyer);
|
|
SILType baseSILTy = getLoweredLoadableType(superclassTy);
|
|
SILValue baseSelf = B.createUpcast(Loc, selfValue, baseSILTy);
|
|
ManagedValue dtorValue;
|
|
SILType dtorTy;
|
|
ArrayRef<Substitution> subs;
|
|
std::tie(dtorValue, dtorTy, subs)
|
|
= emitSiblingMethodRef(Loc, baseSelf, dtorConstant,
|
|
/*innerSubstitutions*/ {});
|
|
selfValue = B.createApply(Loc, dtorValue.forward(*this), dtorTy,
|
|
objectPtrTy,
|
|
subs, baseSelf);
|
|
} else {
|
|
selfValue = B.createRefToObjectPointer(Loc, selfValue, objectPtrTy);
|
|
}
|
|
B.createReturn(Loc, selfValue);
|
|
}
|
|
|
|
static void emitConstructorMetatypeArg(SILGenFunction &gen,
|
|
ValueDecl *ctor) {
|
|
// In addition to the declared arguments, the constructor implicitly takes
|
|
// the metatype as its first argument, like a static function.
|
|
Type metatype = ctor->getType()->castTo<AnyFunctionType>()->getInput();
|
|
new (gen.F.getModule()) SILArgument(gen.getLoweredType(metatype),
|
|
gen.F.begin());
|
|
}
|
|
|
|
static RValue emitImplicitValueConstructorArg(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
CanType ty) {
|
|
// Restructure tuple arguments.
|
|
if (CanTupleType tupleTy = dyn_cast<TupleType>(ty)) {
|
|
RValue tuple(ty);
|
|
for (auto fieldType : tupleTy.getElementTypes())
|
|
tuple.addElement(emitImplicitValueConstructorArg(gen, loc, fieldType));
|
|
|
|
return tuple;
|
|
} else {
|
|
SILValue arg = new (gen.F.getModule()) SILArgument(gen.getLoweredType(ty),
|
|
gen.F.begin());
|
|
return RValue(gen, loc, ty, ManagedValue::forUnmanaged(arg));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class ImplicitValueInitialization : public SingleBufferInitialization {
|
|
SILValue slot;
|
|
public:
|
|
ImplicitValueInitialization(SILValue slot) : slot(slot) {}
|
|
|
|
SILValue getAddressOrNull() override {
|
|
return slot;
|
|
};
|
|
};
|
|
}
|
|
|
|
static void emitImplicitValueConstructor(SILGenFunction &gen,
|
|
ConstructorDecl *ctor) {
|
|
RegularLocation Loc(ctor);
|
|
Loc.markAutoGenerated();
|
|
auto *TP = cast<TuplePattern>(ctor->getBodyParams());
|
|
SILType selfTy = gen.getLoweredType(ctor->getImplicitSelfDecl()->getType());
|
|
|
|
// Emit the indirect return argument, if any.
|
|
SILValue resultSlot;
|
|
if (selfTy.isAddressOnly(gen.SGM.M))
|
|
resultSlot = new (gen.F.getModule()) SILArgument(selfTy, gen.F.begin());
|
|
|
|
// Emit the elementwise arguments.
|
|
SmallVector<RValue, 4> elements;
|
|
for (size_t i = 0, size = TP->getFields().size(); i < size; ++i) {
|
|
auto *P = cast<TypedPattern>(TP->getFields()[i].getPattern());
|
|
|
|
elements.push_back(emitImplicitValueConstructorArg(gen, Loc,
|
|
P->getType()->getCanonicalType()));
|
|
}
|
|
|
|
emitConstructorMetatypeArg(gen, ctor);
|
|
|
|
auto *decl = selfTy.getStructOrBoundGenericStruct();
|
|
assert(decl && "not a struct?!");
|
|
|
|
// If we have an indirect return slot, initialize it in-place.
|
|
if (resultSlot) {
|
|
|
|
auto elti = elements.begin(), eltEnd = elements.end();
|
|
for (VarDecl *field : decl->getStoredProperties()) {
|
|
assert(elti != eltEnd && "number of args does not match number of fields");
|
|
(void)eltEnd;
|
|
auto fieldTy = selfTy.getSwiftRValueType()
|
|
->getTypeOfMember(decl->getModuleContext(), field, nullptr);
|
|
auto &fieldTL = gen.getTypeLowering(fieldTy);
|
|
SILValue slot = gen.B.createStructElementAddr(Loc, resultSlot, field,
|
|
fieldTL.getLoweredType().getAddressType());
|
|
InitializationPtr init(new ImplicitValueInitialization(slot));
|
|
std::move(*elti).forwardInto(gen, init.get(), Loc);
|
|
++elti;
|
|
}
|
|
gen.B.createReturn(Loc, gen.emitEmptyTuple(Loc));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, build a struct value directly from the elements.
|
|
SmallVector<SILValue, 4> eltValues;
|
|
|
|
auto elti = elements.begin(), eltEnd = elements.end();
|
|
for (VarDecl *field : decl->getStoredProperties()) {
|
|
assert(elti != eltEnd && "number of args does not match number of fields");
|
|
(void)eltEnd;
|
|
auto fieldTy = selfTy.getSwiftRValueType()
|
|
->getTypeOfMember(decl->getModuleContext(), field, nullptr);
|
|
auto fieldSILTy = gen.getLoweredLoadableType(fieldTy);
|
|
|
|
SILValue v
|
|
= std::move(*elti).forwardAsSingleStorageValue(gen, fieldSILTy, Loc);
|
|
|
|
eltValues.push_back(v);
|
|
|
|
++elti;
|
|
}
|
|
|
|
SILValue selfValue = gen.B.createStruct(Loc, selfTy, eltValues);
|
|
gen.B.createReturn(Loc, selfValue);
|
|
return;
|
|
}
|
|
|
|
void SILGenFunction::emitValueConstructor(ConstructorDecl *ctor) {
|
|
// Always emit physical property accesses in destructors.
|
|
AlwaysDirectStoredPropertyAccess = true;
|
|
|
|
// If there's no body, this is the implicit elementwise constructor.
|
|
if (!ctor->getBody())
|
|
return emitImplicitValueConstructor(*this, ctor);
|
|
|
|
// Get the 'self' decl and type.
|
|
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
|
|
auto &lowering = getTypeLowering(selfDecl->getType());
|
|
SILType selfTy = lowering.getLoweredType();
|
|
(void)selfTy;
|
|
assert(!selfTy.hasReferenceSemantics() && "can't emit a ref type ctor here");
|
|
|
|
// Emit a local variable for 'self'.
|
|
// FIXME: The (potentially partially initialized) variable would need to be
|
|
// cleaned up on an error unwind.
|
|
emitLocalVariable(selfDecl);
|
|
|
|
// Mark self as being uninitialized so that DI knows where it is and how to
|
|
// check for it.
|
|
SILValue selfLV;
|
|
{
|
|
auto &SelfVarLoc = VarLocs[selfDecl];
|
|
selfLV = B.createMarkUninitializedRootSelf(selfDecl,
|
|
SelfVarLoc.getAddress());
|
|
SelfVarLoc = VarLoc::getAddress(selfLV, SelfVarLoc.box);
|
|
}
|
|
|
|
// Emit the prolog.
|
|
emitProlog(ctor->getBodyParams(), ctor->getImplicitSelfDecl()->getType());
|
|
emitConstructorMetatypeArg(*this, ctor);
|
|
|
|
// Create a basic block to jump to for the implicit 'self' return.
|
|
// We won't emit this until after we've emitted the body.
