Files
swift-mirror/stdlib/public/core/KeyPath.swift

4464 lines
162 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
internal func _abstract(
methodName: StaticString = #function,
file: StaticString = #file, line: UInt = #line
) -> Never {
#if INTERNAL_CHECKS_ENABLED
_fatalErrorMessage("abstract method", methodName, file: file, line: line,
flags: _fatalErrorFlags())
#else
_conditionallyUnreachable()
#endif
}
// MARK: Type-erased abstract base classes
// NOTE: older runtimes had Swift.AnyKeyPath as the ObjC name.
// The two must coexist, so it was renamed. The old name must not be
// used in the new runtime. _TtCs11_AnyKeyPath is the mangled name for
// Swift._AnyKeyPath.
/// A type-erased key path, from any root type to any resulting value
/// type.
@_objcRuntimeName(_TtCs11_AnyKeyPath)
@safe
public class AnyKeyPath: _AppendKeyPath {
/// The root type for this key path.
@inlinable
public static var rootType: Any.Type {
return _rootAndValueType.root
}
/// The value type for this key path.
@inlinable
public static var valueType: Any.Type {
return _rootAndValueType.value
}
/// Used to store the offset from the root to the value
/// in the case of a pure struct KeyPath.
/// It's a regular kvcKeyPathStringPtr otherwise.
internal final var _kvcKeyPathStringPtr: UnsafePointer<CChar>?
/*
The following pertains to 32-bit architectures only.
We assume everything is a valid pointer to a potential
_kvcKeyPathStringPtr except for the first 4KB page which is reserved
for the nil pointer. Note that we have to distinguish between a valid
keypath offset of 0, and the nil pointer itself.
We use maximumOffsetOn32BitArchitecture + 1 for this case.
The variable maximumOffsetOn32BitArchitecture is duplicated in the two
functions below since having it as a global would make accesses slower,
given getOffsetFromStorage() gets called on each KeyPath read. Further,
having it as an instance variable in AnyKeyPath would increase the size
of AnyKeyPath by 8 bytes.
TODO: Find a better method of refactoring this variable if possible.
*/
final func assignOffsetToStorage(offset: Int) {
let maximumOffsetOn32BitArchitecture = 4094
guard offset >= 0 else {
return
}
#if _pointerBitWidth(_64)
unsafe _kvcKeyPathStringPtr = UnsafePointer<CChar>(bitPattern: -offset - 1)
#elseif _pointerBitWidth(_32)
if offset <= maximumOffsetOn32BitArchitecture {
_kvcKeyPathStringPtr = UnsafePointer<CChar>(bitPattern: (offset + 1))
} else {
_kvcKeyPathStringPtr = nil
}
#else
// Don't assign anything.
#endif
}
final func getOffsetFromStorage() -> Int? {
let maximumOffsetOn32BitArchitecture = 4094
guard unsafe _kvcKeyPathStringPtr != nil else {
return nil
}
#if _pointerBitWidth(_64)
let offset = unsafe (0 &- Int(bitPattern: _kvcKeyPathStringPtr)) &- 1
guard _fastPath(offset >= 0) else {
// This happens to be an actual _kvcKeyPathStringPtr, not an offset, if
// we get here.
return nil
}
return offset
#elseif _pointerBitWidth(_32)
let offset = Int(bitPattern: _kvcKeyPathStringPtr) &- 1
// Pointers above 0x7fffffff will come in as negative numbers which are
// less than maximumOffsetOn32BitArchitecture, be sure to reject them.
if offset >= 0, offset <= maximumOffsetOn32BitArchitecture {
return offset
}
return nil
#else
// Otherwise, we assigned nothing so return nothing.
return nil
#endif
}
// SPI for the Foundation overlay to allow interop with KVC keypath-based
// APIs.
@_unavailableInEmbedded
public var _kvcKeyPathString: String? {
@_semantics("keypath.kvcKeyPathString")
get {
guard self.getOffsetFromStorage() == nil else {
return nil
}
guard let ptr = unsafe _kvcKeyPathStringPtr else { return nil }
return unsafe String(validatingCString: ptr)
}
}
// MARK: Implementation details
// Prevent normal initialization. We use tail allocation via
// allocWithTailElems().
@available(*, unavailable)
internal init() {
_internalInvariantFailure("use _create(...)")
}
@usableFromInline
internal class var _rootAndValueType: (root: Any.Type, value: Any.Type) {
_abstract()
}
@_unavailableInEmbedded
internal static func _create(
capacityInBytes bytes: Int,
initializedBy body: (UnsafeMutableRawBufferPointer) -> Void
) -> Self {
_internalInvariant(bytes > 0 && bytes % 4 == 0,
"capacity must be multiple of 4 bytes")
let result = Builtin.allocWithTailElems_1(self, (bytes/4)._builtinWordValue,
Int32.self)
unsafe result._kvcKeyPathStringPtr = nil
let base = UnsafeMutableRawPointer(Builtin.projectTailElems(result,
Int32.self))
unsafe body(UnsafeMutableRawBufferPointer(start: base, count: bytes))
return result
}
@_unavailableInEmbedded
final internal func withBuffer<T>(_ f: (KeyPathBuffer) throws -> T) rethrows -> T {
defer { _fixLifetime(self) }
let base = UnsafeRawPointer(Builtin.projectTailElems(self, Int32.self))
return try unsafe f(KeyPathBuffer(base: base))
}
@usableFromInline // Exposed as public API by MemoryLayout<Root>.offset(of:)
internal var _storedInlineOffset: Int? {
#if !$Embedded
return unsafe withBuffer {
var buffer = unsafe $0
// The identity key path is effectively a stored keypath of type Self
// at offset zero
if unsafe buffer.data.isEmpty { return 0 }
var offset = 0
while true {
let (rawComponent, optNextType) = unsafe buffer.next()
switch rawComponent.header.kind {
case .struct:
offset += rawComponent._structOrClassOffset
case .class, .computed, .optionalChain, .optionalForce, .optionalWrap, .external:
return .none
}
if optNextType == nil { return .some(offset) }
}
fatalError()
}
#else
// compiler optimizes _storedInlineOffset into a direct offset computation,
// and in embedded Swift we don't allow runtime keypaths, so this fatalError
// is unreachable at runtime
fatalError()
#endif
}
}
@_unavailableInEmbedded
extension AnyKeyPath: Hashable {
/// The hash value.
final public var hashValue: Int {
return _hashValue(for: self)
}
/// Hashes the essential components of this value by feeding them into the
/// given hasher.
///
/// - Parameter hasher: The hasher to use when combining the components
/// of this instance.
@_effects(releasenone)
final public func hash(into hasher: inout Hasher) {
ObjectIdentifier(type(of: self)).hash(into: &hasher)
return unsafe withBuffer {
var buffer = unsafe $0
if unsafe buffer.data.isEmpty { return }
while true {
let (component, type) = unsafe buffer.next()
unsafe hasher.combine(component.value)
if let type = type {
unsafe hasher.combine(unsafeBitCast(type, to: Int.self))
} else {
break
}
}
}
}
public static func ==(a: AnyKeyPath, b: AnyKeyPath) -> Bool {
// Fast-path identical objects
if a === b {
return true
}
// Short-circuit differently-typed key paths
if type(of: a) != type(of: b) {
return false
}
return unsafe a.withBuffer {
var aBuffer = unsafe $0
return unsafe b.withBuffer {
var bBuffer = unsafe $0
// Two equivalent key paths should have the same reference prefix
if unsafe aBuffer.hasReferencePrefix != bBuffer.hasReferencePrefix {
return false
}
// Identity is equal to identity
if unsafe aBuffer.data.isEmpty {
return unsafe bBuffer.data.isEmpty
}
while true {
let (aComponent, aType) = unsafe aBuffer.next()
let (bComponent, bType) = unsafe bBuffer.next()
if unsafe aComponent.header.endOfReferencePrefix
!= bComponent.header.endOfReferencePrefix
|| aComponent.value != bComponent.value
|| aType != bType {
return false
}
if aType == nil {
return true
}
}
fatalError()
}
}
}
}
/// A partially type-erased key path, from a concrete root type to any
/// resulting value type.
public class PartialKeyPath<Root>: AnyKeyPath { }
// MARK: Concrete implementations
internal enum KeyPathKind { case readOnly, value, reference }
/// A key path from a specific root type to a specific resulting value type.
///
/// The most common way to make an instance of this type
/// is by using a key-path expression like `\SomeClass.someProperty`.
/// For more information,
/// see [Key-Path Expressions][keypath] in *[The Swift Programming Language][tspl]*.
///
/// [keypath]: https://docs.swift.org/swift-book/ReferenceManual/Expressions.html#ID563
/// [tspl]: https://docs.swift.org/swift-book/
public class KeyPath<Root, Value>: PartialKeyPath<Root> {
@usableFromInline
internal final override class var _rootAndValueType: (
root: Any.Type,
value: Any.Type
) {
return (Root.self, Value.self)
}
// MARK: Implementation
internal typealias Kind = KeyPathKind
internal class var kind: Kind { return .readOnly }
internal static func appendedType<AppendedValue>(
with t: KeyPath<Value, AppendedValue>.Type
) -> KeyPath<Root, AppendedValue>.Type {
let resultKind: Kind
switch (self.kind, t.kind) {
case (_, .reference):
resultKind = .reference
case (let x, .value):
resultKind = x
default:
resultKind = .readOnly
}
switch resultKind {
case .readOnly:
return KeyPath<Root, AppendedValue>.self
case .value:
return WritableKeyPath.self
case .reference:
return ReferenceWritableKeyPath.self
}
}
@usableFromInline
@_unavailableInEmbedded
internal final func _projectReadOnly(from root: Root) -> Value {
let (rootType, valueType) = Self._rootAndValueType
// One performance improvement is to skip right to Value
// if this keypath traverses through structs only.
if let offset = getOffsetFromStorage() {
return unsafe _withUnprotectedUnsafeBytes(of: root) {
let pointer = unsafe $0.baseAddress._unsafelyUnwrappedUnchecked + offset
return unsafe pointer.assumingMemoryBound(to: Value.self).pointee
}
}
return unsafe withBuffer {
var buffer = unsafe $0
if unsafe _slowPath(buffer.data.isEmpty) {
return Builtin.reinterpretCast(root)
}
if unsafe _fastPath(buffer.isSingleComponent) {
var isBreak = false
let (rawComponent, _) = unsafe buffer.next()
return Builtin.emplace {
unsafe rawComponent._projectReadOnly(
root,
to: Value.self,
endingWith: Value.self,
&isBreak,
pointer: UnsafeMutablePointer<Value>($0)
)
}
}
let maxSize = unsafe buffer.maxSize
let roundedMaxSize = 1 &<< (Int.bitWidth &- maxSize.leadingZeroBitCount)
// 16 is the max alignment allowed on practically every platform we deploy
// to.
return unsafe _withUnprotectedUnsafeTemporaryAllocation(
byteCount: roundedMaxSize,
alignment: 16
) {
let currentValueBuffer = unsafe $0
unsafe currentValueBuffer.withMemoryRebound(to: Root.self) {
unsafe $0.initializeElement(at: 0, to: root)
}
var currentType = rootType
while true {
let (rawComponent, optNextType) = unsafe buffer.next()
let newType = optNextType ?? valueType
let isLast = optNextType == nil
var isBreak = false
func projectCurrent<Current>(_: Current.Type) {
func projectNew<New>(_: New.Type) {
let base = unsafe currentValueBuffer.withMemoryRebound(
to: Current.self
) {
unsafe $0.moveElement(from: 0)
}
unsafe currentValueBuffer.withMemoryRebound(to: New.self) {
unsafe rawComponent._projectReadOnly(
base,
to: New.self,
endingWith: Value.self,
&isBreak,
pointer: $0.baseAddress._unsafelyUnwrappedUnchecked
)
}
// If we've broken from the projection, it means we found nil
// while optional chaining.
guard _fastPath(!isBreak) else {
return
}
currentType = newType
if isLast {
_internalInvariant(
New.self == Value.self,
"key path does not terminate in correct type"
)
}
}
_openExistential(newType, do: projectNew(_:))
}
_openExistential(currentType, do: projectCurrent(_:))
if isLast || isBreak {
return unsafe currentValueBuffer.withMemoryRebound(to: Value.self) {
unsafe $0.moveElement(from: 0)
}
}
}
fatalError()
}
}
}
deinit {
#if !$Embedded
unsafe withBuffer { unsafe $0.destroy() }
#else
fatalError() // unreachable, keypaths in embedded Swift are compile-time
#endif
}
}
/// A key path that supports reading from and writing to the resulting value.
public class WritableKeyPath<Root, Value>: KeyPath<Root, Value> {
// MARK: Implementation detail
internal override class var kind: Kind { return .value }
// `base` is assumed to be undergoing a formal access for the duration of the
// call, so must not be mutated by an alias
@usableFromInline
@_unavailableInEmbedded
internal func _projectMutableAddress(from base: UnsafePointer<Root>)
-> (pointer: UnsafeMutablePointer<Value>, owner: AnyObject?) {
// One performance improvement is to skip right to Value
// if this keypath traverses through structs only.
// Don't declare "p" above this if-statement; it may slow things down.
if let offset = getOffsetFromStorage()
{
let p = unsafe UnsafeRawPointer(base).advanced(by: offset)
return unsafe (pointer: UnsafeMutablePointer(
mutating: p.assumingMemoryBound(to: Value.self)), owner: nil)
}
var p = unsafe UnsafeRawPointer(base)
var type: Any.Type = Root.self
var keepAlive: AnyObject?
return unsafe withBuffer {
var buffer = unsafe $0
unsafe _internalInvariant(!buffer.hasReferencePrefix,
"WritableKeyPath should not have a reference prefix")
if unsafe buffer.data.isEmpty {
return unsafe (
UnsafeMutablePointer<Value>(
mutating: p.assumingMemoryBound(to: Value.self)),
nil)
}
while true {
let (rawComponent, optNextType) = unsafe buffer.next()
let nextType = optNextType ?? Value.self
func project<CurValue>(_: CurValue.Type) {
func project2<NewValue>(_: NewValue.Type) {
unsafe p = unsafe rawComponent._projectMutableAddress(p,
from: CurValue.self,
to: NewValue.self,
isRoot: p == UnsafeRawPointer(base),
keepAlive: &keepAlive)
}
_openExistential(nextType, do: project2)
}
_openExistential(type, do: project)
if optNextType == nil { break }
type = nextType
}
// TODO: With coroutines, it would be better to yield here, so that
// we don't need the hack of the keepAlive reference to manage closing
// accesses.
let typedPointer = unsafe p.assumingMemoryBound(to: Value.self)
return unsafe (pointer: UnsafeMutablePointer(mutating: typedPointer),
owner: keepAlive)
}
}
}
/// A key path that supports reading from and writing to the resulting value
/// with reference semantics.
public class ReferenceWritableKeyPath<
Root, Value
>: WritableKeyPath<Root, Value> {
// MARK: Implementation detail
internal final override class var kind: Kind { return .reference }
@usableFromInline
@_unavailableInEmbedded
internal final func _projectMutableAddress(from origBase: Root)
-> (pointer: UnsafeMutablePointer<Value>, owner: AnyObject?) {
var keepAlive: AnyObject?
let address: UnsafeMutablePointer<Value> = unsafe withBuffer {
var buffer = unsafe $0
// Project out the reference prefix.
let maxSize = unsafe buffer.maxSize
let roundedMaxSize = 1 &<< (Int.bitWidth &- maxSize.leadingZeroBitCount)
// 16 is the max alignment allowed on practically every platform we deploy
// to.
let base: Any = unsafe _withUnprotectedUnsafeTemporaryAllocation(
byteCount: roundedMaxSize,
alignment: 16
) {
var currentType: Any.Type = Root.self
let currentValueBuffer = unsafe $0
unsafe currentValueBuffer.withMemoryRebound(to: Root.self) {
unsafe $0.initializeElement(at: 0, to: origBase)
}
while unsafe buffer.hasReferencePrefix {
let (rawComponent, optNextType) = unsafe buffer.next()
_internalInvariant(optNextType != nil,
"reference prefix should not go to end of buffer")
let nextType = optNextType._unsafelyUnwrappedUnchecked
func projectNew<New>(_: New.Type) {
func projectCurrent<Current>(_: Current.Type) {
var isBreak = false
let base = unsafe currentValueBuffer.withMemoryRebound(
to: Current.self
) {
unsafe $0.moveElement(from: 0)
}
unsafe currentValueBuffer.withMemoryRebound(to: New.self) {
unsafe rawComponent._projectReadOnly(
base,
to: New.self,
endingWith: Value.self,
&isBreak,
pointer: $0.baseAddress._unsafelyUnwrappedUnchecked
)
}
guard _fastPath(!isBreak) else {
_preconditionFailure("should not have stopped key path projection")
}
currentType = nextType
}
_openExistential(currentType, do: projectCurrent(_:))
}
_openExistential(nextType, do: projectNew(_:))
}
func projectCurrent<Current>(_: Current.Type) -> Any {
return unsafe currentValueBuffer.withMemoryRebound(to: Current.self) {
unsafe $0.moveElement(from: 0)
}
}
return _openExistential(currentType, do: projectCurrent(_:))
}
// Start formal access to the mutable value, based on the final base
// value.
func formalMutation<MutationRoot>(_ base: MutationRoot)
-> UnsafeMutablePointer<Value> {
var base2 = base
return unsafe withUnsafeBytes(of: &base2) { baseBytes in
var p = unsafe baseBytes.baseAddress.unsafelyUnwrapped
var curType: Any.Type = MutationRoot.self
while true {
let (rawComponent, optNextType) = unsafe buffer.next()
let nextType = optNextType ?? Value.self
func project<CurValue>(_: CurValue.Type) {
func project2<NewValue>(_: NewValue.Type) {
unsafe p = unsafe rawComponent._projectMutableAddress(p,
from: CurValue.self,
to: NewValue.self,
isRoot: p == baseBytes.baseAddress,
keepAlive: &keepAlive)
}
_openExistential(nextType, do: project2)
}
_openExistential(curType, do: project)
if optNextType == nil { break }
curType = nextType
}
let typedPointer = unsafe p.assumingMemoryBound(to: Value.self)
return unsafe UnsafeMutablePointer(mutating: typedPointer)
}
}
return _openExistential(base, do: formalMutation(_:))
}
return unsafe (address, keepAlive)
}
}
// MARK: Implementation details
internal enum KeyPathComponentKind {
/// The keypath references an externally-defined property or subscript whose
/// component describes how to interact with the key path.
case external
/// The keypath projects within the storage of the outer value, like a
/// stored property in a struct.
