Files
swift-mirror/lib/AST/Builtins.cpp
Michael Gottesman 05536d7183 [ast] Convert swift::getBuiltinType to use a covered switch for BuiltinTypeKind.
This is an NFC change. The idea is that this will make it easier to add new
BuiltinTypeKinds. I missed this code when adding Builtin.ImplicitIsolationActor.
By adding a covered switch, we can make sure this code is updated in the
future.
2025-08-21 12:36:01 -07:00

3749 lines
136 KiB
C++

//===--- Builtins.cpp - Swift Language Builtin ASTs -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to the Builtin APIs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Builtins.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTSynthesis.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/FileUnit.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Strings.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/ManagedStatic.h"
#include <tuple>
using namespace swift;
struct BuiltinExtraInfoTy {
const char *Attributes;
};
static const BuiltinExtraInfoTy BuiltinExtraInfo[] = {
{nullptr},
#define BUILTIN(Id, Name, Attrs) {Attrs},
#include "swift/AST/Builtins.def"
};
bool BuiltinInfo::isReadNone() const {
return strchr(BuiltinExtraInfo[(unsigned)ID].Attributes, 'n') != nullptr;
}
const llvm::AttributeList &
IntrinsicInfo::getOrCreateAttributes(ASTContext &Ctx) const {
using DenseMapInfo = llvm::DenseMapInfo<llvm::AttributeList>;
if (DenseMapInfo::isEqual(Attrs, DenseMapInfo::getEmptyKey())) {
Attrs = llvm::Intrinsic::getAttributes(Ctx.getIntrinsicScratchContext(), ID);
}
return Attrs;
}
Type swift::getBuiltinType(ASTContext &Context, StringRef Name) {
// We first map to a kind using a StringSwitch so that we can perform an
// exhaustive switch making it easier to know to update this code.
auto kind =
llvm::StringSwitch<std::optional<BuiltinTypeKind>>(Name)
.Case("FixedArray", BuiltinTypeKind::BuiltinFixedArray)
.StartsWith("Vec", BuiltinTypeKind::BuiltinVector)
.Case("RawPointer", BuiltinTypeKind::BuiltinRawPointer)
.Case("RawUnsafeContinuation",
BuiltinTypeKind::BuiltinRawUnsafeContinuation)
.Case("Job", BuiltinTypeKind::BuiltinJob)
.Case("DefaultActorStorage",
BuiltinTypeKind::BuiltinDefaultActorStorage)
.Case("NonDefaultDistributedActorStorage",
BuiltinTypeKind::BuiltinNonDefaultDistributedActorStorage)
.Case("Executor", BuiltinTypeKind::BuiltinExecutor)
.Case("NativeObject", BuiltinTypeKind::BuiltinNativeObject)
.Case("BridgeObject", BuiltinTypeKind::BuiltinBridgeObject)
.Case("UnsafeValueBuffer", BuiltinTypeKind::BuiltinUnsafeValueBuffer)
.Case("PackIndex", BuiltinTypeKind::BuiltinPackIndex)
.StartsWith("FP", BuiltinTypeKind::BuiltinFloat)
.Case("Word", BuiltinTypeKind::BuiltinInteger)
.Case("IntLiteral", BuiltinTypeKind::BuiltinIntegerLiteral)
.StartsWith("Int", BuiltinTypeKind::BuiltinInteger)
.Default({});
// Handle types that are not BuiltinTypeKinds.
if (!kind) {
if (Name == "SILToken")
return Context.TheSILTokenType;
// AnyObject is the empty class-constrained existential.
if (Name == "AnyObject")
return CanType(ProtocolCompositionType::theAnyObjectType(Context));
return Type();
}
switch (*kind) {
case BuiltinTypeKind::BuiltinFixedArray:
return BuiltinUnboundGenericType::get(TypeKind::BuiltinFixedArray, Context);
case BuiltinTypeKind::BuiltinVector: {
// Vectors are VecNxT, where "N" is the number of elements and
// T is the element type.