|
|
// The epilog takes a void return because the return of 'self' is implicit.
|
|
prepareEpilog(Type(), CleanupLocation(ctor));
|
|
|
|
// Emit the constructor body.
|
|
visit(ctor->getBody());
|
|
|
|
// Prepare the end of initializer location.
|
|
SILLocation endOfInitLoc = RegularLocation(ctor);
|
|
endOfInitLoc.pointToEnd();
|
|
|
|
|
|
// Return 'self' in the epilog.
|
|
if (!emitEpilogBB(endOfInitLoc).first)
|
|
return;
|
|
|
|
// If 'self' is address-only, copy 'self' into the indirect return slot.
|
|
if (lowering.isAddressOnly()) {
|
|
assert(IndirectReturnAddress &&
|
|
"no indirect return for address-only ctor?!");
|
|
SILValue selfBox = VarLocs[selfDecl].box;
|
|
assert(selfBox &&
|
|
"address-only non-heap this should have been allocated in-place");
|
|
// We have to do a non-take copy because someone else may be using the box.
|
|
B.createCopyAddr(endOfInitLoc, selfLV, IndirectReturnAddress,
|
|
IsNotTake, IsInitialization);
|
|
B.emitStrongRelease(endOfInitLoc, selfBox);
|
|
B.createReturn(endOfInitLoc, emitEmptyTuple(ctor));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, load and return the final 'self' value.
|
|
SILValue selfValue = B.createLoad(endOfInitLoc, selfLV);
|
|
SILValue selfBox = VarLocs[selfDecl].box;
|
|
assert(selfBox);
|
|
|
|
// We have to do a retain because someone else may be using the box.
|
|
selfValue = lowering.emitCopyValue(B, endOfInitLoc, selfValue);
|
|
|
|
// Release the box.
|
|
B.emitStrongRelease(endOfInitLoc, selfBox);
|
|
|
|
B.createReturn(endOfInitLoc, selfValue);
|
|
}
|
|
|
|
static void emitAddressOnlyEnumConstructor(SILGenFunction &gen,
|
|
SILType enumTy,
|
|
EnumElementDecl *element) {
|
|
RegularLocation Loc(element);
|
|
Loc.markAutoGenerated();
|
|
|
|
// Emit the indirect return slot.
|
|
SILValue resultSlot
|
|
= new (gen.F.getModule()) SILArgument(enumTy, gen.F.begin());
|
|
|
|
// Emit the exploded constructor argument.
|
|
ManagedValue argValue;
|
|
if (element->hasArgumentType()) {
|
|
RValue arg = emitImplicitValueConstructorArg(gen, Loc,
|
|
element->getArgumentType()->getCanonicalType());
|
|
argValue = std::move(arg).getAsSingleValue(gen, Loc);
|
|
}
|
|
emitConstructorMetatypeArg(gen, element);
|
|
|
|
// Store the data, if any.
|
|
if (element->hasArgumentType()) {
|
|
SILValue resultData = gen.B.createEnumDataAddr(element, resultSlot,
|
|
element, gen.getLoweredType(element->getArgumentType()).getAddressType());
|
|
argValue.forwardInto(gen, element, resultData);
|
|
}
|
|
|
|
// Apply the tag.
|
|
gen.B.createInjectEnumAddr(Loc, resultSlot, element);
|
|
gen.Cleanups.emitCleanupsForReturn(CleanupLocation::getCleanupLocation(Loc));
|
|
gen.B.createReturn(Loc, gen.emitEmptyTuple(element));
|
|
}
|
|
|
|
static void emitLoadableEnumConstructor(SILGenFunction &gen,
|
|
SILType enumTy,
|
|
EnumElementDecl *element) {
|
|
RegularLocation Loc(element);
|
|
Loc.markAutoGenerated();
|
|
|
|
// Emit the exploded constructor argument.
|
|
SILValue argValue;
|
|
if (element->hasArgumentType()) {
|
|
RValue arg = emitImplicitValueConstructorArg(gen, Loc,
|
|
element->getArgumentType()->getCanonicalType());
|
|
argValue = std::move(arg).forwardAsSingleValue(gen, Loc);
|
|
}
|
|
|
|
emitConstructorMetatypeArg(gen, element);
|
|
|
|
// Create and return the enum value.
|
|
SILValue result = gen.B.createEnum(Loc, argValue, element, enumTy);
|
|
gen.Cleanups.emitCleanupsForReturn(CleanupLocation::getCleanupLocation(Loc));
|
|
gen.B.createReturn(Loc, result);
|
|
}
|
|
|
|
void SILGenFunction::emitEnumConstructor(EnumElementDecl *element) {
|
|
// Always emit physical property accesses in destructors.
|
|
AlwaysDirectStoredPropertyAccess = true;
|
|
|
|
Type enumTy = element->getType()->getAs<AnyFunctionType>()->getResult();
|
|
if (element->hasArgumentType())
|
|
enumTy = enumTy->getAs<AnyFunctionType>()->getResult();
|
|
auto &enumTI = getTypeLowering(enumTy);
|
|
|
|
if (enumTI.isAddressOnly()) {
|
|
return emitAddressOnlyEnumConstructor(*this, enumTI.getLoweredType(),
|
|
element);
|
|
}
|
|
return emitLoadableEnumConstructor(*this, enumTI.getLoweredType(),
|
|
element);
|
|
}
|
|
|
|
namespace {
|
|
// Unlike the ArgumentInitVisitor, this visitor generates arguments but leaves
|
|
// them destructured instead of storing them to lvalues so that the
|
|
// argument set can be easily forwarded to another function.
|
|
class ArgumentForwardVisitor
|
|
: public PatternVisitor<ArgumentForwardVisitor>
|
|
{
|
|
SILGenFunction &gen;
|
|
SmallVectorImpl<SILValue> &args;
|
|
public:
|
|
ArgumentForwardVisitor(SILGenFunction &gen,
|
|
SmallVectorImpl<SILValue> &args)
|
|
: gen(gen), args(args) {}
|
|
|
|
void makeArgument(Type ty) {
|
|
assert(ty && "no type?!");
|
|
// Destructure tuple arguments.
|
|
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
|
|
for (auto fieldType : tupleTy->getElementTypes())
|
|
makeArgument(fieldType);
|
|
} else {
|
|
SILValue arg = new (gen.F.getModule()) SILArgument(gen.getLoweredType(ty),
|
|
gen.F.begin());
|
|
args.push_back(arg);
|
|
}
|
|
}
|
|
|
|
void visitParenPattern(ParenPattern *P) {
|
|
visit(P->getSubPattern());
|
|
}
|
|
|
|
void visitTypedPattern(TypedPattern *P) {
|
|
// FIXME: work around a bug in visiting the "self" argument of methods
|
|
if (isa<NamedPattern>(P->getSubPattern()))
|
|
makeArgument(P->getType());
|
|
else
|
|
visit(P->getSubPattern());
|
|
}
|
|
|
|
void visitTuplePattern(TuplePattern *P) {
|
|
for (auto &elt : P->getFields())
|
|
visit(elt.getPattern());
|
|
}
|
|
|
|
void visitAnyPattern(AnyPattern *P) {
|
|
makeArgument(P->getType());
|
|
}
|
|
|
|
void visitNamedPattern(NamedPattern *P) {
|
|
makeArgument(P->getType());
|
|
}
|
|
|
|
#define PATTERN(Id, Parent)
|
|
#define REFUTABLE_PATTERN(Id, Parent) \
|
|
void visit##Id##Pattern(Id##Pattern *) { \
|
|
llvm_unreachable("pattern not valid in argument binding"); \
|
|
}
|
|
#include "swift/AST/PatternNodes.def"
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ArrayRef<Substitution>
|
|
SILGenFunction::buildForwardingSubstitutions(ArrayRef<ArchetypeType *> params) {
|
|
if (params.empty())
|
|
return {};
|
|
|
|
ASTContext &C = F.getASTContext();
|
|
|
|
size_t paramCount = params.size();
|
|
Substitution *resultBuf = C.Allocate<Substitution>(paramCount);
|
|
MutableArrayRef<Substitution> results{resultBuf, paramCount};
|
|
|
|
for (size_t i = 0; i < paramCount; ++i) {
|
|
// FIXME: better way to do this?