case `struct`
/// The keypath projects from the referenced pointer, like a
/// stored property in a class.
case `class`
/// The keypath projects using a getter/setter pair.
case computed
/// The keypath optional-chains, returning nil immediately if the input is
/// nil, or else proceeding by projecting the value inside.
case optionalChain
/// The keypath optional-forces, trapping if the input is
/// nil, or else proceeding by projecting the value inside.
case optionalForce
/// The keypath wraps a value in an optional.
case optionalWrap
}
internal struct ComputedPropertyID: Hashable {
internal var value: Int
internal var kind: KeyPathComputedIDKind
internal static func ==(
x: ComputedPropertyID, y: ComputedPropertyID
) -> Bool {
return x.value == y.value
&& x.kind == y.kind
}
internal func hash(into hasher: inout Hasher) {
hasher.combine(value)
hasher.combine(kind)
}
}
@_unavailableInEmbedded
@safe
internal struct ComputedAccessorsPtr {
#if INTERNAL_CHECKS_ENABLED
internal let header: RawKeyPathComponent.Header
#endif
internal let _value: UnsafeRawPointer
init(header: RawKeyPathComponent.Header, value: UnsafeRawPointer) {
#if INTERNAL_CHECKS_ENABLED
self.header = header
#endif
unsafe self._value = unsafe value
}
@_transparent
static var getterPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_Getter)
}
@_transparent
static var nonmutatingSetterPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_NonmutatingSetter)
}
@_transparent
static var mutatingSetterPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_MutatingSetter)
}
internal typealias Getter<CurValue, NewValue> = @convention(thin)
(CurValue, UnsafeRawPointer, Int) -> NewValue
internal typealias NonmutatingSetter<CurValue, NewValue> = @convention(thin)
(NewValue, CurValue, UnsafeRawPointer, Int) -> ()
internal typealias MutatingSetter<CurValue, NewValue> = @convention(thin)
(NewValue, inout CurValue, UnsafeRawPointer, Int) -> ()
internal var getterPtr: UnsafeRawPointer {
#if INTERNAL_CHECKS_ENABLED
_internalInvariant(header.kind == .computed,
"not a computed property")
#endif
return unsafe _value
}
internal var setterPtr: UnsafeRawPointer {
#if INTERNAL_CHECKS_ENABLED
_internalInvariant(header.isComputedSettable,
"not a settable property")
#endif
return unsafe _value + MemoryLayout<Int>.size
}
internal func getter<CurValue, NewValue>()
-> Getter<CurValue, NewValue> {
return unsafe getterPtr._loadAddressDiscriminatedFunctionPointer(
as: Getter.self,
discriminator: ComputedAccessorsPtr.getterPtrAuthKey)
}
internal func nonmutatingSetter<CurValue, NewValue>()
-> NonmutatingSetter<CurValue, NewValue> {
#if INTERNAL_CHECKS_ENABLED
_internalInvariant(header.isComputedSettable && !header.isComputedMutating,
"not a nonmutating settable property")
#endif
return unsafe setterPtr._loadAddressDiscriminatedFunctionPointer(
as: NonmutatingSetter.self,
discriminator: ComputedAccessorsPtr.nonmutatingSetterPtrAuthKey)
}
internal func mutatingSetter<CurValue, NewValue>()
-> MutatingSetter<CurValue, NewValue> {
#if INTERNAL_CHECKS_ENABLED
_internalInvariant(header.isComputedSettable && header.isComputedMutating,
"not a mutating settable property")
#endif
return unsafe setterPtr._loadAddressDiscriminatedFunctionPointer(
as: MutatingSetter.self,
discriminator: ComputedAccessorsPtr.mutatingSetterPtrAuthKey)
}
}
@_unavailableInEmbedded
@unsafe
internal struct ComputedArgumentWitnessesPtr {
internal let _value: UnsafeRawPointer
init(_ value: UnsafeRawPointer) {
unsafe self._value = unsafe value
}
@_transparent
static var destroyPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentDestroy)
}
@_transparent
static var copyPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentCopy)
}
@_transparent
static var equalsPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentEquals)
}
@_transparent
static var hashPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentHash)
}
@_transparent
static var layoutPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentLayout)
}
@_transparent
static var initPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_ArgumentInit)
}
internal typealias Destroy = @convention(thin)
(_ instanceArguments: UnsafeMutableRawPointer, _ size: Int) -> ()
internal typealias Copy = @convention(thin)
(_ srcInstanceArguments: UnsafeRawPointer,
_ destInstanceArguments: UnsafeMutableRawPointer,
_ size: Int) -> ()
internal typealias Equals = @convention(thin)
(_ xInstanceArguments: UnsafeRawPointer,
_ yInstanceArguments: UnsafeRawPointer,
_ size: Int) -> Bool
// FIXME(hasher) Combine to an inout Hasher instead
internal typealias Hash = @convention(thin)
(_ instanceArguments: UnsafeRawPointer,
_ size: Int) -> Int
// The witnesses are stored as address-discriminated authenticated
// pointers.
internal var destroy: Destroy? {
return unsafe _value._loadAddressDiscriminatedFunctionPointer(
as: Optional<Destroy>.self,
discriminator: ComputedArgumentWitnessesPtr.destroyPtrAuthKey)
}
internal var copy: Copy {
return unsafe _value._loadAddressDiscriminatedFunctionPointer(
fromByteOffset: MemoryLayout<UnsafeRawPointer>.size,
as: Copy.self,
discriminator: ComputedArgumentWitnessesPtr.copyPtrAuthKey)
}
internal var equals: Equals {
return unsafe _value._loadAddressDiscriminatedFunctionPointer(
fromByteOffset: 2*MemoryLayout<UnsafeRawPointer>.size,
as: Equals.self,
discriminator: ComputedArgumentWitnessesPtr.equalsPtrAuthKey)
}
internal var hash: Hash {
return unsafe _value._loadAddressDiscriminatedFunctionPointer(
fromByteOffset: 3*MemoryLayout<UnsafeRawPointer>.size,
as: Hash.self,
discriminator: ComputedArgumentWitnessesPtr.hashPtrAuthKey)
}
}
@_unavailableInEmbedded
@safe
internal enum KeyPathComponent {
@unsafe
internal struct ArgumentRef {
internal var data: UnsafeRawBufferPointer
internal var witnesses: ComputedArgumentWitnessesPtr
internal var witnessSizeAdjustment: Int
internal init(
data: UnsafeRawBufferPointer,
witnesses: ComputedArgumentWitnessesPtr,
witnessSizeAdjustment: Int
) {
unsafe self.data = unsafe data
unsafe self.witnesses = unsafe witnesses
unsafe self.witnessSizeAdjustment = witnessSizeAdjustment
}
}
/// The keypath projects within the storage of the outer value, like a
/// stored property in a struct.
case `struct`(offset: Int)
/// The keypath projects from the referenced pointer, like a
/// stored property in a class.
case `class`(offset: Int)
/// The keypath projects using a getter.
case get(id: ComputedPropertyID,
accessors: ComputedAccessorsPtr,
argument: ArgumentRef?)
/// The keypath projects using a getter/setter pair. The setter can mutate
/// the base value in-place.
case mutatingGetSet(id: ComputedPropertyID,
accessors: ComputedAccessorsPtr,
argument: ArgumentRef?)
/// The keypath projects using a getter/setter pair that does not mutate its
/// base.
case nonmutatingGetSet(id: ComputedPropertyID,
accessors: ComputedAccessorsPtr,
argument: ArgumentRef?)
/// The keypath optional-chains, returning nil immediately if the input is
/// nil, or else proceeding by projecting the value inside.
case optionalChain
/// The keypath optional-forces, trapping if the input is
/// nil, or else proceeding by projecting the value inside.
case optionalForce
/// The keypath wraps a value in an optional.
case optionalWrap
}
@_unavailableInEmbedded
extension KeyPathComponent: @unsafe Hashable {
internal static func ==(a: KeyPathComponent, b: KeyPathComponent) -> Bool {
switch (a, b) {
case (.struct(offset: let a), .struct(offset: let b)),
(.class (offset: let a), .class (offset: let b)):
return a == b
case (.optionalChain, .optionalChain),
(.optionalForce, .optionalForce),
(.optionalWrap, .optionalWrap):
return true
case (.get(id: let id1, accessors: _, argument: let argument1),
.get(id: let id2, accessors: _, argument: let argument2)),
(.mutatingGetSet(id: let id1, accessors: _, argument: let argument1),
.mutatingGetSet(id: let id2, accessors: _, argument: let argument2)),
(.nonmutatingGetSet(id: let id1, accessors: _, argument: let argument1),
.nonmutatingGetSet(id: let id2, accessors: _, argument: let argument2)):
if id1 != id2 {
return false
}
if let arg1 = unsafe argument1, let arg2 = unsafe argument2 {
return unsafe arg1.witnesses.equals(
arg1.data.baseAddress.unsafelyUnwrapped,
arg2.data.baseAddress.unsafelyUnwrapped,
arg1.data.count - arg1.witnessSizeAdjustment)
}
// If only one component has arguments, that should indicate that the
// only arguments in that component were generic captures and therefore
// not affecting equality.
return true
case (.struct, _),
(.class, _),
(.optionalChain, _),
(.optionalForce, _),
(.optionalWrap, _),
(.get, _),
(.mutatingGetSet, _),
(.nonmutatingGetSet, _):
return false
}
}
@_effects(releasenone)
internal func hash(into hasher: inout Hasher) {
func appendHashFromArgument(
_ argument: KeyPathComponent.ArgumentRef?
) {
if let argument = unsafe argument {
let hash = unsafe argument.witnesses.hash(
argument.data.baseAddress.unsafelyUnwrapped,
argument.data.count - argument.witnessSizeAdjustment)
// Returning 0 indicates that the arguments should not impact the
// hash value of the overall key path.
// FIXME(hasher): hash witness should just mutate hasher directly
if hash != 0 {
hasher.combine(hash)
}
}
}
switch self {
case .struct(offset: let a):
hasher.combine(0)
hasher.combine(a)
case .class(offset: let b):
hasher.combine(1)
hasher.combine(b)
case .optionalChain:
hasher.combine(2)
case .optionalForce:
hasher.combine(3)
case .optionalWrap:
hasher.combine(4)
case .get(id: let id, accessors: _, argument: let argument):
hasher.combine(5)
hasher.combine(id)
unsafe appendHashFromArgument(argument)
case .mutatingGetSet(id: let id, accessors: _, argument: let argument):
hasher.combine(6)
hasher.combine(id)
unsafe appendHashFromArgument(argument)
case .nonmutatingGetSet(id: let id, accessors: _, argument: let argument):
hasher.combine(7)
hasher.combine(id)
unsafe appendHashFromArgument(argument)
}
}
}
// A class that maintains ownership of another object while a mutable projection
// into it is underway. The lifetime of the instance of this class is also used
// to begin and end exclusive 'modify' access to the projected address.
internal final class ClassHolder<ProjectionType> {
/// The type of the scratch record passed to the runtime to record
/// accesses to guarantee exclusive access.
internal typealias AccessRecord = Builtin.UnsafeValueBuffer
internal var previous: AnyObject?
internal var instance: AnyObject
internal init(previous: AnyObject?, instance: AnyObject) {
self.previous = previous
self.instance = instance
}
internal final class func _create(
previous: AnyObject?,
instance: AnyObject,
accessingAddress address: UnsafeRawPointer,
type: ProjectionType.Type
) -> ClassHolder {
// Tail allocate the UnsafeValueBuffer used as the AccessRecord.
// This avoids a second heap allocation since there is no source-level way to
// initialize a Builtin.UnsafeValueBuffer type and thus we cannot have a
// stored property of that type.
let holder: ClassHolder = Builtin.allocWithTailElems_1(self,
1._builtinWordValue,
AccessRecord.self)
// Initialize the ClassHolder's instance variables. This is done via
// withUnsafeMutablePointer(to:) because the instance was just allocated with
// allocWithTailElems_1 and so we need to make sure to use an initialization
// rather than an assignment.
unsafe withUnsafeMutablePointer(to: &holder.previous) {
unsafe $0.initialize(to: previous)
}
unsafe withUnsafeMutablePointer(to: &holder.instance) {
unsafe $0.initialize(to: instance)
}
let accessRecordPtr = Builtin.projectTailElems(holder, AccessRecord.self)
// Begin a 'modify' access to the address. This access is ended in
// ClassHolder's deinitializer.
Builtin.beginUnpairedModifyAccess(address._rawValue, accessRecordPtr, type)
return holder
}
deinit {
let accessRecordPtr = Builtin.projectTailElems(self, AccessRecord.self)
// Ends the access begun in _create().
Builtin.endUnpairedAccess(accessRecordPtr)
}
}
// A class that triggers writeback to a pointer when destroyed.
@_unavailableInEmbedded
@unsafe
internal final class MutatingWritebackBuffer<CurValue, NewValue> {
internal let previous: AnyObject?
internal let base: UnsafeMutablePointer<CurValue>
internal let set: ComputedAccessorsPtr.MutatingSetter<CurValue, NewValue>
internal let argument: UnsafeRawPointer
internal let argumentSize: Int
internal var value: NewValue
deinit {
unsafe set(value, &base.pointee, argument, argumentSize)
}
internal init(previous: AnyObject?,
base: UnsafeMutablePointer<CurValue>,
set: @escaping ComputedAccessorsPtr.MutatingSetter<CurValue, NewValue>,
argument: UnsafeRawPointer,
argumentSize: Int,
value: NewValue) {
unsafe self.previous = previous
unsafe self.base = unsafe base
unsafe self.set = unsafe set
unsafe self.argument = unsafe argument
unsafe self.argumentSize = argumentSize
unsafe self.value = value
}
}
// A class that triggers writeback to a non-mutated value when destroyed.
@_unavailableInEmbedded
@unsafe
internal final class NonmutatingWritebackBuffer<CurValue, NewValue> {
internal let previous: AnyObject?
internal let base: CurValue
internal let set: ComputedAccessorsPtr.NonmutatingSetter<CurValue, NewValue>
internal let argument: UnsafeRawPointer
internal let argumentSize: Int
internal var value: NewValue
deinit {
unsafe set(value, base, argument, argumentSize)
}
internal
init(previous: AnyObject?,
base: CurValue,
set: @escaping ComputedAccessorsPtr.NonmutatingSetter<CurValue, NewValue>,
argument: UnsafeRawPointer,
argumentSize: Int,
value: NewValue) {
unsafe self.previous = previous
unsafe self.base = base
unsafe self.set = unsafe set
unsafe self.argument = unsafe argument
unsafe self.argumentSize = argumentSize
unsafe self.value = value
}
}
internal typealias KeyPathComputedArgumentLayoutFn = @convention(thin)
(_ patternArguments: UnsafeRawPointer?) -> (size: Int, alignmentMask: Int)
internal typealias KeyPathComputedArgumentInitializerFn = @convention(thin)
(_ patternArguments: UnsafeRawPointer?,
_ instanceArguments: UnsafeMutableRawPointer) -> ()
internal enum KeyPathComputedIDKind {
case pointer
case storedPropertyIndex
case vtableOffset
}
internal enum KeyPathComputedIDResolution {
case resolved
case resolvedAbsolute
case indirectPointer
case functionCall
}
@_unavailableInEmbedded
@safe
internal struct RawKeyPathComponent {
@safe internal var header: Header
internal var body: UnsafeRawBufferPointer
internal init(header: Header, body: UnsafeRawBufferPointer) {
self.header = header
unsafe self.body = unsafe body
}
@_transparent
static var metadataAccessorPtrAuthKey: UInt64 {
return UInt64(_SwiftKeyPath_ptrauth_MetadataAccessor)
}
internal struct Header {
internal var _value: UInt32
init(discriminator: UInt32, payload: UInt32) {
_value = 0
self.discriminator = discriminator
self.payload = payload
}
internal var discriminator: UInt32 {
get {
return (_value & Header.discriminatorMask) &>> Header.discriminatorShift
}
set {
let shifted = newValue &<< Header.discriminatorShift
_internalInvariant(shifted & Header.discriminatorMask == shifted,
"discriminator doesn't fit")
_value = _value & ~Header.discriminatorMask | shifted
}
}
internal var payload: UInt32 {
get {
return _value & Header.payloadMask
}
set {
_internalInvariant(newValue & Header.payloadMask == newValue,
"payload too big")
_value = _value & ~Header.payloadMask | newValue
}
}
internal var storedOffsetPayload: UInt32 {
get {
_internalInvariant(kind == .struct || kind == .class,
"not a stored component")
return _value & Header.storedOffsetPayloadMask
}
set {
_internalInvariant(kind == .struct || kind == .class,
"not a stored component")
_internalInvariant(newValue & Header.storedOffsetPayloadMask == newValue,
"payload too big")
_value = _value & ~Header.storedOffsetPayloadMask | newValue
}
}
internal var endOfReferencePrefix: Bool {
get {
return _value & Header.endOfReferencePrefixFlag != 0
}
set {
if newValue {
_value |= Header.endOfReferencePrefixFlag
} else {
_value &= ~Header.endOfReferencePrefixFlag
}
}
}
internal var kind: KeyPathComponentKind {
switch (discriminator, payload) {
case (Header.externalTag, _):
return .external
case (Header.structTag, _):
return .struct
case (Header.classTag, _):
return .class
case (Header.computedTag, _):
return .computed
case (Header.optionalTag, Header.optionalChainPayload):
return .optionalChain
case (Header.optionalTag, Header.optionalWrapPayload):
return .optionalWrap
case (Header.optionalTag, Header.optionalForcePayload):
return .optionalForce
default:
_internalInvariantFailure("invalid header")
}
}
internal static var payloadMask: UInt32 {
return _SwiftKeyPathComponentHeader_PayloadMask
}
internal static var discriminatorMask: UInt32 {
return _SwiftKeyPathComponentHeader_DiscriminatorMask
}
internal static var discriminatorShift: UInt32 {
return _SwiftKeyPathComponentHeader_DiscriminatorShift
}
internal static var externalTag: UInt32 {
return _SwiftKeyPathComponentHeader_ExternalTag
}
internal static var structTag: UInt32 {
return _SwiftKeyPathComponentHeader_StructTag
}
internal static var computedTag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedTag
}
internal static var classTag: UInt32 {
return _SwiftKeyPathComponentHeader_ClassTag
}
internal static var optionalTag: UInt32 {
return _SwiftKeyPathComponentHeader_OptionalTag
}
internal static var optionalChainPayload: UInt32 {
return _SwiftKeyPathComponentHeader_OptionalChainPayload
}
internal static var optionalWrapPayload: UInt32 {
return _SwiftKeyPathComponentHeader_OptionalWrapPayload
}
internal static var optionalForcePayload: UInt32 {
return _SwiftKeyPathComponentHeader_OptionalForcePayload
}
internal static var endOfReferencePrefixFlag: UInt32 {
return _SwiftKeyPathComponentHeader_EndOfReferencePrefixFlag
}
internal static var storedMutableFlag: UInt32 {
return _SwiftKeyPathComponentHeader_StoredMutableFlag
}
internal static var storedOffsetPayloadMask: UInt32 {
return _SwiftKeyPathComponentHeader_StoredOffsetPayloadMask
}
internal static var outOfLineOffsetPayload: UInt32 {
return _SwiftKeyPathComponentHeader_OutOfLineOffsetPayload
}
internal static var unresolvedFieldOffsetPayload: UInt32 {
return _SwiftKeyPathComponentHeader_UnresolvedFieldOffsetPayload
}
internal static var unresolvedIndirectOffsetPayload: UInt32 {
return _SwiftKeyPathComponentHeader_UnresolvedIndirectOffsetPayload
}
internal static var maximumOffsetPayload: UInt32 {
return _SwiftKeyPathComponentHeader_MaximumOffsetPayload
}
internal var isStoredMutable: Bool {
_internalInvariant(kind == .struct || kind == .class)
return _value & Header.storedMutableFlag != 0
}
internal static var computedMutatingFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedMutatingFlag
}
internal var isComputedMutating: Bool {
_internalInvariant(kind == .computed)
return _value & Header.computedMutatingFlag != 0
}
internal static var computedSettableFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedSettableFlag
}
internal var isComputedSettable: Bool {
_internalInvariant(kind == .computed)
return _value & Header.computedSettableFlag != 0
}
internal static var computedIDByStoredPropertyFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDByStoredPropertyFlag
}
internal static var computedIDByVTableOffsetFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDByVTableOffsetFlag
}
internal var computedIDKind: KeyPathComputedIDKind {
let storedProperty = _value & Header.computedIDByStoredPropertyFlag != 0
let vtableOffset = _value & Header.computedIDByVTableOffsetFlag != 0
switch (storedProperty, vtableOffset) {
case (true, true):
_internalInvariantFailure("not allowed")
case (true, false):
return .storedPropertyIndex
case (false, true):
return .vtableOffset
case (false, false):
return .pointer
}
}
internal static var computedHasArgumentsFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedHasArgumentsFlag
}
internal var hasComputedArguments: Bool {
_internalInvariant(kind == .computed)
return _value & Header.computedHasArgumentsFlag != 0
}
// If a computed component is instantiated from an external property
// descriptor, and both components carry arguments, we need to carry some
// extra matter to be able to map between the client and external generic
// contexts.