Name = Name.substr(3);
StringRef::size_type xPos = Name.find('x');
if (xPos == StringRef::npos)
return Type();
unsigned numElements;
if (Name.substr(0, xPos).getAsInteger(10, numElements) ||
numElements == 0 || numElements > 1024)
return Type();
Type elementType = getBuiltinType(Context, Name.substr(xPos + 1));
if (!elementType)
return Type();
return BuiltinVectorType::get(Context, elementType, numElements);
}
case BuiltinTypeKind::BuiltinRawPointer:
return Context.TheRawPointerType;
case BuiltinTypeKind::BuiltinRawUnsafeContinuation:
return Context.TheRawUnsafeContinuationType;
case BuiltinTypeKind::BuiltinJob:
return Context.TheJobType;
case BuiltinTypeKind::BuiltinDefaultActorStorage:
return Context.TheDefaultActorStorageType;
case BuiltinTypeKind::BuiltinNonDefaultDistributedActorStorage:
return Context.TheNonDefaultDistributedActorStorageType;
case BuiltinTypeKind::BuiltinExecutor:
return Context.TheExecutorType;
case BuiltinTypeKind::BuiltinNativeObject:
return Context.TheNativeObjectType;
case BuiltinTypeKind::BuiltinBridgeObject:
return Context.TheBridgeObjectType;
case BuiltinTypeKind::BuiltinUnsafeValueBuffer:
return Context.TheUnsafeValueBufferType;
case BuiltinTypeKind::BuiltinPackIndex:
return Context.ThePackIndexType;
case BuiltinTypeKind::BuiltinFloat:
// Target specific FP types.
if (Name == "FPIEEE32")
return Context.TheIEEE32Type;
if (Name == "FPIEEE64")
return Context.TheIEEE64Type;
if (Name == "FPIEEE16")
return Context.TheIEEE16Type;
if (Name == "FPIEEE80")
return Context.TheIEEE80Type;
if (Name == "FPIEEE128")
return Context.TheIEEE128Type;
if (Name == "FPPPC128")
return Context.ThePPC128Type;
return Type();
case BuiltinTypeKind::BuiltinInteger:
if (Name == "Word")
return BuiltinIntegerType::getWordType(Context);
if (Name == "Int") {
return BuiltinUnboundGenericType::get(TypeKind::BuiltinInteger, Context);
}
// Handle 'int8' and friends.
if (Name.substr(0, 3) == "Int") {
unsigned BitWidth;
if (!Name.substr(3).getAsInteger(10, BitWidth) && BitWidth <= 2048 &&
BitWidth != 0) // Cap to prevent unsound things.
return BuiltinIntegerType::get(BitWidth, Context);
}
return Type();
case BuiltinTypeKind::BuiltinIntegerLiteral:
return Context.TheIntegerLiteralType;
case BuiltinTypeKind::BuiltinUnboundGeneric:
return Type();
}
return Type();
}
/// getBuiltinBaseName - Decode the type list of a builtin (e.g. mul_Int32) and
/// return the base name (e.g. "mul").
StringRef swift::getBuiltinBaseName(ASTContext &C, StringRef Name,
SmallVectorImpl<Type> &Types) {
// builtin-id ::= operation-id ('_' type-id)*
for (StringRef::size_type Underscore = Name.find_last_of('_');
Underscore != StringRef::npos; Underscore = Name.find_last_of('_')) {
// Check that the type parameter is well-formed and set it up for returning.
// This allows operations with underscores in them, like "icmp_eq".
Type Ty = getBuiltinType(C, Name.substr(Underscore + 1));
if (Ty.isNull()) break;
Types.push_back(Ty);
Name = Name.substr(0, Underscore);
}
std::reverse(Types.begin(), Types.end());
return Name;
}
namespace {
/// AST synthesizers (see ASTSynthesis.h for the general pattern)
/// for generics.
enum UnrestrictedGenericParam { _unrestricted };
/// A synthesizer which generates a conformance requirement.
template <class TypeS, class ProtocolS>
struct ConformsToSynthesizer {
TypeS Type;
ProtocolS Protocol;
};
template <class TypeS, class ProtocolS>
constexpr ConformsToSynthesizer<TypeS, ProtocolS>
_conformsTo(TypeS type, ProtocolS protocol) {
return {type, protocol};
}
// Convenience macro to say that a type parameter has default
// Copyable & Escapable requirements.