|
|
ArchetypeType *archetype = params[i];
|
|
// "Check conformance" on each declared protocol to build a
|
|
// conformance map.
|
|
SmallVector<ProtocolConformance*, 2> conformances;
|
|
|
|
for (ProtocolDecl *conformsTo : archetype->getConformsTo()) {
|
|
(void)conformsTo;
|
|
conformances.push_back(nullptr);
|
|
}
|
|
|
|
// Build an identity mapping with the derived conformances.
|
|
auto replacement = SubstitutedType::get(archetype, archetype, C);
|
|
results[i] = {archetype, replacement,
|
|
C.AllocateCopy(conformances)};
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
void SILGenFunction::emitClassConstructorAllocator(ConstructorDecl *ctor) {
|
|
// Always emit physical property accesses in destructors.
|
|
AlwaysDirectStoredPropertyAccess = true;
|
|
|
|
// Emit the prolog. Since we're just going to forward our args directly
|
|
// to the initializer, don't allocate local variables for them.
|
|
RegularLocation Loc(ctor);
|
|
Loc.markAutoGenerated();
|
|
|
|
SmallVector<SILValue, 8> args;
|
|
|
|
// Forward the constructor arguments.
|
|
ArgumentForwardVisitor(*this, args).visit(ctor->getBodyParams());
|
|
|
|
emitConstructorMetatypeArg(*this, ctor);
|
|
|
|
// Allocate the "self" value.
|
|
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
|
|
SILType selfTy = getLoweredType(selfDecl->getType());
|
|
assert(selfTy.hasReferenceSemantics() &&
|
|
"can't emit a value type ctor here");
|
|
|
|
// Use alloc_ref to allocate the constructor.
|
|
// TODO: allow custom allocation?
|
|
// FIXME: should have a cleanup in case of exception
|
|
SILValue selfValue = B.createAllocRef(Loc, selfTy);
|
|
args.push_back(selfValue);
|
|
|
|
// Call the initializer.
|
|
SILDeclRef initConstant =
|
|
SILDeclRef(ctor, SILDeclRef::Kind::Initializer,
|
|
SILDeclRef::ConstructAtNaturalUncurryLevel,
|
|
/*isObjC=*/ctor->hasClangNode());
|
|
|
|
ManagedValue initVal;
|
|
SILType initTy;
|
|
|
|
ArrayRef<Substitution> subs;
|
|
if (ctor->hasClangNode()) {
|
|
// If the constructor was imported from Clang, we perform dynamic dispatch
|
|
// to it because we can't refer directly to the Objective-C method.
|
|
auto method = initConstant.atUncurryLevel(1);
|
|
auto objcInfo = getConstantInfo(method);
|
|
SILValue methodRef = B.createClassMethod(Loc, selfValue, initConstant,
|
|
objcInfo.getSILType());
|
|
initVal = ManagedValue(methodRef, ManagedValue::Unmanaged);
|
|
initTy = initVal.getType();
|
|
|
|
// Bridge arguments.
|
|
Scope scope(Cleanups, CleanupLocation::getCleanupLocation(Loc));
|
|
|
|
auto objcFnType = objcInfo.SILFnType;
|
|
|
|
unsigned idx = 0;
|
|
for (auto &arg : args) {
|
|
auto nativeTy = arg.getType().getSwiftType();// FIXME: wrong for functions
|
|
auto bridgedTy =
|
|
objcFnType->getParameters()[idx++].getSILType().getSwiftType();
|
|
arg = emitNativeToBridgedValue(Loc,
|
|
ManagedValue(arg, ManagedValue::Unmanaged),
|
|
AbstractCC::ObjCMethod,
|
|
nativeTy, nativeTy,
|
|
bridgedTy).forward(*this);
|
|
}
|
|
} else {
|
|
// Otherwise, directly call the constructor.
|
|
ArrayRef<ArchetypeType *> archetypes;
|
|
if (auto genericParams = ctor->getGenericParams())
|
|
archetypes = genericParams->getAllArchetypes();
|
|
auto forwardingSubs = buildForwardingSubstitutions(archetypes);
|
|
std::tie(initVal, initTy, subs)
|
|
= emitSiblingMethodRef(Loc, selfValue, initConstant, forwardingSubs);
|
|
}
|
|
|
|
SILValue initedSelfValue
|
|
= B.createApply(Loc, initVal.forward(*this), initTy, selfTy, subs, args,
|
|
initConstant.isTransparent());
|
|
|
|
// Return the initialized 'self'.
|
|
B.createReturn(Loc, initedSelfValue);
|
|
}
|
|
|
|
void SILGenFunction::emitClassConstructorInitializer(ConstructorDecl *ctor) {
|
|
// Always emit physical property accesses in destructors.
|
|
AlwaysDirectStoredPropertyAccess = true;
|
|
|
|
// If there's no body, this is the implicit constructor.
|
|
assert(ctor->getBody() && "Class constructor without a body?");
|
|
|
|
// FIXME: The (potentially partially initialized) value here would need to be
|
|
// cleaned up on a constructor failure unwinding.
|
|
|
|
// Set up the 'self' argument. If this class has a superclass, we set up
|
|
// self as a box. This allows "self reassignment" to happen in super init
|
|
// method chains, which is important for interoperating with Objective-C
|
|
// classes.
|
|
// TODO: If we could require Objective-C classes to have an attribute to get
|
|
// this behavior, we could avoid runtime overhead here.
|
|
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
|
|
auto nominalDecl = ctor->getDeclContext()->getDeclaredTypeInContext()
|
|
->getNominalOrBoundGenericNominal();
|
|
bool NeedsBoxForSelf = cast<ClassDecl>(nominalDecl)->hasSuperclass();
|
|
|
|
if (NeedsBoxForSelf)
|
|
emitLocalVariable(selfDecl);
|
|
|
|
// Emit the prolog for the non-self arguments.
|
|
emitProlog(ctor->getBodyParams(), TupleType::getEmpty(F.getASTContext()));
|
|
|
|
SILType selfTy = getLoweredLoadableType(selfDecl->getType());
|
|
SILValue selfArg = new (SGM.M) SILArgument(selfTy, F.begin(), selfDecl);
|
|
|
|
// Mark 'self' as uninitialized so that DI knows to enforce its DI properties
|
|
// on ivars.
|
|
auto MUKind = cast<ClassDecl>(nominalDecl)->hasSuperclass()
|
|
? MarkUninitializedInst::DerivedSelf :
|
|
MarkUninitializedInst::RootSelf;
|
|
selfArg = B.createMarkUninitialized(selfDecl, selfArg, MUKind);
|
|
|
|
assert(selfTy.hasReferenceSemantics() && "can't emit a value type ctor here");
|
|
|
|
if (NeedsBoxForSelf) {
|
|
SILLocation prologueLoc = RegularLocation(ctor);
|
|
prologueLoc.markAsPrologue();
|
|
B.createStore(prologueLoc, selfArg, VarLocs[selfDecl].getAddress());
|
|
} else {
|
|
VarLocs[selfDecl] = VarLoc::getConstant(selfArg);
|
|
}
|
|
|
|
// Prepare the end of initializer location.