internal static var computedInstantiatedFromExternalWithArgumentsFlag: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedInstantiatedFromExternalWithArgumentsFlag
}
internal var isComputedInstantiatedFromExternalWithArguments: Bool {
get {
_internalInvariant(kind == .computed)
return
_value & Header.computedInstantiatedFromExternalWithArgumentsFlag != 0
}
set {
_internalInvariant(kind == .computed)
_value =
_value & ~Header.computedInstantiatedFromExternalWithArgumentsFlag
| (newValue ? Header.computedInstantiatedFromExternalWithArgumentsFlag
: 0)
}
}
internal static var externalWithArgumentsExtraSize: Int {
return MemoryLayout<Int>.size
}
internal static var computedIDResolutionMask: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDResolutionMask
}
internal static var computedIDResolved: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDResolved
}
internal static var computedIDResolvedAbsolute: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDResolvedAbsolute
}
internal static var computedIDUnresolvedIndirectPointer: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDUnresolvedIndirectPointer
}
internal static var computedIDUnresolvedFunctionCall: UInt32 {
return _SwiftKeyPathComponentHeader_ComputedIDUnresolvedFunctionCall
}
internal var computedIDResolution: KeyPathComputedIDResolution {
switch payload & Header.computedIDResolutionMask {
case Header.computedIDResolved:
return .resolved
case Header.computedIDResolvedAbsolute:
return .resolvedAbsolute
case Header.computedIDUnresolvedIndirectPointer:
return .indirectPointer
case Header.computedIDUnresolvedFunctionCall:
return .functionCall
default:
_internalInvariantFailure("invalid key path resolution")
}
}
// The component header is 4 bytes, but may be followed by an aligned
// pointer field for some kinds of component, forcing padding.
internal static var pointerAlignmentSkew: Int {
return MemoryLayout<Int>.size &- MemoryLayout<Int32>.size
}
internal var isTrivialPropertyDescriptor: Bool {
return _value ==
_SwiftKeyPathComponentHeader_TrivialPropertyDescriptorMarker
}
/// If this is the header for a component in a key path pattern, return
/// the size of the body of the component.
internal var patternComponentBodySize: Int {
return _componentBodySize(forPropertyDescriptor: false)
}
/// If this is the header for a property descriptor, return
/// the size of the body of the component.
internal var propertyDescriptorBodySize: Int {
if isTrivialPropertyDescriptor { return 0 }
return _componentBodySize(forPropertyDescriptor: true)
}
internal func _componentBodySize(forPropertyDescriptor: Bool) -> Int {
switch kind {
case .struct, .class:
if storedOffsetPayload == Header.unresolvedFieldOffsetPayload
|| storedOffsetPayload == Header.outOfLineOffsetPayload
|| storedOffsetPayload == Header.unresolvedIndirectOffsetPayload {
// A 32-bit offset is stored in the body.
return MemoryLayout<UInt32>.size
}
// Otherwise, there's no body.
return 0
case .external:
// The body holds a pointer to the external property descriptor,
// and some number of substitution arguments, the count of which is
// in the payload.
return 4 &* (1 &+ Int(payload))
case .computed:
// The body holds at minimum the id and getter.
var size = 8
// If settable, it also holds the setter.
if isComputedSettable {
size &+= 4
}
// If there are arguments, there's also a layout function,
// witness table, and initializer function.
// Property descriptors never carry argument information, though.
if !forPropertyDescriptor && hasComputedArguments {
size &+= 12
}
return size
case .optionalForce, .optionalChain, .optionalWrap:
// Otherwise, there's no body.
return 0
}
}
init(optionalForce: ()) {
self.init(discriminator: Header.optionalTag,
payload: Header.optionalForcePayload)
}
init(optionalWrap: ()) {
self.init(discriminator: Header.optionalTag,
payload: Header.optionalWrapPayload)
}
init(optionalChain: ()) {
self.init(discriminator: Header.optionalTag,
payload: Header.optionalChainPayload)
}
init(stored kind: KeyPathStructOrClass,
mutable: Bool,
inlineOffset: UInt32) {
let discriminator: UInt32
switch kind {
case .struct: discriminator = Header.structTag
case .class: discriminator = Header.classTag
}
_internalInvariant(inlineOffset <= Header.maximumOffsetPayload)
let payload = inlineOffset
| (mutable ? Header.storedMutableFlag : 0)
self.init(discriminator: discriminator,
payload: payload)
}
init(storedWithOutOfLineOffset kind: KeyPathStructOrClass,
mutable: Bool) {
let discriminator: UInt32
switch kind {
case .struct: discriminator = Header.structTag
case .class: discriminator = Header.classTag
}
let payload = Header.outOfLineOffsetPayload
| (mutable ? Header.storedMutableFlag : 0)
self.init(discriminator: discriminator,
payload: payload)
}
init(computedWithIDKind kind: KeyPathComputedIDKind,
mutating: Bool,
settable: Bool,
hasArguments: Bool,
instantiatedFromExternalWithArguments: Bool) {
let discriminator = Header.computedTag
var payload =
(mutating ? Header.computedMutatingFlag : 0)
| (settable ? Header.computedSettableFlag : 0)
| (hasArguments ? Header.computedHasArgumentsFlag : 0)
| (instantiatedFromExternalWithArguments
? Header.computedInstantiatedFromExternalWithArgumentsFlag : 0)
switch kind {
case .pointer:
break
case .storedPropertyIndex:
payload |= Header.computedIDByStoredPropertyFlag
case .vtableOffset:
payload |= Header.computedIDByVTableOffsetFlag
}
self.init(discriminator: discriminator,
payload: payload)
}
}
internal var bodySize: Int {
let ptrSize = MemoryLayout<Int>.size
switch header.kind {
case .struct, .class:
if header.storedOffsetPayload == Header.outOfLineOffsetPayload {
return 4 // overflowed
}
return 0
case .external:
_internalInvariantFailure("should be instantiated away")
case .optionalChain, .optionalForce, .optionalWrap:
return 0
case .computed:
// align to pointer, minimum two pointers for id and get
var total = Header.pointerAlignmentSkew &+ ptrSize &* 2
// additional word for a setter
if header.isComputedSettable {
total &+= ptrSize
}
// include the argument size
if header.hasComputedArguments {
// two words for argument header: size, witnesses
total &+= ptrSize &* 2
// size of argument area
total &+= _computedArgumentSize
if header.isComputedInstantiatedFromExternalWithArguments {
total &+= Header.externalWithArgumentsExtraSize
}
}
return total
}
}
internal var _structOrClassOffset: Int {
_internalInvariant(header.kind == .struct || header.kind == .class,
"no offset for this kind")
// An offset too large to fit inline is represented by a signal and stored
// in the body.
if header.storedOffsetPayload == Header.outOfLineOffsetPayload {
// Offset overflowed into body
unsafe _internalInvariant(body.count >= MemoryLayout<UInt32>.size,
"component not big enough")
return Int(truncatingIfNeeded: unsafe body.load(as: UInt32.self))
}
return Int(truncatingIfNeeded: header.storedOffsetPayload)
}
internal var _computedIDValue: Int {
_internalInvariant(header.kind == .computed,
"not a computed property")
return unsafe body.load(fromByteOffset: Header.pointerAlignmentSkew,
as: Int.self)
}
internal var _computedID: ComputedPropertyID {
_internalInvariant(header.kind == .computed,
"not a computed property")
return ComputedPropertyID(
value: _computedIDValue,
kind: header.computedIDKind)
}
internal var _computedAccessors: ComputedAccessorsPtr {
_internalInvariant(header.kind == .computed,
"not a computed property")
return unsafe ComputedAccessorsPtr(
header: header,
value: body.baseAddress._unsafelyUnwrappedUnchecked +
Header.pointerAlignmentSkew + MemoryLayout<Int>.size)
}
internal var _computedArgumentHeaderPointer: UnsafeRawPointer {
_internalInvariant(header.hasComputedArguments, "no arguments")
return unsafe body.baseAddress._unsafelyUnwrappedUnchecked
+ Header.pointerAlignmentSkew
+ MemoryLayout<Int>.size &*
(header.isComputedSettable ? 3 : 2)
}
internal var _computedArgumentSize: Int {
return unsafe _computedArgumentHeaderPointer.load(as: Int.self)
}
internal
var _computedArgumentWitnesses: ComputedArgumentWitnessesPtr {
return unsafe _computedArgumentHeaderPointer.load(
fromByteOffset: MemoryLayout<Int>.size,
as: ComputedArgumentWitnessesPtr.self)
}
internal var _computedArguments: UnsafeRawPointer {
var base = unsafe _computedArgumentHeaderPointer + MemoryLayout<Int>.size &* 2
// If the component was instantiated from an external property descriptor
// with its own arguments, we include some additional capture info to
// be able to map to the original argument context by adjusting the size
// passed to the witness operations.
if header.isComputedInstantiatedFromExternalWithArguments {
unsafe base += Header.externalWithArgumentsExtraSize
}
return unsafe base
}
internal var _computedMutableArguments: UnsafeMutableRawPointer {
return unsafe UnsafeMutableRawPointer(mutating: _computedArguments)
}
internal var _computedArgumentWitnessSizeAdjustment: Int {
if header.isComputedInstantiatedFromExternalWithArguments {
return unsafe _computedArguments.load(
fromByteOffset: 0 &- Header.externalWithArgumentsExtraSize,
as: Int.self)
}
return 0
}
internal var value: KeyPathComponent {
switch header.kind {
case .struct:
return .struct(offset: _structOrClassOffset)
case .class:
return .class(offset: _structOrClassOffset)
case .optionalChain:
return .optionalChain
case .optionalForce:
return .optionalForce
case .optionalWrap:
return .optionalWrap
case .computed:
let isSettable = header.isComputedSettable
let isMutating = header.isComputedMutating
let id = _computedID
let accessors = _computedAccessors
// Argument value is unused if there are no arguments.
let argument: KeyPathComponent.ArgumentRef?
if header.hasComputedArguments {
unsafe argument = unsafe KeyPathComponent.ArgumentRef(
data: UnsafeRawBufferPointer(start: _computedArguments,
count: _computedArgumentSize),
witnesses: _computedArgumentWitnesses,
witnessSizeAdjustment: _computedArgumentWitnessSizeAdjustment)
} else {
unsafe argument = nil
}
switch (isSettable, isMutating) {
case (false, false):
return unsafe .get(id: id, accessors: accessors, argument: argument)
case (true, false):
return unsafe .nonmutatingGetSet(id: id,
accessors: accessors,
argument: argument)
case (true, true):
return unsafe .mutatingGetSet(id: id,
accessors: accessors,
argument: argument)
case (false, true):
_internalInvariantFailure("impossible")
}
case .external:
_internalInvariantFailure("should have been instantiated away")
}
}
internal func destroy() {
switch header.kind {
case .struct,
.class,
.optionalChain,
.optionalForce,
.optionalWrap:
// trivial
break
case .computed:
// Run destructor, if any
if header.hasComputedArguments,
let destructor = unsafe _computedArgumentWitnesses.destroy {
unsafe destructor(_computedMutableArguments,
_computedArgumentSize &- _computedArgumentWitnessSizeAdjustment)
}
case .external:
_internalInvariantFailure("should have been instantiated away")
}
}
internal func clone(into buffer: inout UnsafeMutableRawBufferPointer,
endOfReferencePrefix: Bool) {
var newHeader = header
newHeader.endOfReferencePrefix = endOfReferencePrefix
var componentSize = MemoryLayout<Header>.size
unsafe buffer.storeBytes(of: newHeader, as: Header.self)
switch header.kind {
case .struct,
.class:
if header.storedOffsetPayload == Header.outOfLineOffsetPayload {
let overflowOffset = unsafe body.load(as: UInt32.self)
unsafe buffer.storeBytes(of: overflowOffset, toByteOffset: 4,
as: UInt32.self)
componentSize += 4
}
case .optionalChain,
.optionalForce,
.optionalWrap:
break
case .computed:
// Fields are pointer-aligned after the header
componentSize += Header.pointerAlignmentSkew
unsafe buffer.storeBytes(of: _computedIDValue,
toByteOffset: componentSize,
as: Int.self)
componentSize += MemoryLayout<Int>.size
let accessors = _computedAccessors
unsafe (buffer.baseAddress.unsafelyUnwrapped + MemoryLayout<Int>.size * 2)
._copyAddressDiscriminatedFunctionPointer(
from: accessors.getterPtr,
discriminator: ComputedAccessorsPtr.getterPtrAuthKey)
componentSize += MemoryLayout<Int>.size
if header.isComputedSettable {
unsafe (buffer.baseAddress.unsafelyUnwrapped + MemoryLayout<Int>.size * 3)
._copyAddressDiscriminatedFunctionPointer(
from: accessors.setterPtr,
discriminator: header.isComputedMutating
? ComputedAccessorsPtr.mutatingSetterPtrAuthKey
: ComputedAccessorsPtr.nonmutatingSetterPtrAuthKey)
componentSize += MemoryLayout<Int>.size
}
if header.hasComputedArguments {
let arguments = unsafe _computedArguments
let argumentSize = _computedArgumentSize
unsafe buffer.storeBytes(of: argumentSize,
toByteOffset: componentSize,
as: Int.self)
componentSize += MemoryLayout<Int>.size
unsafe buffer.storeBytes(of: _computedArgumentWitnesses,
toByteOffset: componentSize,
as: ComputedArgumentWitnessesPtr.self)
componentSize += MemoryLayout<Int>.size
if header.isComputedInstantiatedFromExternalWithArguments {
// Include the extra matter for components instantiated from
// external property descriptors with arguments.
unsafe buffer.storeBytes(of: _computedArgumentWitnessSizeAdjustment,
toByteOffset: componentSize,
as: Int.self)
componentSize += MemoryLayout<Int>.size
}
let adjustedSize = argumentSize - _computedArgumentWitnessSizeAdjustment
let argumentDest =
unsafe buffer.baseAddress.unsafelyUnwrapped + componentSize
unsafe _computedArgumentWitnesses.copy(
arguments,
argumentDest,
adjustedSize)
if header.isComputedInstantiatedFromExternalWithArguments {
// The extra information for external property descriptor arguments
// can always be memcpy'd.
unsafe _memcpy(dest: argumentDest + adjustedSize,
src: arguments + adjustedSize,
size: UInt(_computedArgumentWitnessSizeAdjustment))
}
componentSize += argumentSize
}
case .external:
_internalInvariantFailure("should have been instantiated away")
}
unsafe buffer = unsafe UnsafeMutableRawBufferPointer(
start: buffer.baseAddress.unsafelyUnwrapped + componentSize,
count: buffer.count - componentSize)
}
internal func _projectReadOnly<CurValue, NewValue, LeafValue>(
_ base: CurValue,
to: NewValue.Type,
endingWith: LeafValue.Type,
_ isBreak: inout Bool,
pointer: UnsafeMutablePointer<NewValue>
) {
switch value {
case .struct(let offset):
unsafe _withUnprotectedUnsafeBytes(of: base) {
let p = unsafe $0.baseAddress._unsafelyUnwrappedUnchecked + offset
// The contents of the struct should be well-typed, so we can assume
// typed memory here.
unsafe pointer.initialize(to: p.assumingMemoryBound(to: NewValue.self).pointee)
}
case .class(let offset):
_internalInvariant(CurValue.self is AnyObject.Type,
"base is not a class")
let baseObj: AnyObject = Builtin.reinterpretCast(base)
let basePtr = UnsafeRawPointer(Builtin.bridgeToRawPointer(baseObj))
defer { _fixLifetime(baseObj) }
let offsetAddress = unsafe basePtr.advanced(by: offset)
// Perform an instantaneous record access on the address in order to
// ensure that the read will not conflict with an already in-progress
// 'modify' access.