#define _conformsToDefaults(INDEX) \
_conformsTo(_typeparam(INDEX), _copyable), \
_conformsTo(_typeparam(INDEX), _escapable)
/// A synthesizer which generates a layout constraint requirement.
template <class TypeS>
struct LayoutConstraintSynthesizer {
TypeS Type;
LayoutConstraint Constraint;
};
template <class TypeS>
LayoutConstraintSynthesizer<TypeS>
_layout(TypeS type, LayoutConstraint constraint) {
return {type, constraint};
}
static LayoutConstraint _classLayout() {
return LayoutConstraint::getLayoutConstraint(LayoutConstraintKind::Class);
}
/// A synthesizer which generates a generic parameter list.
template <class... ParamS>
struct GenericParamListSynthesizer {
VariadicSynthesizerStorage<ParamS...> Params;
};
template <class... ParamS>
constexpr GenericParamListSynthesizer<ParamS...>
_generics(ParamS... params) {
return {{params...}};
}
struct CountGenericParameters {
unsigned &Count;
void operator()(UnrestrictedGenericParam _) const {
Count++;
}
template <class TypeS, class ProtoS>
void operator()(const ConformsToSynthesizer<TypeS, ProtoS> &_) const {
// not a parameter
}
template <class TypeS>
void operator()(const LayoutConstraintSynthesizer<TypeS> &_) const {
// not a parameter
}
};
} // end anonymous namespace
static const char * const GenericParamNames[] = {
"T",
"U",
"V",
"W",
"X",
"Y",
"Z"
};
static GenericTypeParamDecl*
createGenericParam(ASTContext &ctx, const char *name, unsigned index,
bool isParameterPack = false) {
ModuleDecl *M = ctx.TheBuiltinModule;
Identifier ident = ctx.getIdentifier(name);
auto paramKind = GenericTypeParamKind::Type;
if (isParameterPack) {
paramKind = GenericTypeParamKind::Pack;
}
return GenericTypeParamDecl::createImplicit(
&M->getMainFile(FileUnitKind::Builtin), ident, /*depth*/ 0, index,
paramKind);
}
/// Create a generic parameter list with multiple generic parameters.
static GenericParamList *getGenericParams(ASTContext &ctx,
unsigned numParameters,
bool areParameterPacks = false) {
assert(numParameters <= std::size(GenericParamNames));
SmallVector<GenericTypeParamDecl *, 2> genericParams;
for (unsigned i = 0; i != numParameters; ++i)
genericParams.push_back(createGenericParam(ctx, GenericParamNames[i], i,
areParameterPacks));
auto paramList = GenericParamList::create(ctx, SourceLoc(), genericParams,
SourceLoc());
return paramList;
}
template <class... ParamsS>
static GenericParamList *synthesizeGenericParamList(SynthesisContext &SC,
const GenericParamListSynthesizer<ParamsS...> &params) {
unsigned count = 0;
params.Params.visit(CountGenericParameters{count});
auto paramList = getGenericParams(SC.Context, count);
SC.GenericParams = paramList;
return paramList;
}
namespace {
struct CollectGenericParams {
SynthesisContext &SC;
SmallVector<GenericTypeParamType *, 2> GenericParamTypes;
SmallVector<Requirement, 2> AddedRequirements;
CollectGenericParams(SynthesisContext &SC) : SC(SC) {
for (auto gp : SC.GenericParams->getParams()) {
GenericParamTypes.push_back(
gp->getDeclaredInterfaceType()->castTo<GenericTypeParamType>());
}
}
void operator()(UnrestrictedGenericParam _) {}
template <class TypeS, class ProtoS>
void operator()(const ConformsToSynthesizer<TypeS, ProtoS> &conf) {
auto type = synthesizeType(SC, conf.Type);
auto protocolType = synthesizeType(SC, conf.Protocol);
Requirement req = {RequirementKind::Conformance, type, protocolType};
AddedRequirements.push_back(req);
}
template <class TypeS>
void operator()(const LayoutConstraintSynthesizer<TypeS> &req) {
auto type = synthesizeType(SC, req.Type);
AddedRequirements.push_back({RequirementKind::Layout,
type, req.Constraint});
}
};
} // end anonymous namespace
template <class... ParamsS>
static GenericSignature
synthesizeGenericSignature(SynthesisContext &SC,
const GenericParamListSynthesizer<ParamsS...> &list) {
assert(SC.GenericParams && "synthesizeGenericParamList not called first");
CollectGenericParams collector(SC);
list.Params.visit(collector);
return buildGenericSignature(SC.Context,
GenericSignature(),
std::move(collector.GenericParamTypes),
std::move(collector.AddedRequirements),
/*allowInverses=*/false);
}
/// Build a builtin function declaration.