|
|
SILLocation endOfInitLoc = RegularLocation(ctor);
|
|
endOfInitLoc.pointToEnd();
|
|
|
|
// Create a basic block to jump to for the implicit 'self' return.
|
|
// We won't emit the block until after we've emitted the body.
|
|
prepareEpilog(Type(), CleanupLocation::getCleanupLocation(endOfInitLoc));
|
|
|
|
// Emit the constructor body.
|
|
visit(ctor->getBody());
|
|
|
|
// Return 'self' in the epilog.
|
|
if (!emitEpilogBB(endOfInitLoc).first)
|
|
return;
|
|
|
|
// If we're using a box for self, reload the value at the end of the init
|
|
// method.
|
|
if (NeedsBoxForSelf) {
|
|
selfArg = B.createLoad(endOfInitLoc, VarLocs[selfDecl].getAddress());
|
|
SILValue selfBox = VarLocs[selfDecl].box;
|
|
assert(selfBox);
|
|
|
|
// We have to do a retain because someone else may be using the box.
|
|
selfArg = B.emitCopyValueOperation(endOfInitLoc, selfArg);
|
|
B.emitStrongRelease(endOfInitLoc, selfBox);
|
|
}
|
|
|
|
// Return the final 'self'.
|
|
B.createReturn(endOfInitLoc, selfArg);
|
|
}
|
|
|
|
static void forwardCaptureArgs(SILGenFunction &gen,
|
|
SmallVectorImpl<SILValue> &args,
|
|
ValueDecl *capture) {
|
|
ASTContext &c = capture->getASTContext();
|
|
|
|
auto addSILArgument = [&](SILType t) {
|
|
args.push_back(new (gen.SGM.M) SILArgument(t, gen.F.begin()));
|
|
};
|
|
|
|
switch (getDeclCaptureKind(capture)) {
|
|
case CaptureKind::None:
|
|
break;
|
|
|
|
case CaptureKind::Box: {
|
|
SILType ty = gen.getLoweredType(capture->getType()->getRValueType())
|
|
.getAddressType();
|
|
// Forward the captured owning ObjectPointer.
|
|
addSILArgument(SILType::getObjectPointerType(c));
|
|
// Forward the captured value address.
|
|
addSILArgument(ty);
|
|
break;
|
|
}
|
|
case CaptureKind::Constant:
|
|
addSILArgument(gen.getLoweredType(capture->getType()));
|
|
break;
|
|
case CaptureKind::LocalFunction:
|
|
// Forward the captured value.
|
|
addSILArgument(gen.getLoweredType(capture->getType()));
|
|
break;
|
|
case CaptureKind::GetterSetter: {
|
|
// Forward the captured setter.
|
|
Type setTy;
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(capture))
|
|
setTy = subscript->getSetterType();
|
|
else
|
|
setTy = cast<VarDecl>(capture)->getSetterType();
|
|
addSILArgument(gen.getLoweredType(setTy));
|
|
SWIFT_FALLTHROUGH;
|
|
}
|
|
case CaptureKind::Getter: {
|
|
// Forward the captured getter.
|
|
Type getTy;
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(capture))
|
|
getTy = subscript->getGetterType();
|
|
else
|
|
getTy = cast<VarDecl>(capture)->getGetterType();
|
|
addSILArgument(gen.getLoweredType(getTy));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static SILValue getNextUncurryLevelRef(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILDeclRef next,
|
|
ArrayRef<SILValue> curriedArgs) {
|
|
// For the fully-uncurried reference to a class method, emit the dynamic
|
|
// dispatch.
|
|
// FIXME: We should always emit dynamic dispatch at uncurry level 1,
|
|
// to support overriding a curried method with a non-curried,
|
|
// function-returning method.
|
|
if (!next.isCurried
|
|
&& next.kind == SILDeclRef::Kind::Func
|
|
&& next.hasDecl() && isa<ClassDecl>(next.getDecl()->getDeclContext())) {
|
|
SILValue thisArg;
|
|
thisArg = curriedArgs.back();
|
|
|
|
return gen.B.createClassMethod(loc, thisArg, next,
|
|
gen.SGM.getConstantType(next));
|
|
}
|
|
|
|
return gen.emitGlobalFunctionRef(loc, next);
|
|
}
|
|
|
|
void SILGenFunction::emitCurryThunk(FuncDecl *fd,
|
|
SILDeclRef from, SILDeclRef to) {
|
|
SmallVector<SILValue, 8> curriedArgs;
|
|
|
|
unsigned paramCount = from.uncurryLevel + 1;
|
|
|
|
// Forward implicit closure context arguments.
|
|
bool hasCaptures = fd->getCaptureInfo().hasLocalCaptures();
|
|
if (hasCaptures)
|
|
--paramCount;
|
|
|
|
// Forward the curried formal arguments.
|
|
auto forwardedPatterns = fd->getBodyParamPatterns().slice(0, paramCount);
|
|
ArgumentForwardVisitor forwarder(*this, curriedArgs);
|
|
for (auto *paramPattern : reversed(forwardedPatterns))
|
|
forwarder.visit(paramPattern);
|
|
|
|
// Forward captures.
|
|
if (hasCaptures) {
|
|
SmallVector<ValueDecl*, 4> LocalCaptures;
|
|
fd->getCaptureInfo().getLocalCaptures(LocalCaptures);
|
|
for (auto capture : LocalCaptures)
|
|
forwardCaptureArgs(*this, curriedArgs, capture);
|
|
}
|
|
|
|
SILValue toFn = getNextUncurryLevelRef(*this, fd, to, curriedArgs);
|
|
SILType resultTy
|
|
= SGM.getConstantType(from).castTo<SILFunctionType>()->getResult().getSILType();
|
|
auto toTy = toFn.getType();
|
|
|
|
// Forward archetypes and specialize if the function is generic.
|
|
ArrayRef<Substitution> subs;
|
|
{
|
|
auto toFnTy = toFn.getType().castTo<SILFunctionType>();
|
|
if (toFnTy->isPolymorphic()) {
|
|
subs = buildForwardingSubstitutions(toFnTy->getGenericParams()->getAllArchetypes());
|
|
toTy = getLoweredLoadableType(toFnTy->substGenericArgs(SGM.M, SGM.SwiftModule, subs));
|
|
}
|
|
}
|
|
|
|
// Partially apply the next uncurry level and return the result closure.
|
|
auto closureTy =
|
|
SILBuilder::getPartialApplyResultType(toFn.getType(), curriedArgs.size(),
|
|
SGM.M);
|
|
SILInstruction *toClosure =
|
|
B.createPartialApply(fd, toFn, toTy, subs, curriedArgs, closureTy);
|
|
if (resultTy != closureTy)
|
|
toClosure = B.createConvertFunction(fd, toClosure, resultTy);
|
|
B.createReturn(fd, toClosure);
|
|
}
|
|
|
|
void SILGenFunction::emitForeignThunk(SILDeclRef thunk) {
|
|
// FIXME: native-to-foreign thunk
|
|
assert(!thunk.isForeign && "native to foreign thunk not implemented");
|
|
|
|
// Wrap the function in its original form.
|
|
|
|
auto fd = cast<FuncDecl>(thunk.getDecl());
|
|
|
|
// Forward the arguments.