Builtin.performInstantaneousReadAccess(offsetAddress._rawValue,
NewValue.self)
unsafe pointer.initialize(
to: offsetAddress.assumingMemoryBound(to: NewValue.self).pointee
)
case .get(id: _, accessors: let accessors, argument: let argument),
.mutatingGetSet(id: _, accessors: let accessors, argument: let argument),
.nonmutatingGetSet(id: _, accessors: let accessors, argument: let argument):
let getter: ComputedAccessorsPtr.Getter<CurValue, NewValue> = accessors.getter()
unsafe pointer.initialize(
to: getter(
base,
argument?.data.baseAddress ?? accessors._value,
argument?.data.count ?? 0
)
)
case .optionalChain:
_internalInvariant(CurValue.self == Optional<NewValue>.self,
"should be unwrapping optional value")
_internalInvariant(_isOptional(LeafValue.self),
"leaf result should be optional")
// Optional's tags are some = 0, none = 1
let tag = UInt32(Builtin.getEnumTag(base))
if _fastPath(tag == 0) {
// Optional "shares" a layout with its Wrapped type meaning we can
// reinterpret the base address as an address to its Wrapped value.
unsafe pointer.initialize(to: Builtin.reinterpretCast(base))
return
}
// We found nil.
isBreak = true
// Initialize the leaf optional value by simply injecting the tag (which
// we've found to be 1) directly.
unsafe pointer.withMemoryRebound(to: LeafValue.self, capacity: 1) {
unsafe Builtin.injectEnumTag(
&$0.pointee,
tag._value
)
}
case .optionalForce:
_internalInvariant(CurValue.self == Optional<NewValue>.self,
"should be unwrapping optional value")
// Optional's tags are some = 0, none = 1
let tag = UInt32(Builtin.getEnumTag(base))
if _fastPath(tag == 0) {
// Optional "shares" a layout with its Wrapped type meaning we can
// reinterpret the base address as an address to its Wrapped value.
unsafe pointer.initialize(to: Builtin.reinterpretCast(base))
return
}
_preconditionFailure("unwrapped nil optional")
case .optionalWrap:
_internalInvariant(NewValue.self == Optional<CurValue>.self,
"should be wrapping optional value")
var new: NewValue = Builtin.reinterpretCast(base)
let tag: UInt32 = 0
Builtin.injectEnumTag(&new, tag._value)
unsafe pointer.initialize(to: new)
}
}
internal func _projectMutableAddress<CurValue, NewValue>(
_ base: UnsafeRawPointer,
from _: CurValue.Type,
to _: NewValue.Type,
isRoot: Bool,
keepAlive: inout AnyObject?
) -> UnsafeRawPointer {
switch value {
case .struct(let offset):
return unsafe base.advanced(by: offset)
case .class(let offset):
// A class dereference should only occur at the root of a mutation,
// since otherwise it would be part of the reference prefix.
_internalInvariant(isRoot,
"class component should not appear in the middle of mutation")
// AnyObject memory can alias any class reference memory, so we can
// assume type here
let object = unsafe base.assumingMemoryBound(to: AnyObject.self).pointee
let offsetAddress = unsafe UnsafeRawPointer(Builtin.bridgeToRawPointer(object))
.advanced(by: offset)
// Keep the base alive for the duration of the derived access and also
// enforce exclusive access to the address.
keepAlive = unsafe ClassHolder._create(previous: keepAlive, instance: object,
accessingAddress: offsetAddress,
type: NewValue.self)
return unsafe offsetAddress
case .mutatingGetSet(id: _, accessors: let accessors,
argument: let argument):
let baseTyped = unsafe UnsafeMutablePointer(
mutating: base.assumingMemoryBound(to: CurValue.self))
let argValue = unsafe argument?.data.baseAddress ?? accessors._value
let argSize = unsafe argument?.data.count ?? 0
let writeback = unsafe MutatingWritebackBuffer<CurValue, NewValue>(
previous: keepAlive,
base: baseTyped,
set: accessors.mutatingSetter(),
argument: argValue,
argumentSize: argSize,
value: accessors.getter()(baseTyped.pointee, argValue, argSize))
keepAlive = unsafe writeback
// A maximally-abstracted, final, stored class property should have
// a stable address.
return unsafe UnsafeRawPointer(Builtin.addressof(&writeback.value))
case .nonmutatingGetSet(id: _, accessors: let accessors,
argument: let argument):
// A nonmutating property should only occur at the root of a mutation,
// since otherwise it would be part of the reference prefix.
_internalInvariant(isRoot,
"nonmutating component should not appear in the middle of mutation")
let baseValue = unsafe base.assumingMemoryBound(to: CurValue.self).pointee
let argValue = unsafe argument?.data.baseAddress ?? accessors._value
let argSize = unsafe argument?.data.count ?? 0
let writeback = unsafe NonmutatingWritebackBuffer<CurValue, NewValue>(
previous: keepAlive,
base: baseValue,
set: accessors.nonmutatingSetter(),
argument: argValue,
argumentSize: argSize,
value: accessors.getter()(baseValue, argValue, argSize))
keepAlive = unsafe writeback
// A maximally-abstracted, final, stored class property should have
// a stable address.
return unsafe UnsafeRawPointer(Builtin.addressof(&writeback.value))
case .optionalForce:
_internalInvariant(CurValue.self == Optional<NewValue>.self,
"should be unwrapping an optional value")
// Optional's layout happens to always put the payload at the start
// address of the Optional value itself, if a value is present at all.
let baseOptionalPointer
= unsafe base.assumingMemoryBound(to: Optional<NewValue>.self)
// Assert that a value exists
_ = unsafe baseOptionalPointer.pointee!
return unsafe base
case .optionalChain, .optionalWrap, .get:
_internalInvariantFailure("not a mutable key path component")
}
}
}
internal func _pop<T : BitwiseCopyable>(from: inout UnsafeRawBufferPointer,
as type: T.Type) -> T {
let buffer = unsafe _pop(from: &from, as: type, count: 1)
return unsafe buffer.baseAddress._unsafelyUnwrappedUnchecked.pointee
}
internal func _pop<T : BitwiseCopyable>(from: inout UnsafeRawBufferPointer,
as: T.Type,
count: Int) -> UnsafeBufferPointer<T> {
unsafe from = unsafe MemoryLayout<T>._roundingUpBaseToAlignment(from)
let byteCount = MemoryLayout<T>.stride * count
let result = unsafe UnsafeBufferPointer(
start: from.baseAddress._unsafelyUnwrappedUnchecked.assumingMemoryBound(to: T.self),
count: count)
unsafe from = unsafe UnsafeRawBufferPointer(
start: from.baseAddress._unsafelyUnwrappedUnchecked + byteCount,
count: from.count - byteCount)
return unsafe result
}
@_unavailableInEmbedded
@unsafe
internal struct KeyPathBuffer {
internal var data: UnsafeRawBufferPointer
internal var trivial: Bool
internal var hasReferencePrefix: Bool
internal var isSingleComponent: Bool
internal init(base: UnsafeRawPointer) {
let header = unsafe base.load(as: Header.self)
unsafe data = unsafe UnsafeRawBufferPointer(
start: base + MemoryLayout<Int>.size,
count: header.size)
unsafe trivial = header.trivial
unsafe hasReferencePrefix = header.hasReferencePrefix
unsafe isSingleComponent = header.isSingleComponent
}
internal init(partialData: UnsafeRawBufferPointer,
trivial: Bool = false,
hasReferencePrefix: Bool = false,
isSingleComponent: Bool = false) {
unsafe self.data = unsafe partialData
unsafe self.trivial = trivial
unsafe self.hasReferencePrefix = hasReferencePrefix
unsafe self.isSingleComponent = isSingleComponent
}
internal var mutableData: UnsafeMutableRawBufferPointer {
return unsafe UnsafeMutableRawBufferPointer(mutating: data)
}
internal var maxSize: Int {
let bufferPtr = unsafe data.baseAddress._unsafelyUnwrappedUnchecked
let endOfBuffer = unsafe MemoryLayout<Int>._roundingUpToAlignment(
bufferPtr + data.count
)
return unsafe endOfBuffer.load(as: Int.self)
}
@unsafe
internal struct Builder {
internal var buffer: UnsafeMutableRawBufferPointer
internal init(_ buffer: UnsafeMutableRawBufferPointer) {
unsafe self.buffer = unsafe buffer
}
internal mutating func pushRaw(size: Int, alignment: Int)
-> UnsafeMutableRawBufferPointer {
var baseAddress = unsafe buffer.baseAddress._unsafelyUnwrappedUnchecked
var misalign = Int(bitPattern: baseAddress) & (alignment - 1)
if misalign != 0 {
misalign = alignment - misalign
unsafe baseAddress = unsafe baseAddress.advanced(by: misalign)
}
let result = unsafe UnsafeMutableRawBufferPointer(
start: baseAddress,
count: size)
unsafe buffer = unsafe UnsafeMutableRawBufferPointer(
start: baseAddress + size,
count: buffer.count - size - misalign)
return unsafe result
}
internal mutating func push<T>(_ value: T) {
let buf = unsafe pushRaw(size: MemoryLayout<T>.size,
alignment: MemoryLayout<T>.alignment)
unsafe buf.storeBytes(of: value, as: T.self)
}
internal mutating func pushHeader(_ header: Header) {
unsafe push(header)
// Start the components at pointer alignment
_ = unsafe pushRaw(size: RawKeyPathComponent.Header.pointerAlignmentSkew,
alignment: 4)
}
}
internal struct Header {
internal var _value: UInt32
internal init(
size: Int,
trivial: Bool,
hasReferencePrefix: Bool,
isSingleComponent: Bool
) {
_internalInvariant(size <= Int(Header.sizeMask), "key path too big")
_value = UInt32(size)
| (trivial ? Header.trivialFlag : 0)
| (hasReferencePrefix ? Header.hasReferencePrefixFlag : 0)
| (isSingleComponent ? Header.isSingleComponentFlag : 0)
}
internal static var sizeMask: UInt32 {
return _SwiftKeyPathBufferHeader_SizeMask
}
internal static var reservedMask: UInt32 {
return _SwiftKeyPathBufferHeader_ReservedMask
}
internal static var trivialFlag: UInt32 {
return _SwiftKeyPathBufferHeader_TrivialFlag
}
internal static var hasReferencePrefixFlag: UInt32 {
return _SwiftKeyPathBufferHeader_HasReferencePrefixFlag
}
internal static var isSingleComponentFlag: UInt32 {
return _SwiftKeyPathBufferHeader_IsSingleComponentFlag
}
internal var size: Int { return Int(_value & Header.sizeMask) }
internal var trivial: Bool { return _value & Header.trivialFlag != 0 }
internal var hasReferencePrefix: Bool {
get {
return _value & Header.hasReferencePrefixFlag != 0
}
set {
if newValue {
_value |= Header.hasReferencePrefixFlag
} else {
_value &= ~Header.hasReferencePrefixFlag
}
}
}
internal var isSingleComponent: Bool {
get {
return _value & Header.isSingleComponentFlag != 0
}
set {
if newValue {
_value |= Header.isSingleComponentFlag
} else {
_value &= ~Header.isSingleComponentFlag
}
}
}
// In a key path pattern, the "trivial" flag is used to indicate
// "instantiable in-line"
internal var instantiableInLine: Bool {
return trivial
}
internal func validateReservedBits() {
_precondition(_value & Header.reservedMask == 0,
"Reserved bits set to an unexpected bit pattern")
}
}
internal func destroy() {
// Short-circuit if nothing in the object requires destruction.
if unsafe trivial { return }
var bufferToDestroy = unsafe self
while true {
let (component, type) = unsafe bufferToDestroy.next()
component.destroy()
guard let _ = type else { break }
}
}
internal mutating func next() -> (RawKeyPathComponent, Any.Type?) {
let header = unsafe _pop(from: &data, as: RawKeyPathComponent.Header.self)
// Track if this is the last component of the reference prefix.
if header.endOfReferencePrefix {
unsafe _internalInvariant(self.hasReferencePrefix,
"beginMutation marker in non-reference-writable key path?")
unsafe self.hasReferencePrefix = false
}
var component = unsafe RawKeyPathComponent(header: header, body: data)
// Shrinkwrap the component buffer size.
let size = component.bodySize
unsafe component.body = unsafe UnsafeRawBufferPointer(start: component.body.baseAddress,
count: size)
_ = unsafe _pop(from: &data, as: Int8.self, count: size)
// fetch type, which is in the buffer unless it's the final component
let nextType: Any.Type?
if unsafe data.isEmpty {
nextType = nil
} else {
nextType = unsafe _pop(from: &data, as: Any.Type.self)
}
return (component, nextType)
}
}
// MARK: Library intrinsics for projecting key paths.
@_silgen_name("swift_getAtPartialKeyPath")
@_unavailableInEmbedded
public // COMPILER_INTRINSIC
func _getAtPartialKeyPath<Root>(
root: Root,
keyPath: PartialKeyPath<Root>
) -> Any {
func open<Value>(_: Value.Type) -> Any {
return unsafe _getAtKeyPath(root: root,
keyPath: unsafeDowncast(keyPath, to: KeyPath<Root, Value>.self))
}
return _openExistential(type(of: keyPath).valueType, do: open)
}
@_silgen_name("swift_getAtAnyKeyPath")
@_unavailableInEmbedded
public // COMPILER_INTRINSIC
func _getAtAnyKeyPath<RootValue>(
root: RootValue,
keyPath: AnyKeyPath
) -> Any? {
let (keyPathRoot, keyPathValue) = type(of: keyPath)._rootAndValueType
func openRoot<KeyPathRoot>(_: KeyPathRoot.Type) -> Any? {
guard let rootForKeyPath = root as? KeyPathRoot else {
return nil
}
func openValue<Value>(_: Value.Type) -> Any {
return unsafe _getAtKeyPath(root: rootForKeyPath,
keyPath: unsafeDowncast(keyPath, to: KeyPath<KeyPathRoot, Value>.self))
}
return _openExistential(keyPathValue, do: openValue)
}
return _openExistential(keyPathRoot, do: openRoot)
}
@_silgen_name("swift_getAtKeyPath")
@_unavailableInEmbedded
public // COMPILER_INTRINSIC
func _getAtKeyPath<Root, Value>(
root: Root,
keyPath: KeyPath<Root, Value>
) -> Value {
return keyPath._projectReadOnly(from: root)
}
// The release that ends the access scope is guaranteed to happen
// immediately at the end_apply call because the continuation is a
// runtime call with a manual release (access scopes cannot be extended).
@_silgen_name("_swift_modifyAtWritableKeyPath_impl")
@_unavailableInEmbedded
public // runtime entrypoint
func _modifyAtWritableKeyPath_impl<Root, Value>(
root: inout Root,
keyPath: WritableKeyPath<Root, Value>
) -> (UnsafeMutablePointer<Value>, AnyObject?) {
if type(of: keyPath).kind == .reference {
return unsafe _modifyAtReferenceWritableKeyPath_impl(root: root,
keyPath: _unsafeUncheckedDowncast(keyPath,
to: ReferenceWritableKeyPath<Root, Value>.self))
}
return unsafe _withUnprotectedUnsafePointer(to: &root) {
unsafe keyPath._projectMutableAddress(from: $0)
}
}
// The release that ends the access scope is guaranteed to happen
// immediately at the end_apply call because the continuation is a
// runtime call with a manual release (access scopes cannot be extended).
@_silgen_name("_swift_modifyAtReferenceWritableKeyPath_impl")
@_unavailableInEmbedded
public // runtime entrypoint
func _modifyAtReferenceWritableKeyPath_impl<Root, Value>(
root: Root,
keyPath: ReferenceWritableKeyPath<Root, Value>
) -> (UnsafeMutablePointer<Value>, AnyObject?) {
return keyPath._projectMutableAddress(from: root)
}
@_silgen_name("swift_setAtWritableKeyPath")
@_unavailableInEmbedded
public // COMPILER_INTRINSIC
func _setAtWritableKeyPath<Root, Value>(
root: inout Root,
keyPath: WritableKeyPath<Root, Value>,
value: __owned Value
) {
if type(of: keyPath).kind == .reference {
return unsafe _setAtReferenceWritableKeyPath(root: root,
keyPath: _unsafeUncheckedDowncast(keyPath,
to: ReferenceWritableKeyPath<Root, Value>.self),
value: value)
}
// TODO: we should be able to do this more efficiently than projecting.
let (addr, owner) = unsafe _withUnprotectedUnsafePointer(to: &root) {
unsafe keyPath._projectMutableAddress(from: $0)
}
unsafe addr.pointee = value
_fixLifetime(owner)
// FIXME: this needs a deallocation barrier to ensure that the
// release isn't extended, along with the access scope.
}
@_silgen_name("swift_setAtReferenceWritableKeyPath")
@_unavailableInEmbedded
public // COMPILER_INTRINSIC
func _setAtReferenceWritableKeyPath<Root, Value>(
root: Root,
keyPath: ReferenceWritableKeyPath<Root, Value>,
value: __owned Value
) {
// TODO: we should be able to do this more efficiently than projecting.
let (addr, owner) = keyPath._projectMutableAddress(from: root)
unsafe addr.pointee = value
_fixLifetime(owner)
// FIXME: this needs a deallocation barrier to ensure that the
// release isn't extended, along with the access scope.
}
// MARK: Appending type system
// FIXME(ABI): The type relationships between KeyPath append operands are tricky
// and don't interact well with our overriding rules. Hack things by injecting
// a bunch of `appending` overloads as protocol extensions so they aren't
// constrained by being overrides, and so that we can use exact-type constraints
// on `Self` to prevent dynamically-typed methods from being inherited by
// statically-typed key paths.
/// An implementation detail of key path expressions; do not use this protocol
/// directly.
@_show_in_interface
public protocol _AppendKeyPath {}
extension _AppendKeyPath where Self == AnyKeyPath {
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Appending the key path passed as `path` is successful only if the
/// root type for `path` matches this key path's value type. This example
/// creates key paths from `Array<Int>` to `String` and from `String` to
/// `Int`, and then tries appending each to the other:
///
/// let arrayDescription: AnyKeyPath = \Array<Int>.description
/// let stringLength: AnyKeyPath = \String.count
///
/// // Creates a key path from `Array<Int>` to `Int`
/// let arrayDescriptionLength = arrayDescription.appending(path: stringLength)
///
/// let invalidKeyPath = stringLength.appending(path: arrayDescription)
/// // invalidKeyPath == nil
///
/// The second call to `appending(path:)` returns `nil`
/// because the root type of `arrayDescription`, `Array<Int>`, does not
/// match the value type of `stringLength`, `Int`.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path and the value type
/// of `path`, if `path` can be appended. If `path` can't be appended,
/// returns `nil`.
@inlinable
@_unavailableInEmbedded
public func appending(path: AnyKeyPath) -> AnyKeyPath? {
return _tryToAppendKeyPaths(root: self, leaf: path)
}
}
extension _AppendKeyPath /* where Self == PartialKeyPath<T> */ {
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Appending the key path passed as `path` is successful only if the
/// root type for `path` matches this key path's value type. This example
/// creates key paths from `Array<Int>` to `String` and from `String` to
/// `Int`, and then tries appending each to the other:
///
/// let arrayDescription: PartialKeyPath<Array<Int>> = \.description
/// let stringLength: PartialKeyPath<String> = \.count
///
/// // Creates a key path from `Array<Int>` to `Int`
/// let arrayDescriptionLength = arrayDescription.appending(path: stringLength)
///
/// let invalidKeyPath = stringLength.appending(path: arrayDescription)
/// // invalidKeyPath == nil
///
/// The second call to `appending(path:)` returns `nil`
/// because the root type of `arrayDescription`, `Array<Int>`, does not
/// match the value type of `stringLength`, `Int`.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path and the value type
/// of `path`, if `path` can be appended. If `path` can't be appended,
/// returns `nil`.
@inlinable
@_unavailableInEmbedded
public func appending<Root>(path: AnyKeyPath) -> PartialKeyPath<Root>?
where Self == PartialKeyPath<Root> {
return _tryToAppendKeyPaths(root: self, leaf: path)
}
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Appending the key path passed as `path` is successful only if the
/// root type for `path` matches this key path's value type. This example
/// creates a key path from `Array<Int>` to `String`, and then tries
/// appending compatible and incompatible key paths:
///
/// let arrayDescription: PartialKeyPath<Array<Int>> = \.description
///
/// // Creates a key path from `Array<Int>` to `Int`
/// let arrayDescriptionLength = arrayDescription.appending(path: \String.count)
///
/// let invalidKeyPath = arrayDescription.appending(path: \Double.isZero)
/// // invalidKeyPath == nil
///
/// The second call to `appending(path:)` returns `nil` because the root type
/// of the `path` parameter, `Double`, does not match the value type of
/// `arrayDescription`, `String`.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type
/// of `path`, if `path` can be appended. If `path` can't be appended,
/// returns `nil`.
@inlinable
@_unavailableInEmbedded
public func appending<Root, AppendedRoot, AppendedValue>(
path: KeyPath<AppendedRoot, AppendedValue>
) -> KeyPath<Root, AppendedValue>?
where Self == PartialKeyPath<Root> {
return _tryToAppendKeyPaths(root: self, leaf: path)
}
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Appending the key path passed as `path` is successful only if the
/// root type for `path` matches this key path's value type.
///
/// - Parameter path: The reference writeable key path to append.
/// - Returns: A key path from the root of this key path to the value type
/// of `path`, if `path` can be appended. If `path` can't be appended,
/// returns `nil`.
@inlinable
@_unavailableInEmbedded
public func appending<Root, AppendedRoot, AppendedValue>(
path: ReferenceWritableKeyPath<AppendedRoot, AppendedValue>
) -> ReferenceWritableKeyPath<Root, AppendedValue>?
where Self == PartialKeyPath<Root> {
return _tryToAppendKeyPaths(root: self, leaf: path)
}
}
@_unavailableInEmbedded
extension _AppendKeyPath /* where Self == KeyPath<T,U> */ {
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Calling `appending(path:)` results in the same key path as if the
/// given key path had been specified using dot notation. In the following
/// example, `keyPath1` and `keyPath2` are equivalent:
///
/// let arrayDescription = \Array<Int>.description
/// let keyPath1 = arrayDescription.appending(path: \String.count)
///
/// let keyPath2 = \Array<Int>.description.count
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type of
/// `path`.
@inlinable
public func appending<Root, Value, AppendedValue>(
path: KeyPath<Value, AppendedValue>
) -> KeyPath<Root, AppendedValue>
where Self: KeyPath<Root, Value> {
return _appendingKeyPaths(root: self, leaf: path)
}
/* TODO
public func appending<Root, Value, Leaf>(
path: Leaf,
// FIXME: Satisfy "Value generic param not used in signature" constraint
_: Value.Type = Value.self
) -> PartialKeyPath<Root>?
where Self: KeyPath<Root, Value>, Leaf == AnyKeyPath {
return _tryToAppendKeyPaths(root: self, leaf: path)
}
*/
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Calling `appending(path:)` results in the same key path as if the
/// given key path had been specified using dot notation.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type of
/// `path`.
@inlinable
public func appending<Root, Value, AppendedValue>(
path: ReferenceWritableKeyPath<Value, AppendedValue>
) -> ReferenceWritableKeyPath<Root, AppendedValue>
where Self == KeyPath<Root, Value> {
return _appendingKeyPaths(root: self, leaf: path)
}
}
@_unavailableInEmbedded
extension _AppendKeyPath /* where Self == WritableKeyPath<T,U> */ {
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Calling `appending(path:)` results in the same key path as if the
/// given key path had been specified using dot notation.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type of
/// `path`.
@inlinable
public func appending<Root, Value, AppendedValue>(
path: WritableKeyPath<Value, AppendedValue>
) -> WritableKeyPath<Root, AppendedValue>
where Self == WritableKeyPath<Root, Value> {
return _appendingKeyPaths(root: self, leaf: path)
}
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Calling `appending(path:)` results in the same key path as if the
/// given key path had been specified using dot notation.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type of
/// `path`.
@inlinable
public func appending<Root, Value, AppendedValue>(
path: ReferenceWritableKeyPath<Value, AppendedValue>
) -> ReferenceWritableKeyPath<Root, AppendedValue>
where Self == WritableKeyPath<Root, Value> {
return _appendingKeyPaths(root: self, leaf: path)
}
}
@_unavailableInEmbedded
extension _AppendKeyPath /* where Self == ReferenceWritableKeyPath<T,U> */ {
/// Returns a new key path created by appending the given key path to this
/// one.
///
/// Use this method to extend this key path to the value type of another key
/// path. Calling `appending(path:)` results in the same key path as if the
/// given key path had been specified using dot notation.
///
/// - Parameter path: The key path to append.
/// - Returns: A key path from the root of this key path to the value type of
/// `path`.
@inlinable
public func appending<Root, Value, AppendedValue>(
path: WritableKeyPath<Value, AppendedValue>
) -> ReferenceWritableKeyPath<Root, AppendedValue>
where Self == ReferenceWritableKeyPath<Root, Value> {
return _appendingKeyPaths(root: self, leaf: path)
}
}
/// Updates information pertaining to the types associated with each KeyPath.
///
/// Note: Currently we only distinguish between keypaths that traverse
/// only structs to get to the final value, and all other types.
/// This is done for performance reasons.
/// Other type information may be handled in the future to improve performance.
internal func _processOffsetForAppendedKeyPath(
appendedKeyPath: inout AnyKeyPath,
root: AnyKeyPath,
leaf: AnyKeyPath
) {
if let rootOffset = root.getOffsetFromStorage(),
let leafOffset = leaf.getOffsetFromStorage()
{
appendedKeyPath.assignOffsetToStorage(offset: rootOffset + leafOffset)
}
}
@usableFromInline
@_unavailableInEmbedded
internal func _tryToAppendKeyPaths<Result: AnyKeyPath>(
root: AnyKeyPath,
leaf: AnyKeyPath
) -> Result? {
let (rootRoot, rootValue) = type(of: root)._rootAndValueType
let (leafRoot, leafValue) = type(of: leaf)._rootAndValueType
if rootValue != leafRoot {
return nil
}
func open<Root>(_: Root.Type) -> Result {
func open2<Value>(_: Value.Type) -> Result {
func open3<AppendedValue>(_: AppendedValue.Type) -> Result {
let typedRoot = unsafe unsafeDowncast(root, to: KeyPath<Root, Value>.self)
let typedLeaf = unsafe unsafeDowncast(leaf,
to: KeyPath<Value, AppendedValue>.self)
var result:AnyKeyPath = _appendingKeyPaths(root: typedRoot,
leaf: typedLeaf)
_processOffsetForAppendedKeyPath(appendedKeyPath: &result,
root: root, leaf: leaf)
return unsafe unsafeDowncast(result, to: Result.self)
}
return _openExistential(leafValue, do: open3)
}
return _openExistential(rootValue, do: open2)
}
return _openExistential(rootRoot, do: open)
}
@usableFromInline
@_unavailableInEmbedded
internal func _appendingKeyPaths<
Root, Value, AppendedValue,
Result: KeyPath<Root, AppendedValue>
>(
root: KeyPath<Root, Value>,
leaf: KeyPath<Value, AppendedValue>
) -> Result {
let resultTy = type(of: root).appendedType(with: type(of: leaf))
var returnValue: AnyKeyPath = unsafe root.withBuffer {
var rootBuffer = unsafe $0
return unsafe leaf.withBuffer {
var leafBuffer = unsafe $0
// If either operand is the identity key path, then we should return
// the other operand back untouched.
if unsafe leafBuffer.data.isEmpty {
return unsafe unsafeDowncast(root, to: Result.self)
}
if unsafe rootBuffer.data.isEmpty {
return unsafe unsafeDowncast(leaf, to: Result.self)
}
// Reserve room for the appended KVC string, if both key paths are
// KVC-compatible.
let appendedKVCLength: Int, rootKVCLength: Int, leafKVCLength: Int
if root.getOffsetFromStorage() == nil, leaf.getOffsetFromStorage() == nil,
let rootPtr = unsafe root._kvcKeyPathStringPtr,
let leafPtr = unsafe leaf._kvcKeyPathStringPtr {
rootKVCLength = unsafe Int(_swift_stdlib_strlen(rootPtr))
leafKVCLength = unsafe Int(_swift_stdlib_strlen(leafPtr))
// root + "." + leaf
appendedKVCLength = rootKVCLength + 1 + leafKVCLength + 1
} else {
rootKVCLength = 0
leafKVCLength = 0
appendedKVCLength = 0
}
// Result buffer has room for both key paths' components, plus the
// header, plus space for the middle type.
// Align up the root so that we can put the component type after it.
let rootSize = unsafe MemoryLayout<Int>._roundingUpToAlignment(rootBuffer.data.count)
var resultSize = unsafe rootSize + // Root component size
leafBuffer.data.count + // Leaf component size
MemoryLayout<Int>.size // Middle type
// Size of just our components is equal to root + leaf + middle
let componentSize = resultSize
resultSize += MemoryLayout<Int>.size // Header size (padding if needed)
// The first member after the components is the maxSize of the keypath.
resultSize = MemoryLayout<Int>._roundingUpToAlignment(resultSize)
resultSize += MemoryLayout<Int>.size
// Immediately following is the tail-allocated space for the KVC string.
let totalResultSize = MemoryLayout<Int32>
._roundingUpToAlignment(resultSize + appendedKVCLength)
var kvcStringBuffer: UnsafeMutableRawPointer? = nil
let result = unsafe resultTy._create(capacityInBytes: totalResultSize) {
var destBuffer = unsafe $0
// Remember where the tail-allocated KVC string buffer begins.
if appendedKVCLength > 0 {
unsafe kvcStringBuffer = unsafe destBuffer.baseAddress._unsafelyUnwrappedUnchecked
.advanced(by: resultSize)
unsafe destBuffer = unsafe .init(start: destBuffer.baseAddress,
count: resultSize)
}
var destBuilder = unsafe KeyPathBuffer.Builder(destBuffer)
// Save space for the header.
let leafIsReferenceWritable = type(of: leaf).kind == .reference
unsafe destBuilder.pushHeader(KeyPathBuffer.Header(
size: componentSize,
trivial: rootBuffer.trivial && leafBuffer.trivial,
hasReferencePrefix: rootBuffer.hasReferencePrefix
|| leafIsReferenceWritable,
// We've already checked if either is an identity, so both have at
// least 1 component.
isSingleComponent: false
))
let leafHasReferencePrefix = unsafe leafBuffer.hasReferencePrefix
let rootMaxSize = unsafe rootBuffer.maxSize
// Clone the root components into the buffer.
while true {
let (component, type) = unsafe rootBuffer.next()
let isLast = type == nil
// If the leaf appended path has a reference prefix, then the
// entire root is part of the reference prefix.
let endOfReferencePrefix: Bool
if leafHasReferencePrefix {
endOfReferencePrefix = false
} else if isLast && leafIsReferenceWritable {
endOfReferencePrefix = true
} else {
endOfReferencePrefix = component.header.endOfReferencePrefix
}
unsafe component.clone(
into: &destBuilder.buffer,
endOfReferencePrefix: endOfReferencePrefix)
// Insert our endpoint type between the root and leaf components.
if let type = type {
unsafe destBuilder.push(type)
} else {
unsafe destBuilder.push(Value.self as Any.Type)
break
}
}
let leafMaxSize = unsafe leafBuffer.maxSize
// Clone the leaf components into the buffer.
while true {
let (component, type) = unsafe leafBuffer.next()
unsafe component.clone(
into: &destBuilder.buffer,
endOfReferencePrefix: component.header.endOfReferencePrefix)
if let type = type {
unsafe destBuilder.push(type)
} else {
break
}
}
// Append our max size at the end of the buffer before the kvc string.
unsafe destBuilder.push(Swift.max(rootMaxSize, leafMaxSize))
unsafe _internalInvariant(destBuilder.buffer.isEmpty,
"did not fill entire result buffer")
}
// Build the KVC string if there is one.
if root.getOffsetFromStorage() == nil,
leaf.getOffsetFromStorage() == nil {
if let kvcStringBuffer = unsafe kvcStringBuffer {
let rootPtr = unsafe root._kvcKeyPathStringPtr._unsafelyUnwrappedUnchecked
let leafPtr = unsafe leaf._kvcKeyPathStringPtr._unsafelyUnwrappedUnchecked
unsafe _memcpy(
dest: kvcStringBuffer,
src: rootPtr,
size: UInt(rootKVCLength))
unsafe kvcStringBuffer.advanced(by: rootKVCLength)
.storeBytes(of: 0x2E /* '.' */, as: CChar.self)
unsafe _memcpy(
dest: kvcStringBuffer.advanced(by: rootKVCLength + 1),
src: leafPtr,
size: UInt(leafKVCLength))
unsafe result._kvcKeyPathStringPtr =
unsafe UnsafePointer(kvcStringBuffer.assumingMemoryBound(to: CChar.self))
unsafe kvcStringBuffer.advanced(by: rootKVCLength + leafKVCLength + 1)
.storeBytes(of: 0 /* '\0' */, as: CChar.self)
}
}
return unsafe unsafeDowncast(result, to: Result.self)
}
}
_processOffsetForAppendedKeyPath(
appendedKeyPath: &returnValue,
root: root,
leaf: leaf
)
return returnValue as! Result
}
// The distance in bytes from the address point of a KeyPath object to its
// buffer header. Includes the size of the Swift heap object header and the
// pointer to the KVC string.
internal var keyPathObjectHeaderSize: Int {
return unsafe MemoryLayout<HeapObject>.size + MemoryLayout<Int>.size
}
internal var keyPathPatternHeaderSize: Int {
return 16
}
// Runtime entry point to instantiate a key path object.
// Note that this has a compatibility override shim in the runtime so that
// future compilers can backward-deploy support for instantiating new key path
// pattern features.
@_cdecl("swift_getKeyPathImpl")
@_unavailableInEmbedded
public func _swift_getKeyPath(pattern: UnsafeMutableRawPointer,
arguments: UnsafeRawPointer)
-> UnsafeRawPointer {
// The key path pattern is laid out like a key path object, with a few
// modifications:
// - Pointers in the instantiated object are compressed into 32-bit
// relative offsets in the pattern.
// - The pattern begins with a field that's either zero, for a pattern that
// depends on instantiation arguments, or that's a relative reference to
// a global mutable pointer variable, which can be initialized to a single
// shared instantiation of this pattern.
// - Instead of the two-word object header with isa and refcount, two
// pointers to metadata accessors are provided for the root and leaf
// value types of the key path.
// - Components may have unresolved forms that require instantiation.
// - Type metadata and protocol conformance pointers are replaced with
// relative-referenced accessor functions that instantiate the
// needed generic argument when called.
//
// The pattern never precomputes the capabilities of the key path (readonly/
// writable/reference-writable), nor does it encode the reference prefix.
// These are resolved dynamically, so that they always reflect the dynamic
// capability of the properties involved.
let oncePtrPtr = unsafe pattern
let patternPtr = unsafe pattern.advanced(by: 4)
let bufferHeader = unsafe patternPtr.load(fromByteOffset: keyPathPatternHeaderSize,
as: KeyPathBuffer.Header.self)
bufferHeader.validateReservedBits()
// If the first word is nonzero, it relative-references a cache variable
// we can use to reference a single shared instantiation of this key path.
let oncePtrOffset = unsafe oncePtrPtr.load(as: Int32.self)
let oncePtr: UnsafeRawPointer?
if oncePtrOffset != 0 {
let theOncePtr = unsafe _resolveRelativeAddress(oncePtrPtr, oncePtrOffset)
unsafe oncePtr = unsafe theOncePtr
// See whether we already instantiated this key path.
// This is a non-atomic load because the instantiated pointer will be
// written with a release barrier, and loads of the instantiated key path
// ought to carry a dependency through this loaded pointer.
let existingInstance = unsafe UnsafeRawPointer(
bitPattern: UInt(Builtin.atomicload_acquire_Word(theOncePtr._rawValue))
)
if let existingInstance = unsafe existingInstance {
// Return the instantiated object at +1.
let object = unsafe Unmanaged<AnyKeyPath>.fromOpaque(existingInstance)
// TODO: This retain will be unnecessary once we support global objects
// with inert refcounting.
_ = unsafe object.retain()
return unsafe existingInstance
}
} else {
unsafe oncePtr = nil
}
// Instantiate a new key path object modeled on the pattern.