|
|
// FIXME: For native-to-foreign thunks, use emitObjCThunkArguments to retain
|
|
// inputs according to the foreign convention.
|
|
auto forwardedPatterns = fd->getBodyParamPatterns();
|
|
SmallVector<SILValue, 8> args;
|
|
ArgumentForwardVisitor forwarder(*this, args);
|
|
for (auto *paramPattern : reversed(forwardedPatterns))
|
|
forwarder.visit(paramPattern);
|
|
|
|
SILValue result;
|
|
{
|
|
CleanupLocation cleanupLoc(fd);
|
|
Scope scope(Cleanups, fd);
|
|
|
|
// Set up cleanups on all the arguments, which should be at +1 now.
|
|
SmallVector<ManagedValue, 8> managedArgs;
|
|
for (auto arg : args)
|
|
managedArgs.push_back(emitManagedRValueWithCleanup(arg));
|
|
|
|
// Call the original.
|
|
SILDeclRef original = thunk.asForeign(!thunk.isForeign);
|
|
auto originalInfo = getConstantInfo(original);
|
|
auto fn = emitGlobalFunctionRef(fd, original, originalInfo);
|
|
result = emitMonomorphicApply(fd, ManagedValue(fn, ManagedValue::Unmanaged),
|
|
managedArgs,
|
|
fd->getBodyResultType()->getCanonicalType())
|
|
.forward(*this);
|
|
}
|
|
// FIXME: use correct convention for native-to-foreign return
|
|
B.createReturn(fd, result);
|
|
}
|
|
|
|
void SILGenFunction::emitGeneratorFunction(SILDeclRef function, Expr *value) {
|
|
RegularLocation Loc(value);
|
|
Loc.markAutoGenerated();
|
|
|
|
emitProlog({ }, value->getType());
|
|
prepareEpilog(value->getType(), CleanupLocation::getCleanupLocation(Loc));
|
|
emitReturnExpr(Loc, value);
|
|
emitEpilog(Loc);
|
|
}
|
|
|
|
void SILGenFunction::emitLazyGlobalInitializer(PatternBindingDecl *binding) {
|
|
{
|
|
Scope scope(Cleanups, binding);
|
|
|
|
// Emit the initialization sequence.
|
|
visit(binding);
|
|
}
|
|
|
|
// Return void.
|
|
auto ret = emitEmptyTuple(binding);
|
|
B.createReturn(binding, ret);
|
|
}
|
|
|
|
void SILGenFunction::emitGlobalAccessor(VarDecl *global,
|
|
FuncDecl *builtinOnceDecl,
|
|
SILGlobalVariable *onceToken,
|
|
SILFunction *onceFunc) {
|
|
// Emit a reference to Builtin.once.
|
|
SILDeclRef builtinOnceConstant(builtinOnceDecl, SILDeclRef::Kind::Func);
|
|
auto builtinOnceSILTy = SGM.Types.getConstantType(builtinOnceConstant);
|
|
auto builtinOnce = B.createBuiltinFunctionRef(global,
|
|
builtinOnceDecl->getName(),
|
|
builtinOnceSILTy);
|
|
|
|
SILType rawPointerSILTy
|
|
= getLoweredLoadableType(getASTContext().TheRawPointerType);
|
|
|
|
// Emit a reference to the global token.
|
|
SILValue onceTokenAddr = B.createSILGlobalAddr(global, onceToken);
|
|
onceTokenAddr = B.createAddressToPointer(global, onceTokenAddr,
|
|
rawPointerSILTy);
|
|
|
|
// Emit a reference to the function to execute once, then thicken
|
|
// that reference as Builtin.once expects.
|
|
SILValue onceFuncRef = B.createFunctionRef(global, onceFunc);
|
|
auto onceFuncThickTy
|
|
= getThickFunctionType(onceFunc->getLoweredFunctionType());
|
|
auto onceFuncThickSILTy = SILType::getPrimitiveObjectType(onceFuncThickTy);
|
|
onceFuncRef = B.createThinToThickFunction(global, onceFuncRef,
|
|
onceFuncThickSILTy);
|
|
|
|
// Call Builtin.once.
|
|
SILValue onceArgs[] = {onceTokenAddr, onceFuncRef};
|
|
auto resultTy = builtinOnceSILTy.castTo<SILFunctionType>()
|
|
->getResult().getSILType();
|
|
|
|
B.createApply(global, builtinOnce, builtinOnceSILTy, resultTy,
|
|
{}, onceArgs);
|
|
|
|
// Return the address of the global variable.
|
|
// FIXME: It'd be nice to be able to return a SIL address directly.
|
|
SILValue addr = B.createGlobalAddr(global, global,
|
|
getLoweredType(global->getType()).getAddressType());
|
|
addr = B.createAddressToPointer(global, addr, rawPointerSILTy);
|
|
B.createReturn(global, addr);
|
|
}
|
|
|
|
RValue RValueEmitter::
|
|
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
|
|
SGFContext C) {
|
|
return visit(E->getSemanticExpr(), C);
|
|
}
|
|
|
|
RValue RValueEmitter::
|
|
visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E, SGFContext C) {
|
|
ASTContext &Ctx = SGF.SGM.M.getASTContext();
|
|
SILType Ty = SGF.getLoweredLoadableType(E->getType());
|
|
SourceLoc Loc;
|
|
|
|
// If "overrideLocationForMagicIdentifiers" is set, then we use it as the
|
|
// location point for these magic identifiers.
|
|
if (SGF.overrideLocationForMagicIdentifiers.isValid())
|
|
Loc = SGF.overrideLocationForMagicIdentifiers;
|
|
else
|
|
Loc = E->getStartLoc();
|
|
|
|
switch (E->getKind()) {
|
|
case MagicIdentifierLiteralExpr::File: {
|
|
unsigned BufferID = Ctx.SourceMgr.findBufferContainingLoc(Loc);
|
|
|
|
StringRef Value =
|
|
Ctx.SourceMgr->getMemoryBuffer(BufferID)->getBufferIdentifier();
|
|
|
|
return emitStringLiteral(E, Value, C);
|
|
}
|
|
case MagicIdentifierLiteralExpr::Line: {
|
|
unsigned Value = Ctx.SourceMgr.getLineAndColumn(Loc).first;
|
|
return RValue(SGF, E, ManagedValue(SGF.B.createIntegerLiteral(E, Ty, Value),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
case MagicIdentifierLiteralExpr::Column: {
|
|
unsigned Value = Ctx.SourceMgr.getLineAndColumn(Loc).second;
|
|
return RValue(SGF, E, ManagedValue(SGF.B.createIntegerLiteral(E, Ty, Value),
|
|
ManagedValue::Unmanaged));
|
|
}
|
|
}
|
|
}
|
|
|
|
RValue RValueEmitter::visitCollectionExpr(CollectionExpr *E, SGFContext C) {
|
|
return visit(E->getSemanticExpr());
|
|
}
|
|
|
|
RValue RValueEmitter::visitRebindSelfInConstructorExpr(
|
|
RebindSelfInConstructorExpr *E, SGFContext C) {
|
|
// FIXME: Use a different instruction from 'downcast'. IRGen can make
|
|
// "rebind this" into a no-op if the called constructor is a Swift one.