// Do a pass to determine the class of the key path we'll be instantiating
// and how much space we'll need for it.
let (keyPathClass, rootType, size, sizeWithMaxSize, _)
= unsafe _getKeyPathClassAndInstanceSizeFromPattern(patternPtr, arguments)
var pureStructOffset: UInt32? = nil
// Allocate the instance.
let instance = unsafe keyPathClass._create(
capacityInBytes: sizeWithMaxSize
) { instanceData in
// Instantiate the pattern into the instance.
pureStructOffset = unsafe _instantiateKeyPathBuffer(
patternPtr,
instanceData,
rootType,
arguments,
size
)
}
// Adopt the KVC string from the pattern.
let kvcStringBase = unsafe patternPtr.advanced(by: 12)
let kvcStringOffset = unsafe kvcStringBase.load(as: Int32.self)
if kvcStringOffset == 0 {
// Null pointer.
unsafe instance._kvcKeyPathStringPtr = nil
} else {
let kvcStringPtr = unsafe _resolveRelativeAddress(kvcStringBase, kvcStringOffset)
unsafe instance._kvcKeyPathStringPtr =
kvcStringPtr.assumingMemoryBound(to: CChar.self)
}
if unsafe instance._kvcKeyPathStringPtr == nil, let offset = pureStructOffset {
instance.assignOffsetToStorage(offset: Int(offset))
}
// If we can cache this instance as a shared instance, do so.
if let oncePtr = unsafe oncePtr {
// Try to replace a null pointer in the cache variable with the instance
// pointer.
let instancePtr = unsafe Unmanaged.passRetained(instance)
while true {
let (oldValue, won) = unsafe Builtin.cmpxchg_release_monotonic_Word(
oncePtr._rawValue,
0._builtinWordValue,
UInt(bitPattern: instancePtr.toOpaque())._builtinWordValue)
// If the exchange succeeds, then the instance we formed is the canonical
// one.
if Bool(won) {
break
}
// Otherwise, someone raced with us to instantiate the key path pattern
// and won. Their instance should be just as good as ours, so we can take
// that one and let ours get deallocated.
if let existingInstance = unsafe UnsafeRawPointer(bitPattern: Int(oldValue)) {
// Return the instantiated object at +1.
let object = unsafe Unmanaged<AnyKeyPath>.fromOpaque(existingInstance)
// TODO: This retain will be unnecessary once we support global objects
// with inert refcounting.
_ = unsafe object.retain()
// Release the instance we created.
unsafe instancePtr.release()
return unsafe existingInstance
} else {
// Try the cmpxchg again if it spuriously failed.
continue
}
}
}
return unsafe UnsafeRawPointer(Unmanaged.passRetained(instance).toOpaque())
}
// A reference to metadata, which is a pointer to a mangled name.
internal typealias MetadataReference = UnsafeRawPointer
// Determine the length of the given mangled name.
internal func _getSymbolicMangledNameLength(_ base: UnsafeRawPointer) -> Int {
var end = unsafe base
while let current = unsafe Optional(end.load(as: UInt8.self)), current != 0 {
// Skip the current character
unsafe end = unsafe end + 1
// Skip over a symbolic reference
if current >= 0x1 && current <= 0x17 {
unsafe end += 4
} else if current >= 0x18 && current <= 0x1F {
unsafe end += MemoryLayout<Int>.size
}
}
return unsafe end - base
}
// Resolve a mangled name in a generic environment, described by either a
// flat GenericEnvironment * (if the bottom tag bit is 0) or possibly-nested
// ContextDescriptor * (if the bottom tag bit is 1)
internal func _getTypeByMangledNameInEnvironmentOrContext(
_ name: UnsafePointer<UInt8>,
_ nameLength: UInt,
genericEnvironmentOrContext: UnsafeRawPointer?,
genericArguments: UnsafeRawPointer?)
-> Any.Type? {
let taggedPointer = UInt(bitPattern: genericEnvironmentOrContext)
if taggedPointer & 1 == 0 {
return unsafe _getTypeByMangledNameInEnvironment(name, nameLength,
genericEnvironment: genericEnvironmentOrContext,
genericArguments: genericArguments)
} else {
let context = unsafe UnsafeRawPointer(bitPattern: taggedPointer & ~1)
return unsafe _getTypeByMangledNameInContext(name, nameLength,
genericContext: context,
genericArguments: genericArguments)
}
}
// Resolve the given generic argument reference to a generic argument.
@_unavailableInEmbedded
internal func _resolveKeyPathGenericArgReference(
_ reference: UnsafeRawPointer,
genericEnvironment: UnsafeRawPointer?,
arguments: UnsafeRawPointer?)
-> UnsafeRawPointer {
// If the low bit is clear, it's a direct reference to the argument.
if (UInt(bitPattern: reference) & 0x01 == 0) {
return unsafe reference
}
// Adjust the reference.
let referenceStart = unsafe reference - 1
// If we have a symbolic reference to an accessor, call it.
let first = unsafe referenceStart.load(as: UInt8.self)
if unsafe first == 255 && reference.load(as: UInt8.self) == 9 {
typealias MetadataAccessor =
@convention(c) (UnsafeRawPointer?) -> UnsafeRawPointer
// Unaligned load of the offset.
let pointerReference = unsafe reference + 1
var offset: Int32 = 0
unsafe _memcpy(dest: &offset, src: pointerReference, size: 4)
let accessorPtrRaw = unsafe _resolveCompactFunctionPointer(pointerReference, offset)
let accessorPtrSigned =
unsafe _PtrAuth.sign(pointer: accessorPtrRaw,
key: .processIndependentCode,
discriminator: _PtrAuth.discriminator(for: MetadataAccessor.self))
let accessor = unsafe unsafeBitCast(accessorPtrSigned, to: MetadataAccessor.self)
return unsafe accessor(arguments)
}
let nameLength = unsafe _getSymbolicMangledNameLength(referenceStart)
let namePtr = unsafe referenceStart.bindMemory(to: UInt8.self,
capacity: nameLength + 1)
// FIXME: Could extract this information from the mangled name.
guard let result =
unsafe _getTypeByMangledNameInEnvironmentOrContext(namePtr, UInt(nameLength),
genericEnvironmentOrContext: genericEnvironment,
genericArguments: arguments)
else {
let nameStr = unsafe String._fromUTF8Repairing(
UnsafeBufferPointer(start: namePtr, count: nameLength)
).0
fatalError("could not demangle keypath type from '\(nameStr)'")
}
return unsafe unsafeBitCast(result, to: UnsafeRawPointer.self)
}
// Resolve the given metadata reference to (type) metadata.
@_unavailableInEmbedded
internal func _resolveKeyPathMetadataReference(
_ reference: UnsafeRawPointer,
genericEnvironment: UnsafeRawPointer?,
arguments: UnsafeRawPointer?)
-> Any.Type {
return unsafe unsafeBitCast(
_resolveKeyPathGenericArgReference(
reference,
genericEnvironment: genericEnvironment,
arguments: arguments),
to: Any.Type.self)
}
internal enum KeyPathStructOrClass {
case `struct`, `class`
}
@unsafe
internal enum KeyPathPatternStoredOffset {
case inline(UInt32)
case outOfLine(UInt32)
case unresolvedFieldOffset(UInt32)
case unresolvedIndirectOffset(UnsafePointer<UInt>)
}
@_unavailableInEmbedded
@unsafe
internal struct KeyPathPatternComputedArguments {
var getLayout: KeyPathComputedArgumentLayoutFn
var witnesses: ComputedArgumentWitnessesPtr
var initializer: KeyPathComputedArgumentInitializerFn
}
@_unavailableInEmbedded
internal protocol KeyPathPatternVisitor {
mutating func visitHeader(genericEnvironment: UnsafeRawPointer?,
rootMetadataRef: MetadataReference,
leafMetadataRef: MetadataReference,
kvcCompatibilityString: UnsafeRawPointer?)
mutating func visitStoredComponent(kind: KeyPathStructOrClass,
mutable: Bool,
offset: KeyPathPatternStoredOffset)
mutating func visitComputedComponent(mutating: Bool,
idKind: KeyPathComputedIDKind,
idResolution: KeyPathComputedIDResolution,
idValueBase: UnsafeRawPointer,
idValue: Int32,
getter: UnsafeRawPointer,
setter: UnsafeRawPointer?,
arguments: KeyPathPatternComputedArguments?,
externalArgs: UnsafeBufferPointer<Int32>?)
mutating func visitOptionalChainComponent()
mutating func visitOptionalForceComponent()
mutating func visitOptionalWrapComponent()
mutating func visitIntermediateComponentType(metadataRef: MetadataReference)
mutating func finish()
}
internal func _resolveRelativeAddress(_ base: UnsafeRawPointer,
_ offset: Int32) -> UnsafeRawPointer {
// Sign-extend the offset to pointer width and add with wrap on overflow.
return unsafe UnsafeRawPointer(bitPattern: Int(bitPattern: base) &+ Int(offset))
._unsafelyUnwrappedUnchecked
}
internal func _resolveRelativeIndirectableAddress(_ base: UnsafeRawPointer,
_ offset: Int32)
-> UnsafeRawPointer {
// Low bit indicates whether the reference is indirected or not.
if offset & 1 != 0 {
let ptrToPtr = unsafe _resolveRelativeAddress(base, offset - 1)
return unsafe ptrToPtr.load(as: UnsafeRawPointer.self)
}
return unsafe _resolveRelativeAddress(base, offset)
}
internal func _resolveCompactFunctionPointer(_ base: UnsafeRawPointer, _ offset: Int32)
-> UnsafeRawPointer {
#if SWIFT_COMPACT_ABSOLUTE_FUNCTION_POINTER
return UnsafeRawPointer(bitPattern: Int(offset))._unsafelyUnwrappedUnchecked
#else
return unsafe _resolveRelativeAddress(base, offset)
#endif
}
internal func _loadRelativeAddress<T>(at: UnsafeRawPointer,
fromByteOffset: Int = 0,
as: T.Type) -> T {
let offset = unsafe at.load(fromByteOffset: fromByteOffset, as: Int32.self)
return unsafe unsafeBitCast(_resolveRelativeAddress(at + fromByteOffset, offset),
to: T.self)
}
@_unavailableInEmbedded
internal func _walkKeyPathPattern<W: KeyPathPatternVisitor>(
_ pattern: UnsafeRawPointer,
walker: inout W) {
// Visit the header.
let genericEnvironment = unsafe _loadRelativeAddress(at: pattern,
as: UnsafeRawPointer.self)
let rootMetadataRef = unsafe _loadRelativeAddress(at: pattern, fromByteOffset: 4,
as: MetadataReference.self)
let leafMetadataRef = unsafe _loadRelativeAddress(at: pattern, fromByteOffset: 8,
as: MetadataReference.self)
let kvcString = unsafe _loadRelativeAddress(at: pattern, fromByteOffset: 12,
as: UnsafeRawPointer.self)
unsafe walker.visitHeader(genericEnvironment: genericEnvironment,
rootMetadataRef: rootMetadataRef,
leafMetadataRef: leafMetadataRef,
kvcCompatibilityString: kvcString)
func visitStored(header: RawKeyPathComponent.Header,
componentBuffer: inout UnsafeRawBufferPointer) {
// Decode a stored property. A small offset may be stored inline in the
// header word, or else be stored out-of-line, or need instantiation of some
// kind.
let offset: KeyPathPatternStoredOffset
switch header.storedOffsetPayload {
case RawKeyPathComponent.Header.outOfLineOffsetPayload:
unsafe offset = unsafe .outOfLine(_pop(from: &componentBuffer,
as: UInt32.self))
case RawKeyPathComponent.Header.unresolvedFieldOffsetPayload:
unsafe offset = unsafe .unresolvedFieldOffset(_pop(from: &componentBuffer,
as: UInt32.self))
case RawKeyPathComponent.Header.unresolvedIndirectOffsetPayload:
let base = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let relativeOffset = unsafe _pop(from: &componentBuffer,
as: Int32.self)
let ptr = unsafe _resolveRelativeIndirectableAddress(base, relativeOffset)
unsafe offset = unsafe .unresolvedIndirectOffset(
ptr.assumingMemoryBound(to: UInt.self))
default:
unsafe offset = unsafe .inline(header.storedOffsetPayload)
}
let kind: KeyPathStructOrClass = header.kind == .struct
? .struct : .class
unsafe walker.visitStoredComponent(kind: kind,
mutable: header.isStoredMutable,
offset: offset)
}
func popComputedAccessors(header: RawKeyPathComponent.Header,
componentBuffer: inout UnsafeRawBufferPointer)
-> (idValueBase: UnsafeRawPointer,
idValue: Int32,
getter: UnsafeRawPointer,
setter: UnsafeRawPointer?) {
let idValueBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let idValue = unsafe _pop(from: &componentBuffer, as: Int32.self)
let getterBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let getterRef = unsafe _pop(from: &componentBuffer, as: Int32.self)
let getter = unsafe _resolveCompactFunctionPointer(getterBase, getterRef)
let setter: UnsafeRawPointer?
if header.isComputedSettable {
let setterBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let setterRef = unsafe _pop(from: &componentBuffer, as: Int32.self)
unsafe setter = unsafe _resolveCompactFunctionPointer(setterBase, setterRef)
} else {
unsafe setter = nil
}
return unsafe (idValueBase: idValueBase, idValue: idValue,
getter: getter, setter: setter)
}
func popComputedArguments(header: RawKeyPathComponent.Header,
componentBuffer: inout UnsafeRawBufferPointer)
-> KeyPathPatternComputedArguments? {
if header.hasComputedArguments {
let getLayoutBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let getLayoutRef = unsafe _pop(from: &componentBuffer, as: Int32.self)
let getLayoutRaw = unsafe _resolveCompactFunctionPointer(getLayoutBase, getLayoutRef)
let getLayoutSigned = unsafe _PtrAuth.sign(pointer: getLayoutRaw,
key: .processIndependentCode,
discriminator: _PtrAuth.discriminator(for: KeyPathComputedArgumentLayoutFn.self))
let getLayout = unsafe unsafeBitCast(getLayoutSigned,
to: KeyPathComputedArgumentLayoutFn.self)
let witnessesBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let witnessesRef = unsafe _pop(from: &componentBuffer, as: Int32.self)
let witnesses: UnsafeRawPointer
if witnessesRef == 0 {
unsafe witnesses = __swift_keyPathGenericWitnessTable_addr()
} else {
unsafe witnesses = unsafe _resolveRelativeAddress(witnessesBase, witnessesRef)
}
let initializerBase = unsafe componentBuffer.baseAddress._unsafelyUnwrappedUnchecked
let initializerRef = unsafe _pop(from: &componentBuffer, as: Int32.self)
let initializerRaw = unsafe _resolveCompactFunctionPointer(initializerBase,
initializerRef)
let initializerSigned = unsafe _PtrAuth.sign(pointer: initializerRaw,
key: .processIndependentCode,
discriminator: _PtrAuth.discriminator(for: KeyPathComputedArgumentInitializerFn.self))
let initializer = unsafe unsafeBitCast(initializerSigned,
to: KeyPathComputedArgumentInitializerFn.self)
return unsafe KeyPathPatternComputedArguments(getLayout: getLayout,
witnesses: ComputedArgumentWitnessesPtr(witnesses),
initializer: initializer)
} else {
return nil
}
}
// We declare this down here to avoid the temptation to use it within
// the functions above.
let bufferPtr = unsafe pattern.advanced(by: keyPathPatternHeaderSize)
let bufferHeader = unsafe bufferPtr.load(as: KeyPathBuffer.Header.self)
var buffer = unsafe UnsafeRawBufferPointer(start: bufferPtr + 4,
count: bufferHeader.size)
while unsafe !buffer.isEmpty {
let header = unsafe _pop(from: &buffer,
as: RawKeyPathComponent.Header.self)
// Ensure that we pop an amount of data consistent with what
// RawKeyPathComponent.Header.patternComponentBodySize computes.
var bufferSizeBefore = 0
var expectedPop = 0
_internalInvariant({
bufferSizeBefore = buffer.count
expectedPop = header.patternComponentBodySize
return true
}())
switch header.kind {
case .class, .struct:
unsafe visitStored(header: header, componentBuffer: &buffer)
case .computed:
let (idValueBase, idValue, getter, setter)
= unsafe popComputedAccessors(header: header,
componentBuffer: &buffer)
// If there are arguments, gather those too.
let arguments = unsafe popComputedArguments(header: header,
componentBuffer: &buffer)
unsafe walker.visitComputedComponent(mutating: header.isComputedMutating,
idKind: header.computedIDKind,
idResolution: header.computedIDResolution,
idValueBase: idValueBase,
idValue: idValue,
getter: getter,
setter: setter,
arguments: arguments,
externalArgs: nil)
case .optionalChain:
walker.visitOptionalChainComponent()
case .optionalWrap:
walker.visitOptionalWrapComponent()
case .optionalForce:
walker.visitOptionalForceComponent()
case .external:
// Look at the external property descriptor to see if we should take it
// over the component given in the pattern.
let genericParamCount = Int(header.payload)
let descriptorBase = unsafe buffer.baseAddress._unsafelyUnwrappedUnchecked
let descriptorOffset = unsafe _pop(from: &buffer,
as: Int32.self)
let descriptor =
unsafe _resolveRelativeIndirectableAddress(descriptorBase, descriptorOffset)
let descriptorHeader: RawKeyPathComponent.Header
if unsafe descriptor != UnsafeRawPointer(bitPattern: 0) {
unsafe descriptorHeader = unsafe descriptor.load(as: RawKeyPathComponent.Header.self)
if descriptorHeader.isTrivialPropertyDescriptor {
// If the descriptor is trivial, then use the local candidate.
// Skip the external generic parameter accessors to get to it.
_ = unsafe _pop(from: &buffer, as: Int32.self, count: genericParamCount)
continue
}
} else {
// If the external property descriptor is nil, skip it to access
// the local candidate header.
_ = unsafe _pop(from: &buffer, as: Int32.self, count: genericParamCount)
continue
}
// Grab the generic parameter accessors to pass to the external component.
let externalArgs = unsafe _pop(from: &buffer, as: Int32.self,
count: genericParamCount)
// Grab the header for the local candidate in case we need it for
// a computed property.
let localCandidateHeader = unsafe _pop(from: &buffer,
as: RawKeyPathComponent.Header.self)
let localCandidateSize = localCandidateHeader.patternComponentBodySize
_internalInvariant({
expectedPop += localCandidateSize + 4
return true
}())
let descriptorSize = descriptorHeader.propertyDescriptorBodySize
var descriptorBuffer = unsafe UnsafeRawBufferPointer(start: descriptor + 4,
count: descriptorSize)
// Look at what kind of component the external property has.
switch descriptorHeader.kind {
case .struct, .class:
// A stored component. We can instantiate it
// without help from the local candidate.
_ = unsafe _pop(from: &buffer, as: UInt8.self, count: localCandidateSize)
unsafe visitStored(header: descriptorHeader,
componentBuffer: &descriptorBuffer)
case .computed:
// A computed component. The accessors come from the descriptor.
let (idValueBase, idValue, getter, setter)
= unsafe popComputedAccessors(header: descriptorHeader,
componentBuffer: &descriptorBuffer)
// Get the arguments from the external descriptor and/or local candidate
// component.
let arguments: KeyPathPatternComputedArguments?
if localCandidateHeader.kind == .computed
&& localCandidateHeader.hasComputedArguments {
// If both have arguments, then we have to build a bit of a chimera.
// The canonical identity and accessors come from the descriptor,
// but the argument equality/hash handling is still as described
// in the local candidate.
// We don't need the local candidate's accessors.
_ = unsafe popComputedAccessors(header: localCandidateHeader,
componentBuffer: &buffer)
// We do need the local arguments.
unsafe arguments = unsafe popComputedArguments(header: localCandidateHeader,
componentBuffer: &buffer)
} else {
// If the local candidate doesn't have arguments, we don't need
// anything from it at all.
_ = unsafe _pop(from: &buffer, as: UInt8.self, count: localCandidateSize)
unsafe arguments = nil
}
unsafe walker.visitComputedComponent(
mutating: descriptorHeader.isComputedMutating,
idKind: descriptorHeader.computedIDKind,
idResolution: descriptorHeader.computedIDResolution,
idValueBase: idValueBase,
idValue: idValue,
getter: getter,
setter: setter,
arguments: arguments,
externalArgs: genericParamCount > 0 ? externalArgs : nil)
case .optionalChain, .optionalWrap, .optionalForce, .external:
_internalInvariantFailure("not possible for property descriptor")
}
}
// Check that we consumed the expected amount of data from the pattern.
_internalInvariant(
{
// Round the amount of data we read up to alignment.
let popped = MemoryLayout<Int32>._roundingUpToAlignment(
bufferSizeBefore - buffer.count)
return expectedPop == popped
}(),
"""
component size consumed during pattern walk does not match \
component size returned by patternComponentBodySize
""")
// Break if this is the last component.
if unsafe buffer.isEmpty { break }
// Otherwise, pop the intermediate component type accessor and
// go around again.
let componentTypeBase = unsafe buffer.baseAddress._unsafelyUnwrappedUnchecked
let componentTypeOffset = unsafe _pop(from: &buffer, as: Int32.self)
let componentTypeRef = unsafe _resolveRelativeAddress(componentTypeBase,
componentTypeOffset)
unsafe walker.visitIntermediateComponentType(metadataRef: componentTypeRef)
unsafe _internalInvariant(!buffer.isEmpty)
}
// We should have walked the entire pattern.
unsafe _internalInvariant(buffer.isEmpty, "did not walk entire pattern buffer")
walker.finish()
}
@_unavailableInEmbedded
@unsafe
internal struct GetKeyPathClassAndInstanceSizeFromPattern
: KeyPathPatternVisitor {
// start with one word for the header
var size: Int = MemoryLayout<Int>.size
var sizeWithMaxSize: Int = 0
var capability: KeyPathKind = .value
var didChain: Bool = false
var root: Any.Type!
var leaf: Any.Type!
var genericEnvironment: UnsafeRawPointer?
let patternArgs: UnsafeRawPointer?
var structOffset: UInt32 = 0
var isPureStruct: [Bool] = []
init(patternArgs: UnsafeRawPointer?) {
unsafe self.patternArgs = unsafe patternArgs
}
mutating func roundUpToPointerAlignment() {
unsafe size = unsafe MemoryLayout<Int>._roundingUpToAlignment(size)
}
mutating func visitHeader(genericEnvironment: UnsafeRawPointer?,
rootMetadataRef: MetadataReference,
leafMetadataRef: MetadataReference,
kvcCompatibilityString: UnsafeRawPointer?) {
unsafe self.genericEnvironment = unsafe genericEnvironment
// Get the root and leaf type metadata so we can form the class type
// for the entire key path.
unsafe root = unsafe _resolveKeyPathMetadataReference(
rootMetadataRef,
genericEnvironment: genericEnvironment,
arguments: patternArgs)
unsafe leaf = unsafe _resolveKeyPathMetadataReference(
leafMetadataRef,
genericEnvironment: genericEnvironment,
arguments: patternArgs)
}
mutating func visitStoredComponent(kind: KeyPathStructOrClass,
mutable: Bool,
offset: KeyPathPatternStoredOffset) {
// Mutable class properties can be the root of a reference mutation.
// Mutable struct properties pass through the existing capability.
if mutable {
switch kind {
case .class:
unsafe capability = .reference
case .struct:
break
}
} else {
// Immutable properties can only be read.
unsafe capability = .readOnly
}
// The size of the instantiated component depends on whether we can fit
// the offset inline.
switch unsafe offset {
case .inline:
unsafe size += 4
case .outOfLine, .unresolvedFieldOffset, .unresolvedIndirectOffset:
unsafe size += 8
}
}
mutating func visitComputedComponent(mutating: Bool,
idKind: KeyPathComputedIDKind,
idResolution: KeyPathComputedIDResolution,
idValueBase: UnsafeRawPointer,
idValue: Int32,
getter: UnsafeRawPointer,
setter: UnsafeRawPointer?,
arguments: KeyPathPatternComputedArguments?,
externalArgs: UnsafeBufferPointer<Int32>?) {
let settable = unsafe setter != nil
switch (settable, mutating) {
case (false, false):
// If the property is get-only, the capability becomes read-only, unless
// we get another reference-writable component.
unsafe capability = .readOnly
case (true, false):
unsafe capability = .reference
case (true, true):
// Writable if the base is. No effect.
break
case (false, true):
_internalInvariantFailure("unpossible")
}
// Save space for the header...
unsafe size += 4
unsafe roundUpToPointerAlignment()
// ...id, getter, and maybe setter...
unsafe size += MemoryLayout<Int>.size * 2
if settable {
unsafe size += MemoryLayout<Int>.size
}
// ...and the arguments, if any.
let argumentHeaderSize = MemoryLayout<Int>.size * 2
switch unsafe (arguments, externalArgs) {
case (nil, nil):
break
case (let arguments?, nil):
unsafe size += argumentHeaderSize
// If we have arguments, calculate how much space they need by invoking
// the layout function.
let (addedSize, addedAlignmentMask) = unsafe arguments.getLayout(patternArgs)
// TODO: Handle over-aligned values
_internalInvariant(addedAlignmentMask < MemoryLayout<Int>.alignment,
"overaligned computed property element not supported")
unsafe size += addedSize
case (let arguments?, let externalArgs?):
// If we're referencing an external declaration, and it takes captured
// arguments, then we have to build a bit of a chimera. The canonical
// identity and accessors come from the descriptor, but the argument
// handling is still as described in the local candidate.
unsafe size += argumentHeaderSize
let (addedSize, addedAlignmentMask) = unsafe arguments.getLayout(patternArgs)
// TODO: Handle over-aligned values
_internalInvariant(addedAlignmentMask < MemoryLayout<Int>.alignment,
"overaligned computed property element not supported")
unsafe size += addedSize
// We also need to store the size of the local arguments so we can
// find the external component arguments.
unsafe roundUpToPointerAlignment()
unsafe size += RawKeyPathComponent.Header.externalWithArgumentsExtraSize
unsafe size += MemoryLayout<Int>.size * externalArgs.count
case (nil, let externalArgs?):
// If we're instantiating an external property with a local
// candidate that has no arguments, then things are a little
// easier. We only need to instantiate the generic
// arguments for the external component's accessors.
unsafe size += argumentHeaderSize
unsafe size += MemoryLayout<Int>.size * externalArgs.count
}
}
mutating func visitOptionalChainComponent() {
// Optional chaining forces the entire keypath to be read-only, even if
// there are further reference-writable components.
unsafe didChain = true
unsafe capability = .readOnly
unsafe size += 4
}
mutating func visitOptionalWrapComponent() {
// Optional chaining forces the entire keypath to be read-only, even if
// there are further reference-writable components.
unsafe didChain = true
unsafe capability = .readOnly
unsafe size += 4
}
mutating func visitOptionalForceComponent() {
// Force-unwrapping passes through the mutability of the preceding keypath.
unsafe size += 4
}
mutating
func visitIntermediateComponentType(metadataRef _: MetadataReference) {
// The instantiated component type will be stored in the instantiated
// object.
unsafe roundUpToPointerAlignment()
unsafe size += MemoryLayout<Int>.size
}
mutating func finish() {
unsafe sizeWithMaxSize = unsafe size
unsafe sizeWithMaxSize = unsafe MemoryLayout<Int>._roundingUpToAlignment(sizeWithMaxSize)
unsafe sizeWithMaxSize &+= MemoryLayout<Int>.size
}
}
@_unavailableInEmbedded
internal func _getKeyPathClassAndInstanceSizeFromPattern(
_ pattern: UnsafeRawPointer,
_ arguments: UnsafeRawPointer
) -> (
keyPathClass: AnyKeyPath.Type,
rootType: Any.Type,
size: Int,
sizeWithMaxSize: Int,
alignmentMask: Int
) {
var walker = unsafe GetKeyPathClassAndInstanceSizeFromPattern(patternArgs: arguments)
unsafe _walkKeyPathPattern(pattern, walker: &walker)
// Chaining always renders the whole key path read-only.
if unsafe walker.didChain {
unsafe walker.capability = .readOnly
}
// Grab the class object for the key path type we'll end up with.
func openRoot<Root>(_: Root.Type) -> AnyKeyPath.Type {
func openLeaf<Leaf>(_: Leaf.Type) -> AnyKeyPath.Type {
switch unsafe walker.capability {
case .readOnly:
return KeyPath<Root, Leaf>.self
case .value:
return WritableKeyPath<Root, Leaf>.self
case .reference:
return ReferenceWritableKeyPath<Root, Leaf>.self
}
}
return unsafe _openExistential(walker.leaf!, do: openLeaf)
}
let classTy = unsafe _openExistential(walker.root!, do: openRoot)
return unsafe (keyPathClass: classTy,
rootType: walker.root!,
size: walker.size,
sizeWithMaxSize: walker.sizeWithMaxSize,
// FIXME: Handle overalignment
alignmentMask: MemoryLayout<Int>._alignmentMask)
}
internal func _getTypeSize<Type>(_: Type.Type) -> Int {
MemoryLayout<Type>.size
}
@_unavailableInEmbedded
@unsafe
internal struct InstantiateKeyPathBuffer: KeyPathPatternVisitor {
var destData: UnsafeMutableRawBufferPointer
var genericEnvironment: UnsafeRawPointer?
let patternArgs: UnsafeRawPointer?
var base: Any.Type
var structOffset: UInt32 = 0
var isPureStruct: [Bool] = []
var maxSize: Int = 0
init(destData: UnsafeMutableRawBufferPointer,
patternArgs: UnsafeRawPointer?,
root: Any.Type) {
unsafe self.destData = unsafe destData
unsafe self.patternArgs = unsafe patternArgs
unsafe self.base = root
unsafe self.maxSize = _openExistential(root, do: _getTypeSize(_:))
}
// Track the triviality of the resulting object data.
var isTrivial: Bool = true
// Track where the reference prefix begins.
var endOfReferencePrefixComponent: UnsafeMutableRawPointer? = nil
var previousComponentAddr: UnsafeMutableRawPointer? = nil
mutating func adjustDestForAlignment<T>(of: T.Type) -> (
baseAddress: UnsafeMutableRawPointer,
misalign: Int
) {
let alignment = MemoryLayout<T>.alignment
var baseAddress = unsafe destData.baseAddress._unsafelyUnwrappedUnchecked
var misalign = Int(bitPattern: baseAddress) & (alignment - 1)
if misalign != 0 {
misalign = alignment - misalign
unsafe baseAddress = unsafe baseAddress.advanced(by: misalign)
}
return unsafe (baseAddress, misalign)
}
mutating func pushDest<T : BitwiseCopyable>(_ value: T) {
let size = MemoryLayout<T>.size
let (baseAddress, misalign) = unsafe adjustDestForAlignment(of: T.self)
unsafe _withUnprotectedUnsafeBytes(of: value) {
unsafe _memcpy(dest: baseAddress, src: $0.baseAddress._unsafelyUnwrappedUnchecked,
size: UInt(size))
}
unsafe destData = unsafe UnsafeMutableRawBufferPointer(
start: baseAddress + size,
count: destData.count - size - misalign)
}
mutating func pushAddressDiscriminatedFunctionPointer(
_ unsignedPointer: UnsafeRawPointer,
discriminator: UInt64
) {
let size = unsafe MemoryLayout<UnsafeRawPointer>.size
let (baseAddress, misalign) =
unsafe adjustDestForAlignment(of: UnsafeRawPointer.self)
unsafe baseAddress._storeFunctionPointerWithAddressDiscrimination(
unsignedPointer, discriminator: discriminator)
unsafe destData = unsafe UnsafeMutableRawBufferPointer(
start: baseAddress + size,
count: destData.count - size - misalign)
}
mutating func updatePreviousComponentAddr() -> UnsafeMutableRawPointer? {
let oldValue = unsafe previousComponentAddr
unsafe previousComponentAddr = unsafe destData.baseAddress._unsafelyUnwrappedUnchecked
return unsafe oldValue
}
mutating func visitHeader(genericEnvironment: UnsafeRawPointer?,
rootMetadataRef: MetadataReference,
leafMetadataRef: MetadataReference,
kvcCompatibilityString: UnsafeRawPointer?) {
unsafe self.genericEnvironment = unsafe genericEnvironment
let leaf = unsafe _resolveKeyPathMetadataReference(
leafMetadataRef,
genericEnvironment: genericEnvironment,
arguments: patternArgs
)
let size = _openExistential(leaf, do: _getTypeSize(_:))
unsafe maxSize = unsafe Swift.max(maxSize, size)
}
mutating func visitStoredComponent(kind: KeyPathStructOrClass,
mutable: Bool,
offset: KeyPathPatternStoredOffset) {
let previous = unsafe updatePreviousComponentAddr()
switch kind {
case .struct:
unsafe isPureStruct.append(true)
default:
unsafe isPureStruct.append(false)
}
switch kind {
case .class:
// A mutable class property can end the reference prefix.
if mutable {
unsafe endOfReferencePrefixComponent = unsafe previous
}
fallthrough
case .struct:
// Resolve the offset.
switch unsafe offset {
case .inline(let value):
let header = RawKeyPathComponent.Header(stored: kind,
mutable: mutable,
inlineOffset: value)
unsafe pushDest(header)
switch kind {
case .struct:
unsafe structOffset += value
default:
break
}
case .outOfLine(let offset):
let header = RawKeyPathComponent.Header(storedWithOutOfLineOffset: kind,
mutable: mutable)
unsafe pushDest(header)
unsafe pushDest(offset)
case .unresolvedFieldOffset(let offsetOfOffset):
// Look up offset in the type metadata. The value in the pattern is
// the offset within the metadata object.
let metadataPtr = unsafe unsafeBitCast(base, to: UnsafeRawPointer.self)
let offset: UInt32
switch kind {
case .class:
offset = unsafe UInt32(metadataPtr.load(fromByteOffset: Int(offsetOfOffset),
as: UInt.self))
case .struct:
offset = unsafe UInt32(metadataPtr.load(fromByteOffset: Int(offsetOfOffset),
as: UInt32.self))
unsafe structOffset += offset
}
let header = RawKeyPathComponent.Header(storedWithOutOfLineOffset: kind,
mutable: mutable)
unsafe pushDest(header)
unsafe pushDest(offset)
case .unresolvedIndirectOffset(let pointerToOffset):
// Look up offset in the indirectly-referenced variable we have a
// pointer.
unsafe _internalInvariant(pointerToOffset.pointee <= UInt32.max)
let offset = unsafe UInt32(truncatingIfNeeded: pointerToOffset.pointee)
let header = RawKeyPathComponent.Header(storedWithOutOfLineOffset: kind,
mutable: mutable)
unsafe pushDest(header)
unsafe pushDest(offset)
}
}
}
mutating func visitComputedComponent(mutating: Bool,
idKind: KeyPathComputedIDKind,
idResolution: KeyPathComputedIDResolution,
idValueBase: UnsafeRawPointer,
idValue: Int32,
getter: UnsafeRawPointer,
setter: UnsafeRawPointer?,
arguments: KeyPathPatternComputedArguments?,
externalArgs: UnsafeBufferPointer<Int32>?) {
unsafe isPureStruct.append(false)
let previous = unsafe updatePreviousComponentAddr()
let settable = unsafe setter != nil
// A nonmutating settable property can end the reference prefix.
if settable && !mutating {
unsafe endOfReferencePrefixComponent = unsafe previous
}
// Resolve the ID.
let resolvedID: UnsafeRawPointer?
switch idKind {
case .storedPropertyIndex, .vtableOffset:
_internalInvariant(idResolution == .resolved)
// Zero-extend the integer value to get the instantiated id.
let value = UInt(UInt32(bitPattern: idValue))
unsafe resolvedID = unsafe UnsafeRawPointer(bitPattern: value)
case .pointer:
// If the pointer ID is unresolved, then it needs work to get to
// the final value.
switch idResolution {
case .resolved:
unsafe resolvedID = unsafe _resolveRelativeAddress(idValueBase, idValue)
break
case .resolvedAbsolute:
let value = UInt(UInt32(bitPattern: idValue))
unsafe resolvedID = unsafe UnsafeRawPointer(bitPattern: value)
break
case .indirectPointer:
// The pointer in the pattern is an indirect pointer to the real
// identifier pointer.
let absoluteID = unsafe _resolveRelativeAddress(idValueBase, idValue)
unsafe resolvedID = unsafe absoluteID
.load(as: UnsafeRawPointer?.self)
case .functionCall:
// The pointer in the pattern is to a function that generates the
// identifier pointer.
typealias Resolver = @convention(c) (UnsafeRawPointer?) -> UnsafeRawPointer?
let absoluteID = unsafe _resolveCompactFunctionPointer(idValueBase, idValue)
let resolverSigned = unsafe _PtrAuth.sign(
pointer: absoluteID,
key: .processIndependentCode,
discriminator: _PtrAuth.discriminator(for: Resolver.self))
let resolverFn = unsafe unsafeBitCast(resolverSigned,
to: Resolver.self)
unsafe resolvedID = unsafe resolverFn(patternArgs)
}
}
// Bring over the header, getter, and setter.
let header = unsafe RawKeyPathComponent.Header(computedWithIDKind: idKind,
mutating: mutating,
settable: settable,
hasArguments: arguments != nil || externalArgs != nil,
instantiatedFromExternalWithArguments:
arguments != nil && externalArgs != nil)
unsafe pushDest(header)
unsafe pushDest(resolvedID)
unsafe pushAddressDiscriminatedFunctionPointer(getter,
discriminator: ComputedAccessorsPtr.getterPtrAuthKey)
if let setter = unsafe setter {
unsafe pushAddressDiscriminatedFunctionPointer(setter,
discriminator: mutating ? ComputedAccessorsPtr.mutatingSetterPtrAuthKey
: ComputedAccessorsPtr.nonmutatingSetterPtrAuthKey)
}
if let arguments = unsafe arguments {
// Instantiate the arguments.
let (baseSize, alignmentMask) = unsafe arguments.getLayout(patternArgs)
_internalInvariant(alignmentMask < MemoryLayout<Int>.alignment,
"overaligned computed arguments not implemented yet")
// The real buffer stride will be rounded up to alignment.