|
|
ManagedValue newSelf = visit(E->getSubExpr()).getAsSingleValue(SGF,
|
|
E->getSubExpr());
|
|
if (!newSelf.getType().getSwiftRValueType()
|
|
->isEqual(E->getSelf()->getType())) {
|
|
assert(newSelf.getType().isObject() &&
|
|
newSelf.getType().hasReferenceSemantics() &&
|
|
"delegating ctor type mismatch for non-reference type?!");
|
|
CleanupHandle newSelfCleanup = newSelf.getCleanup();
|
|
SILValue newSelfValue = SGF.B.createUnconditionalCheckedCast(E,
|
|
CheckedCastKind::Downcast,
|
|
newSelf.getValue(),
|
|
SGF.getLoweredLoadableType(E->getSelf()->getType()));
|
|
newSelf = ManagedValue(newSelfValue, newSelfCleanup);
|
|
}
|
|
|
|
SILValue selfAddr = SGF.emitReferenceToDecl(E, E->getSelf()).getUnmanagedValue();
|
|
newSelf.assignInto(SGF, E, selfAddr);
|
|
|
|
return SGF.emitEmptyTupleRValue(E);
|
|
}
|
|
|
|
RValue RValueEmitter::visitArchetypeSubscriptExpr(
|
|
ArchetypeSubscriptExpr *E, SGFContext C) {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
RValue RValueEmitter::visitDynamicSubscriptExpr(
|
|
DynamicSubscriptExpr *E, SGFContext C) {
|
|
return SGF.emitDynamicSubscriptExpr(E, C);
|
|
}
|
|
|
|
RValue RValueEmitter::visitExistentialSubscriptExpr(
|
|
ExistentialSubscriptExpr *E, SGFContext C) {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
RValue RValueEmitter::visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E,
|
|
SGFContext C) {
|
|
// Create a buffer for the result. Abstraction difference will
|
|
// force this to be returned indirectly from
|
|
// _injectValueIntoOptional anyway, so there's not much point
|
|
// avoiding that.
|
|
auto &optTL = SGF.getTypeLowering(E->getType());
|
|
SILValue optAddr =
|
|
SGF.getBufferForExprResult(E, optTL.getLoweredType(), C);
|
|
|
|
SGF.emitInjectOptionalValueInto(E, E->getSubExpr(), optAddr, optTL);
|
|
|
|
ManagedValue result = SGF.manageBufferForExprResult(optAddr, optTL, C);
|
|
if (!result) return RValue();
|
|
|
|
// If we're not address-only, the caller will expect a non-address value.
|
|
if (!optTL.isAddressOnly()) {
|
|
auto optValue = optTL.emitLoadOfCopy(SGF.B, E, result.forward(SGF), IsTake);
|
|
result = SGF.emitManagedRValueWithCleanup(optValue, optTL);
|
|
}
|
|
return RValue(SGF, E, result);
|
|
}
|
|
|
|
RValue RValueEmitter::visitBridgeToBlockExpr(BridgeToBlockExpr *E,
|
|
SGFContext C) {
|
|
auto func = visit(E->getSubExpr()).getScalarValue();
|
|
|
|
// Emit the bridge_to_block instruction.
|
|
SILValue block = SGF.B.createBridgeToBlock(E, func.forward(SGF),
|
|
SGF.getLoweredLoadableType(E->getType()));
|
|
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(block));
|
|
}
|
|
|
|
namespace {
|
|
/// An Initialization representing the result of an address-only ternary.
|
|
class TernaryInitialization : public SingleBufferInitialization {
|
|
SILValue valueAddr;
|
|
public:
|
|
TernaryInitialization(SILValue valueAddr)
|
|
: valueAddr(valueAddr)
|
|
{}
|
|
|
|
SILValue getAddressOrNull() override {
|
|
return valueAddr;
|
|
}
|
|
|
|
void finishInitialization(SILGenFunction &gen) {
|
|
}
|
|
};
|
|
}
|
|
|
|
RValue RValueEmitter::visitIfExpr(IfExpr *E, SGFContext C) {
|
|
auto &lowering = SGF.getTypeLowering(E->getType());
|
|
|
|
if (lowering.isLoadable()) {
|
|
// If the result is loadable, emit each branch and forward its result
|
|
// into the destination block argument.
|
|
|
|
// FIXME: We could avoid imploding and reexploding tuples here.
|
|
Condition cond = SGF.emitCondition(E->getCondExpr(),
|
|
/*hasFalse*/ true,
|
|
/*invertCondition*/ false,
|
|
SGF.getLoweredType(E->getType()));
|
|
|
|
cond.enterTrue(SGF.B);
|
|
SILValue trueValue;
|
|
{
|
|
auto TE = E->getThenExpr();
|
|
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
|
|
trueValue = visit(TE).forwardAsSingleValue(SGF, TE);
|
|
}
|
|
cond.exitTrue(SGF.B, trueValue);
|
|
|
|
cond.enterFalse(SGF.B);
|
|
SILValue falseValue;
|
|
{
|
|
auto EE = E->getElseExpr();
|
|
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
|
|
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);
|
|
}
|
|
cond.exitFalse(SGF.B, falseValue);
|
|
|
|
SILBasicBlock *cont = cond.complete(SGF.B);
|
|
assert(cont && "no continuation block for if expr?!");
|
|
|
|
SILValue result = cont->bbarg_begin()[0];
|
|
|
|
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(result));
|
|
} else {
|
|
// If the result is address-only, emit the result into a common stack buffer
|
|
// that dominates both branches.
|
|
SILValue resultAddr = SGF.getBufferForExprResult(
|
|
E, lowering.getLoweredType(), C);
|
|
|
|
Condition cond = SGF.emitCondition(E->getCondExpr(),
|
|
/*hasFalse*/ true,
|
|
/*invertCondition*/ false);
|
|
cond.enterTrue(SGF.B);
|
|
{
|
|
auto TE = E->getThenExpr();
|
|
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
|
|
TernaryInitialization init(resultAddr);
|
|
SGF.emitExprInto(TE, &init);
|
|
}
|
|
cond.exitTrue(SGF.B);
|
|
|
|
cond.enterFalse(SGF.B);
|
|
{
|
|
auto EE = E->getElseExpr();
|
|
FullExpr trueScope(SGF.Cleanups, CleanupLocation(EE));
|
|
TernaryInitialization init(resultAddr);
|
|
SGF.emitExprInto(EE, &init);
|
|
}
|
|
cond.exitFalse(SGF.B);
|
|
|
|
cond.complete(SGF.B);
|
|
|
|
auto result = SGF.manageBufferForExprResult(resultAddr, lowering, C);
|
|
return (result ? RValue(SGF, E, result) : RValue());
|
|
}
|
|
}
|
|
|
|
RValue RValueEmitter::visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C) {
|
|
return visit(E->getSubExpr(), C);
|
|
}
|
|
|
|
static ManagedValue emitBridgeStringToNSString(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue str) {
|
|
// func convertStringToNSString([inout] String) -> NSString
|
|
SILValue stringToNSStringFn
|
|
= gen.emitGlobalFunctionRef(loc, gen.SGM.getStringToNSStringFn());
|
|
|
|
// Materialize the string so we can pass a reference.
|
|
// Assume StringToNSString won't consume or modify the string, so leave the
|
|
// cleanup on the original value intact.
|
|
SILValue strTemp = gen.emitTemporaryAllocation(loc,
|
|
str.getType());
|
|
gen.B.createStore(loc, str.getValue(), strTemp);
|
|
|
|
SILValue nsstr = gen.B.createApply(loc, stringToNSStringFn,
|
|
stringToNSStringFn.getType(),
|
|
gen.getLoweredType(gen.SGM.Types.getNSStringType()),
|
|
{}, strTemp);
|
|
return gen.emitManagedRValueWithCleanup(nsstr);
|
|
}
|
|
|
|
static ManagedValue emitBridgeNSStringToString(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue nsstr) {
|
|
// func convertNSStringToString(NSString, [inout] String) -> ()
|
|
SILValue nsstringToStringFn
|
|
= gen.emitGlobalFunctionRef(loc, gen.SGM.getNSStringToStringFn());
|
|
|
|
// Allocate and initialize a temporary to receive the result String.