var totalSize = (baseSize + alignmentMask) & ~alignmentMask
// If an external property descriptor also has arguments, they'll be
// added to the end with pointer alignment.
if let externalArgs = unsafe externalArgs {
totalSize = MemoryLayout<Int>._roundingUpToAlignment(totalSize)
totalSize += MemoryLayout<Int>.size * externalArgs.count
}
unsafe pushDest(totalSize)
unsafe pushDest(arguments.witnesses)
// A nonnull destructor in the witnesses file indicates the instantiated
// payload is nontrivial.
if let _ = unsafe arguments.witnesses.destroy {
unsafe isTrivial = false
}
// If the descriptor has arguments, store the size of its specific
// arguments here, so we can drop them when trying to invoke
// the component's witnesses.
if let externalArgs = unsafe externalArgs {
unsafe pushDest(externalArgs.count * MemoryLayout<Int>.size)
}
// Initialize the local candidate arguments here.
unsafe _internalInvariant(Int(bitPattern: destData.baseAddress) & alignmentMask == 0,
"argument destination not aligned")
unsafe arguments.initializer(patternArgs,
destData.baseAddress._unsafelyUnwrappedUnchecked)
unsafe destData = unsafe UnsafeMutableRawBufferPointer(
start: destData.baseAddress._unsafelyUnwrappedUnchecked + baseSize,
count: destData.count - baseSize)
}
if let externalArgs = unsafe externalArgs {
if unsafe arguments == nil {
// If we're instantiating an external property without any local
// arguments, then we only need to instantiate the arguments to the
// property descriptor.
let stride = MemoryLayout<Int>.size * externalArgs.count
unsafe pushDest(stride)
unsafe pushDest(__swift_keyPathGenericWitnessTable_addr())
}
// Write the descriptor's generic arguments, which should all be relative
// references to metadata accessor functions.
for i in externalArgs.indices {
let base = unsafe externalArgs.baseAddress._unsafelyUnwrappedUnchecked + i
let offset = unsafe base.pointee
let metadataRef = unsafe _resolveRelativeAddress(UnsafeRawPointer(base), offset)
let result = unsafe _resolveKeyPathGenericArgReference(
metadataRef,
genericEnvironment: genericEnvironment,
arguments: patternArgs)
unsafe pushDest(result)
}
}
}
mutating func visitOptionalChainComponent() {
unsafe isPureStruct.append(false)
let _ = unsafe updatePreviousComponentAddr()
let header = RawKeyPathComponent.Header(optionalChain: ())
unsafe pushDest(header)
}
mutating func visitOptionalWrapComponent() {
unsafe isPureStruct.append(false)
let _ = unsafe updatePreviousComponentAddr()
let header = RawKeyPathComponent.Header(optionalWrap: ())
unsafe pushDest(header)
}
mutating func visitOptionalForceComponent() {
unsafe isPureStruct.append(false)
let _ = unsafe updatePreviousComponentAddr()
let header = RawKeyPathComponent.Header(optionalForce: ())
unsafe pushDest(header)
}
mutating func visitIntermediateComponentType(metadataRef: MetadataReference) {
// Get the metadata for the intermediate type.
let metadata = unsafe _resolveKeyPathMetadataReference(
metadataRef,
genericEnvironment: genericEnvironment,
arguments: patternArgs)
unsafe pushDest(metadata)
unsafe base = metadata
let size = _openExistential(metadata, do: _getTypeSize(_:))
unsafe maxSize = unsafe Swift.max(maxSize, size)
}
mutating func finish() {
// Finally, push our max size at the end of the buffer (and round up if
// necessary).
unsafe pushDest(maxSize)
// Should have filled the entire buffer by the time we reach the end of the
// pattern.
unsafe _internalInvariant(destData.isEmpty,
"should have filled entire destination buffer")
}
}
#if INTERNAL_CHECKS_ENABLED
// In debug builds of the standard library, check that instantiation produces
// components whose sizes are consistent with the sizing visitor pass.
@_unavailableInEmbedded
@unsafe
internal struct ValidatingInstantiateKeyPathBuffer: KeyPathPatternVisitor {
var sizeVisitor: GetKeyPathClassAndInstanceSizeFromPattern
var instantiateVisitor: InstantiateKeyPathBuffer
let origDest: UnsafeMutableRawPointer
var structOffset: UInt32 = 0
var isPureStruct: [Bool] = []
init(sizeVisitor: GetKeyPathClassAndInstanceSizeFromPattern,
instantiateVisitor: InstantiateKeyPathBuffer) {
unsafe self.sizeVisitor = unsafe sizeVisitor
unsafe self.instantiateVisitor = unsafe instantiateVisitor
unsafe origDest = unsafe self.instantiateVisitor.destData.baseAddress._unsafelyUnwrappedUnchecked
}
mutating func visitHeader(genericEnvironment: UnsafeRawPointer?,
rootMetadataRef: MetadataReference,
leafMetadataRef: MetadataReference,
kvcCompatibilityString: UnsafeRawPointer?) {
unsafe sizeVisitor.visitHeader(genericEnvironment: genericEnvironment,
rootMetadataRef: rootMetadataRef,
leafMetadataRef: leafMetadataRef,
kvcCompatibilityString: kvcCompatibilityString)
unsafe instantiateVisitor.visitHeader(genericEnvironment: genericEnvironment,
rootMetadataRef: rootMetadataRef,
leafMetadataRef: leafMetadataRef,
kvcCompatibilityString: kvcCompatibilityString)
}
mutating func visitStoredComponent(kind: KeyPathStructOrClass,
mutable: Bool,
offset: KeyPathPatternStoredOffset) {
unsafe sizeVisitor.visitStoredComponent(kind: kind, mutable: mutable,
offset: offset)
unsafe instantiateVisitor.visitStoredComponent(kind: kind, mutable: mutable,
offset: offset)
unsafe checkSizeConsistency()
unsafe structOffset = unsafe instantiateVisitor.structOffset
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
}
mutating func visitComputedComponent(mutating: Bool,
idKind: KeyPathComputedIDKind,
idResolution: KeyPathComputedIDResolution,
idValueBase: UnsafeRawPointer,
idValue: Int32,
getter: UnsafeRawPointer,
setter: UnsafeRawPointer?,
arguments: KeyPathPatternComputedArguments?,
externalArgs: UnsafeBufferPointer<Int32>?) {
unsafe sizeVisitor.visitComputedComponent(mutating: mutating,
idKind: idKind,
idResolution: idResolution,
idValueBase: idValueBase,
idValue: idValue,
getter: getter,
setter: setter,
arguments: arguments,
externalArgs: externalArgs)
unsafe instantiateVisitor.visitComputedComponent(mutating: mutating,
idKind: idKind,
idResolution: idResolution,
idValueBase: idValueBase,
idValue: idValue,
getter: getter,
setter: setter,
arguments: arguments,
externalArgs: externalArgs)
// Note: For this function and the ones below, modification of structOffset
// is omitted since these types of KeyPaths won't have a pureStruct
// offset anyway.
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency()
}
mutating func visitOptionalChainComponent() {
unsafe sizeVisitor.visitOptionalChainComponent()
unsafe instantiateVisitor.visitOptionalChainComponent()
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency()
}
mutating func visitOptionalWrapComponent() {
unsafe sizeVisitor.visitOptionalWrapComponent()
unsafe instantiateVisitor.visitOptionalWrapComponent()
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency()
}
mutating func visitOptionalForceComponent() {
unsafe sizeVisitor.visitOptionalForceComponent()
unsafe instantiateVisitor.visitOptionalForceComponent()
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency()
}
mutating func visitIntermediateComponentType(metadataRef: MetadataReference) {
unsafe sizeVisitor.visitIntermediateComponentType(metadataRef: metadataRef)
unsafe instantiateVisitor.visitIntermediateComponentType(metadataRef: metadataRef)
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency()
}
mutating func finish() {
unsafe sizeVisitor.finish()
unsafe instantiateVisitor.finish()
unsafe isPureStruct.append(contentsOf: instantiateVisitor.isPureStruct)
unsafe checkSizeConsistency(checkMaxSize: true)
}
func checkSizeConsistency(checkMaxSize: Bool = false) {
let nextDest = unsafe instantiateVisitor.destData.baseAddress._unsafelyUnwrappedUnchecked
let curSize = unsafe nextDest - origDest + MemoryLayout<Int>.size
let sizeVisitorSize = if checkMaxSize {
unsafe sizeVisitor.sizeWithMaxSize
} else {
unsafe sizeVisitor.size
}
_internalInvariant(curSize == sizeVisitorSize,
"size and instantiation visitors out of sync")
}
}
#endif // INTERNAL_CHECKS_ENABLED
@_unavailableInEmbedded
internal func _instantiateKeyPathBuffer(
_ pattern: UnsafeRawPointer,
_ origDestData: UnsafeMutableRawBufferPointer,
_ rootType: Any.Type,
_ arguments: UnsafeRawPointer,
_ sizeBeforeMaxSize: Int
) -> UInt32? {
let destHeaderPtr = unsafe origDestData.baseAddress._unsafelyUnwrappedUnchecked
var destData = unsafe UnsafeMutableRawBufferPointer(
start: destHeaderPtr.advanced(by: MemoryLayout<Int>.size),
count: origDestData.count &- MemoryLayout<Int>.size)
#if INTERNAL_CHECKS_ENABLED
// If checks are enabled, use a validating walker that ensures that the
// size pre-walk and instantiation walk are in sync.
let sizeWalker = unsafe GetKeyPathClassAndInstanceSizeFromPattern(
patternArgs: arguments)
let instantiateWalker = unsafe InstantiateKeyPathBuffer(
destData: destData,
patternArgs: arguments,
root: rootType)
var walker = unsafe ValidatingInstantiateKeyPathBuffer(sizeVisitor: sizeWalker,
instantiateVisitor: instantiateWalker)
#else
var walker = InstantiateKeyPathBuffer(
destData: destData,
patternArgs: arguments,
root: rootType)
#endif
unsafe _walkKeyPathPattern(pattern, walker: &walker)
#if INTERNAL_CHECKS_ENABLED
let isTrivial = unsafe walker.instantiateVisitor.isTrivial
let endOfReferencePrefixComponent =
unsafe walker.instantiateVisitor.endOfReferencePrefixComponent
#else
let isTrivial = walker.isTrivial
let endOfReferencePrefixComponent = walker.endOfReferencePrefixComponent
#endif
// Write out the header.
let destHeader = unsafe KeyPathBuffer.Header(
size: sizeBeforeMaxSize &- MemoryLayout<Int>.size,
trivial: isTrivial,
hasReferencePrefix: endOfReferencePrefixComponent != nil,
isSingleComponent: walker.isPureStruct.count == 1
)
unsafe destHeaderPtr.storeBytes(of: destHeader, as: KeyPathBuffer.Header.self)
// Mark the reference prefix if there is one.
if let endOfReferencePrefixComponent = unsafe endOfReferencePrefixComponent {
var componentHeader = unsafe endOfReferencePrefixComponent
.load(as: RawKeyPathComponent.Header.self)
componentHeader.endOfReferencePrefix = true
unsafe endOfReferencePrefixComponent.storeBytes(of: componentHeader,
as: RawKeyPathComponent.Header.self)
}
var isPureStruct = true
var offset: UInt32? = nil
for value in unsafe walker.isPureStruct {
isPureStruct = isPureStruct && value
}
if isPureStruct {
offset = unsafe walker.structOffset
}
return offset
}
#if SWIFT_ENABLE_REFLECTION
@available(SwiftStdlib 5.9, *)
public func _createOffsetBasedKeyPath(
root: Any.Type,
value: Any.Type,
offset: Int
) -> AnyKeyPath {
func openRoot<Root>(_: Root.Type) -> AnyKeyPath.Type {
func openValue<Value>(_: Value.Type) -> AnyKeyPath.Type {
KeyPath<Root, Value>.self
}
return _openExistential(value, do: openValue(_:))
}
let kpTy = _openExistential(root, do: openRoot(_:))
// The buffer header is 32 bits, but components must start on a word
// boundary.
let kpBufferSize = MemoryLayout<Int>.size + MemoryLayout<Int32>.size
let kp = unsafe kpTy._create(capacityInBytes: kpBufferSize) {
var builder = unsafe KeyPathBuffer.Builder($0)
let header = KeyPathBuffer.Header(
size: kpBufferSize - MemoryLayout<Int>.size,
trivial: true,
hasReferencePrefix: false,
isSingleComponent: true
)
unsafe builder.pushHeader(header)
let componentHeader = RawKeyPathComponent.Header(
stored: _MetadataKind(root) == .struct ? .struct : .class,
mutable: false,
inlineOffset: UInt32(offset)
)
let component = unsafe RawKeyPathComponent(
header: componentHeader,
body: UnsafeRawBufferPointer(start: nil, count: 0)
)
unsafe component.clone(into: &builder.buffer, endOfReferencePrefix: false)
}
if _MetadataKind(root) == .struct {
kp.assignOffsetToStorage(offset: offset)
}
return kp
}
@_spi(ObservableRerootKeyPath)
@available(SwiftStdlib 5.9, *)
public func _rerootKeyPath<NewRoot>(
_ existingKp: AnyKeyPath,
to newRoot: NewRoot.Type
) -> PartialKeyPath<NewRoot> {
let (
isTrivial,
hasReferencePrefix,
isSingleComponent,
componentSize
) = unsafe existingKp.withBuffer {
unsafe ($0.trivial, $0.hasReferencePrefix, $0.isSingleComponent, $0.data.count)
}
let existingKpTy = type(of: existingKp)
func openedRoot<Root>(_: Root.Type) -> AnyKeyPath.Type {
func openedValue<Value>(_: Value.Type) -> AnyKeyPath.Type {
if existingKpTy == ReferenceWritableKeyPath<Root, Value>.self {
return ReferenceWritableKeyPath<NewRoot, Value>.self
} else if existingKpTy == KeyPath<Root, Value>.self {
return KeyPath<NewRoot, Value>.self
} else {
fatalError("Unsupported KeyPath type to be rerooted")
}
}
return _openExistential(existingKpTy.valueType, do: openedValue(_:))
}
let newKpTy = _openExistential(existingKpTy.rootType, do: openedRoot(_:))
// Buffer header + padding (if needed)
var capacity = MemoryLayout<Int>.size
// Size of components
capacity += componentSize
// Max size at the end of the buffer
capacity = MemoryLayout<Int>._roundingUpToAlignment(capacity)
capacity += MemoryLayout<Int>.size
return unsafe newKpTy._create(
capacityInBytes: capacity
) {
var builder = unsafe KeyPathBuffer.Builder($0)
let header = KeyPathBuffer.Header(
size: componentSize,
trivial: isTrivial,
hasReferencePrefix: hasReferencePrefix,
isSingleComponent: isSingleComponent
)
unsafe builder.pushHeader(header)
unsafe existingKp.withBuffer {
var existingBuffer = unsafe $0
while true {
let (rawComponent, componentTy) = unsafe existingBuffer.next()
unsafe rawComponent.clone(
into: &builder.buffer,
endOfReferencePrefix: rawComponent.header.endOfReferencePrefix
)
if componentTy == nil {
break
}
}
// Append the max size at the end of the existing keypath's buffer to the
// end of the new keypath's buffer.
unsafe builder.push(existingBuffer.maxSize)
}
} as! PartialKeyPath<NewRoot>
}
@_silgen_name("swift_keyPath_copySymbolName")
fileprivate func keyPath_copySymbolName(
_: UnsafeRawPointer
) -> UnsafePointer<CChar>?
@_silgen_name("swift_keyPath_freeSymbolName")
fileprivate func keyPath_freeSymbolName(
_: UnsafePointer<CChar>?
) -> Void
@_silgen_name("swift_keyPathSourceString")
fileprivate func demangle(
name: UnsafePointer<CChar>
) -> UnsafeMutablePointer<CChar>?
fileprivate func dynamicLibraryAddress<Base, Leaf>(
of pointer: ComputedAccessorsPtr,
_: Base.Type,
_ leaf: Leaf.Type
) -> String {
let getter: ComputedAccessorsPtr.Getter<Base, Leaf> = pointer.getter()
let pointer = unsafe unsafeBitCast(getter, to: UnsafeRawPointer.self)
if let cString = unsafe keyPath_copySymbolName(UnsafeRawPointer(pointer)) {
defer {
unsafe keyPath_freeSymbolName(cString)
}
if let demangled = unsafe demangle(name: cString)
.map({ pointer in
defer {
unsafe pointer.deallocate()
}
return unsafe String(cString: pointer)
}) {
return demangled
}
}
return unsafe "<computed \(pointer) (\(leaf))>"
}
#endif
@available(SwiftStdlib 5.8, *)
@_unavailableInEmbedded
extension AnyKeyPath: CustomDebugStringConvertible {
#if SWIFT_ENABLE_REFLECTION
@available(SwiftStdlib 5.8, *)
public var debugDescription: String {
var description = "\\\(String(describing: Self.rootType))"
return unsafe withBuffer {
var buffer = unsafe $0
if unsafe buffer.data.isEmpty {
description.append(".self")
return description
}
var valueType: Any.Type = Self.rootType
while true {
let (rawComponent, optNextType) = unsafe buffer.next()
let hasEnded = optNextType == nil
let nextType = optNextType ?? Self.valueType
switch rawComponent.value {
case .optionalForce, .optionalWrap, .optionalChain:
break
default:
description.append(".")
}
switch rawComponent.value {
case .class(let offset),
.struct(let offset):
let count = _getRecursiveChildCount(valueType)
let index = (0..<count)
.first(where: { i in
_getChildOffset(
valueType,
index: i
) == offset
})
if let index = index {
var field = unsafe _FieldReflectionMetadata()
_ = unsafe _getChildMetadata(
valueType,
index: index,
fieldMetadata: &field
)
defer {
unsafe field.freeFunc?(field.name)
}
unsafe description.append(String(cString: field.name))
} else {
description.append("<offset \(offset) (\(nextType))>")
}
case .get(_, let accessors, _),
.nonmutatingGetSet(_, let accessors, _),
.mutatingGetSet(_, let accessors, _):
func project<Base>(base: Base.Type) -> String {
func project2<Leaf>(leaf: Leaf.Type) -> String {
dynamicLibraryAddress(
of: accessors,
base,
leaf
)
}
return _openExistential(nextType, do: project2)
}
description.append(
_openExistential(valueType, do: project)
)
case .optionalChain, .optionalWrap:
description.append("?")
case .optionalForce:
description.append("!")
}
if hasEnded {
break
}
valueType = nextType
}
return description
}
}
#else
@available(SwiftStdlib 5.8, *)
public var debugDescription: String {
"(value cannot be printed without reflection)"
}
#endif
}