|
|
SILValue strTemp = gen.emitTemporaryAllocation(loc,
|
|
gen.getLoweredType(gen.SGM.Types.getStringType()));
|
|
// struct String { init() }
|
|
SILValue strInitFn
|
|
= gen.emitGlobalFunctionRef(loc, gen.SGM.getStringDefaultInitFn());
|
|
SILValue strMetaty
|
|
= gen.B.createMetatype(loc, gen.getLoweredLoadableType(
|
|
MetaTypeType::get(gen.SGM.Types.getStringType(),
|
|
gen.getASTContext())->getCanonicalType()));
|
|
SILValue strInit = gen.B.createApply(loc, strInitFn,
|
|
strInitFn.getType(),
|
|
gen.getLoweredLoadableType(gen.SGM.Types.getStringType()),
|
|
{}, strMetaty);
|
|
gen.B.createStore(loc, strInit, strTemp);
|
|
|
|
SILValue args[2] = {nsstr.forward(gen), strTemp};
|
|
gen.B.createApply(loc, nsstringToStringFn,
|
|
nsstringToStringFn.getType(),
|
|
gen.SGM.Types.getEmptyTupleType(),
|
|
{}, args);
|
|
|
|
// Load the result string, taking ownership of the value. There's no cleanup
|
|
// on the value in the temporary allocation.
|
|
SILValue str = gen.B.createLoad(loc, strTemp);
|
|
return gen.emitManagedRValueWithCleanup(str);
|
|
}
|
|
|
|
static ManagedValue emitBridgeBoolToObjCBool(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue swiftBool) {
|
|
// func convertBoolToObjCBool(Bool) -> ObjCBool
|
|
SILValue boolToObjCBoolFn
|
|
= gen.emitGlobalFunctionRef(loc, gen.SGM.getBoolToObjCBoolFn());
|
|
|
|
SILType resultTy =gen.getLoweredLoadableType(gen.SGM.Types.getObjCBoolType());
|
|
|
|
SILValue result = gen.B.createApply(loc, boolToObjCBoolFn,
|
|
boolToObjCBoolFn.getType(),
|
|
resultTy, {}, swiftBool.forward(gen));
|
|
return gen.emitManagedRValueWithCleanup(result);
|
|
}
|
|
|
|
static ManagedValue emitBridgeObjCBoolToBool(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue objcBool) {
|
|
// func convertObjCBoolToBool(ObjCBool) -> Bool
|
|
SILValue objcBoolToBoolFn
|
|
= gen.emitGlobalFunctionRef(loc, gen.SGM.getObjCBoolToBoolFn());
|
|
|
|
SILType resultTy = gen.getLoweredLoadableType(gen.SGM.Types.getBoolType());
|
|
|
|
SILValue result = gen.B.createApply(loc, objcBoolToBoolFn,
|
|
objcBoolToBoolFn.getType(),
|
|
resultTy, {}, objcBool.forward(gen));
|
|
return gen.emitManagedRValueWithCleanup(result);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitNativeToBridgedValue(SILLocation loc,
|
|
ManagedValue v,
|
|
AbstractCC destCC,
|
|
CanType origNativeTy,
|
|
CanType substNativeTy,
|
|
CanType bridgedTy) {
|
|
switch (destCC) {
|
|
case AbstractCC::Freestanding:
|
|
case AbstractCC::Method:
|
|
case AbstractCC::WitnessMethod:
|
|
// No additional bridging needed for native functions.
|
|
return v;
|
|
case AbstractCC::C:
|
|
case AbstractCC::ObjCMethod:
|
|
// If the input is a native type with a bridged mapping, convert it.
|
|
#define BRIDGE_TYPE(BridgedModule,BridgedType, NativeModule,NativeType) \
|
|
if (substNativeTy == SGM.Types.get##NativeType##Type() \
|
|
&& bridgedTy == SGM.Types.get##BridgedType##Type()) { \
|
|
return emitBridge##NativeType##To##BridgedType(*this, loc, v); \
|
|
}
|
|
#include "swift/SIL/BridgedTypes.def"
|
|
return v;
|
|
}
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitBridgedToNativeValue(SILLocation loc,
|
|
ManagedValue v,
|
|
AbstractCC srcCC,
|
|
CanType nativeTy) {
|
|
switch (srcCC) {
|
|
case AbstractCC::Freestanding:
|
|
case AbstractCC::Method:
|
|
case AbstractCC::WitnessMethod:
|
|
// No additional bridging needed for native functions.
|
|
return v;
|
|
|
|
case AbstractCC::C:
|
|
case AbstractCC::ObjCMethod:
|
|
// If the output is a bridged type, convert it back to a native type.
|
|
#define BRIDGE_TYPE(BridgedModule,BridgedType, NativeModule,NativeType) \
|
|
if (nativeTy == SGM.Types.get##NativeType##Type() && \
|
|
v.getType().getSwiftType() == SGM.Types.get##BridgedType##Type()) { \
|
|
return emitBridge##BridgedType##To##NativeType(*this, loc, v); \
|
|
}
|
|
#include "swift/SIL/BridgedTypes.def"
|
|
return v;
|
|
}
|
|
}
|
|
|
|
RValue SILGenFunction::emitEmptyTupleRValue(SILLocation loc) {
|
|
return RValue(CanType(TupleType::getEmpty(F.getASTContext())));
|
|
}
|
|
|
|
/// Destructure (potentially) recursive assignments into tuple expressions
|
|
/// down to their scalar stores.
|
|
static void emitAssignExprRecursive(AssignExpr *S, RValue &&Src,
|
|
Expr *Dest, SILGenFunction &Gen) {
|
|
// If the destination is a tuple, recursively destructure.
|
|
if (auto *TE = dyn_cast<TupleExpr>(Dest)) {
|
|
SmallVector<RValue, 4> elements;
|
|
std::move(Src).extractElements(elements);
|
|
unsigned EltNo = 0;
|
|
for (Expr *DestElem : TE->getElements()) {
|
|
emitAssignExprRecursive(S,
|
|
std::move(elements[EltNo++]),
|
|
DestElem, Gen);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the destination is '_', do nothing.
|
|
if (isa<DiscardAssignmentExpr>(Dest))
|
|
return;
|
|
|
|
// Otherwise, emit the scalar assignment.
|
|
LValue DstLV = Gen.emitLValue(Dest);
|
|
Gen.emitAssignToLValue(S, {S, std::move(Src)}, DstLV);
|
|
}
|
|
|
|
RValue RValueEmitter::visitAssignExpr(AssignExpr *E, SGFContext C) {
|
|
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
|
|
|
|
// Handle lvalue-to-lvalue assignments with a high-level copy_addr instruction
|
|
// if possible.
|
|
if (auto *LE = dyn_cast<LoadExpr>(E->getSrc())) {
|
|
if (!isa<TupleExpr>(E->getDest())
|
|
&& E->getDest()->getType()->isEqual(LE->getSubExpr()->getType()) &&
|
|
!isLoadPropagatedValue(LE->getSubExpr(), SGF)) {
|
|
SGF.emitAssignLValueToLValue(E,
|
|
SGF.emitLValue(cast<LoadExpr>(E->getSrc())->getSubExpr()),
|
|
SGF.emitLValue(E->getDest()));
|
|
return SGF.emitEmptyTupleRValue(E);
|
|
}
|
|
}
|
|
|
|
// Handle tuple destinations by destructuring them if present.
|
|
emitAssignExprRecursive(E, visit(E->getSrc()), E->getDest(), SGF);
|
|
return SGF.emitEmptyTupleRValue(E);
|
|
}
|
|
|
|
RValue RValueEmitter::visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C) {
|
|
assert(SGF.BindOptionalFailureDest.isValid());
|
|
|
|
// Create a temporary of type Optional<T>.
|
|
auto &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
|
|
auto temp = SGF.emitTemporary(E, optTL);
|
|
|
|
// Emit the operand into the temporary.
|
|
SGF.emitExprInto(E->getSubExpr(), temp.get());
|
|
|
|
SILValue addr = temp->getAddress();
|
|
|
|
// Check whether the optional has a value.
|
|
SILBasicBlock *hasValueBB = SGF.createBasicBlock();
|
|
SILBasicBlock *hasNoValueBB = SGF.createBasicBlock();
|
|
SILValue hasValue = SGF.emitDoesOptionalHaveValue(E, addr);
|
|
SGF.B.createCondBranch(E, hasValue, hasValueBB, hasNoValueBB);
|
|
|
|
// If not, thread out through a bunch of cleanups.
|
|
SGF.B.emitBlock(hasNoValueBB);
|
|
SGF.Cleanups.emitBranchAndCleanups(SGF.BindOptionalFailureDest, E);
|
|
|
|
// If so, get that value as the result of our expression.
|
|
SGF.B.emitBlock(hasValueBB);
|
|
auto result = temp->getManagedAddress();
|
|
return RValue(SGF, E, SGF.emitGetOptionalValueFrom(E, result, optTL, C));
|
|
}
|
|
|
|
namespace {
|
|
/// A RAII object to save and restore BindOptionalFailureDest.
|
|
class RestoreOptionalFailureDest {
|
|
SILGenFunction &SGF;
|
|
JumpDest Prev;
|
|
public:
|
|
RestoreOptionalFailureDest(SILGenFunction &SGF)
|
|
: SGF(SGF), Prev(SGF.BindOptionalFailureDest) {
|
|
}
|
|
~RestoreOptionalFailureDest() {
|
|
SGF.BindOptionalFailureDest = Prev;
|
|
}
|
|
};
|
|
}
|
|
|
|
RValue RValueEmitter::visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
|
|
SGFContext C) {
|
|
// Allocate a temporary for the Optional<T> if we didn't get one
|
|
// from the context. This needs to happen outside of the cleanups
|
|
// scope we're about to push.
|
|
auto &optTL = SGF.getTypeLowering(E->getType());
|
|
|
|
std::unique_ptr<TemporaryInitialization> optTemp;
|
|
Initialization *optInit = C.getEmitInto();
|
|
if (!optInit) {
|
|
optTemp = SGF.emitTemporary(E, optTL);
|
|
optInit = optTemp.get();
|
|
}
|
|
|
|
// Enter a cleanups scope.
|
|
FullExpr scope(SGF.Cleanups, E);
|
|
|
|
// Install a new optional-failure destination just outside of the
|
|
// cleanups scope.
|
|
RestoreOptionalFailureDest restoreFailureDest(SGF);
|
|
SILBasicBlock *failureBB = SGF.createBasicBlock();
|
|
SGF.BindOptionalFailureDest =
|
|
JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(), E);
|
|
|
|
// Emit the operand into the temporary.
|
|
SGF.emitExprInto(E->getSubExpr(), optInit);
|
|
|
|
// We fell out of the normal result, which generated a T? as either
|
|
// a scalar in subResult or directly into optInit.
|
|
|
|
// This concludes the conditional scope.
|
|
scope.pop();
|
|
|
|
// Branch to the continuation block.
|
|
SILBasicBlock *contBB = SGF.createBasicBlock();
|
|
SGF.B.createBranch(E, contBB);
|
|
|
|
// If control branched to the failure block, inject .None into the
|
|
// result type.
|
|
SGF.B.emitBlock(failureBB);
|
|
|
|
// FIXME: reset optInit here?
|
|
|
|
SILValue resultAddr = optInit->getAddressOrNull();
|
|
assert(resultAddr || optInit->kind == Initialization::Kind::Ignored);
|
|
if (resultAddr) {
|
|
SGF.emitInjectOptionalNothingInto(E, resultAddr, optTL);
|
|
}
|
|
|
|
// FIXME: finish optInit within a conditional scope.
|
|
|
|
SGF.B.createBranch(E, contBB);
|
|
|
|
// Emit the continuation block.
|
|
SGF.B.emitBlock(contBB);
|
|
|
|
// If we had a destination address, we're done.
|
|
if (C.getEmitInto())
|
|
return RValue();
|
|
|
|
assert(optTemp);
|
|
auto result = optTemp->getManagedAddress();
|
|
if (!optTL.isAddressOnly()) {
|
|
auto optValue = SGF.B.createLoad(E, result.forward(SGF));
|
|
result = SGF.emitManagedRValueWithCleanup(optValue, optTL);
|
|
}
|
|
|
|
return RValue(SGF, E, result);
|
|
}
|
|
|
|
RValue RValueEmitter::visitForceValueExpr(ForceValueExpr *E, SGFContext C) {
|
|
// If the subexpression is a conditional checked cast, emit an unconditional
|
|
// cast, which drastically simplifies the generated SIL for something like:
|
|
//
|
|
// (x as Foo)!
|
|
if (auto checkedCast = dyn_cast<ConditionalCheckedCastExpr>(
|
|
E->getSubExpr()->getSemanticsProvidingExpr())) {
|
|
return emitUnconditionalCheckedCast(checkedCast->getSubExpr(),
|
|
E, E->getType(),
|
|
checkedCast->getCastKind(),
|
|
C);
|
|
}
|
|
|
|
const TypeLowering &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
|
|
auto optTemp = SGF.emitTemporary(E, optTL);
|
|
SGF.emitExprInto(E->getSubExpr(), optTemp.get());
|
|
|
|
ManagedValue V = SGF.emitGetOptionalValueFrom(E, optTemp->getManagedAddress(),
|
|
optTL, C);
|
|
|
|
return V ? RValue(SGF, E, V) : RValue();
|
|
}
|
|
|
|
RValue RValueEmitter::visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C) {
|
|
assert(SGF.OpaqueValues.count(E) && "Didn't bind OpaqueValueExpr");
|
|
|
|
auto &entry = SGF.OpaqueValues[E];
|
|
|
|
// If the opaque value is uniquely referenced, we can just return the
|
|
// value with a cleanup. There is no need to retain it separately.
|
|
if (E->isUniquelyReferenced()) {
|
|
assert(!entry.second &&"Uniquely-referenced opaque value already consumed");
|
|
entry.second = true;
|
|
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(entry.first));
|
|
}
|
|
|
|
// Retain the value.
|
|
entry.second = true;
|
|
return RValue(SGF, E, SGF.emitManagedRetain(E, entry.first));
|
|
}
|
|
|
|
void SILGenFunction::emitIgnoredRValue(Expr *E) {
|
|
emitRValue(E, SGFContext::Ignored);
|
|
}
|
|
|
|
RValue SILGenFunction::emitUngeneralizedRValue(Expr *E) {
|
|
return emitRValue(E, SGFContext::Ungeneralized);
|
|
}
|
|
|
|
RValue SILGenFunction::emitRValue(Expr *E, SGFContext C) {
|
|
return RValueEmitter(*this).visit(E, C);
|
|
}
|