///
/// This is a "legacy" interface; you should probably use one of
/// the templated overloads below.
static FuncDecl *
getBuiltinFunction(Identifier Id, ArrayRef<Type> argTypes, Type ResType) {
auto &Context = ResType->getASTContext();
ModuleDecl *M = Context.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SmallVector<ParamDecl*, 4> params;
for (Type argType : argTypes) {
auto PD = new (Context) ParamDecl(SourceLoc(), SourceLoc(),
Identifier(), SourceLoc(), Identifier(), DC);
PD->setSpecifier(ParamSpecifier::Default);
PD->setInterfaceType(argType);
PD->setImplicit();
params.push_back(PD);
}
auto *paramList = ParameterList::create(Context, params);
DeclName Name(Context, Id, paramList);
auto *const FD = FuncDecl::createImplicit(
Context, StaticSpellingKind::None, Name, /*NameLoc=*/SourceLoc(),
/*Async=*/false, /*Throws=*/false, /*thrownType=*/Type(),
/*GenericParams=*/nullptr, paramList, ResType, DC);
FD->setAccess(AccessLevel::Public);
return FD;
}
template <class ExtInfoS, class ParamsS, class ResultS>
static FuncDecl *
getBuiltinFunctionImpl(SynthesisContext &SC, Identifier id,
GenericParamList *genericParams,
GenericSignature signature,
const ExtInfoS &extInfoS,
const ParamsS &paramsS,
const ResultS &resultS) {
auto params = synthesizeParameterList(SC, paramsS);
auto extInfo = synthesizeExtInfo(SC, extInfoS);
auto resultType = synthesizeType(SC, resultS);
DeclName name(SC.Context, id, params);
auto *FD = FuncDecl::createImplicit(
SC.Context, StaticSpellingKind::None, name, /*NameLoc=*/SourceLoc(),
extInfo.isAsync(), extInfo.isThrowing(), /*thrownType=*/Type(),
genericParams, params, resultType, SC.DC);
FD->setAccess(AccessLevel::Public);
FD->setGenericSignature(signature);
return FD;
}
/// Synthesize a non-generic builtin function declaration.
template <class ExtInfoS, class ParamsS, class ResultS>
static FuncDecl *
getBuiltinFunction(ASTContext &ctx, Identifier id,
const ExtInfoS &extInfoS, const ParamsS &paramsS,
const ResultS &resultS) {
ModuleDecl *M = ctx.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SynthesisContext SC(ctx, DC);
return getBuiltinFunctionImpl(SC, id, nullptr, GenericSignature(),
extInfoS, paramsS, resultS);
}
/// Synthesize a generic builtin function declaration.
template <class ExtInfoS, class GenericsS, class ParamsS, class ResultS>
static FuncDecl *
getBuiltinFunction(ASTContext &ctx, Identifier id,
const ExtInfoS &extInfoS,
const GenericsS &genericsS,
const ParamsS &paramsS,
const ResultS &resultS) {
ModuleDecl *M = ctx.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SynthesisContext SC(ctx, DC);
auto genericParamList = synthesizeGenericParamList(SC, genericsS);
auto genericSignature = synthesizeGenericSignature(SC, genericsS);
return getBuiltinFunctionImpl(SC, id, genericParamList, genericSignature,
extInfoS, paramsS, resultS);
}
namespace {
enum class BuiltinThrowsKind : uint8_t {
None,
Throws,
Rethrows
};
}
/// Build a builtin function declaration.
static FuncDecl *getBuiltinGenericFunction(
Identifier Id, ArrayRef<AnyFunctionType::Param> ArgParamTypes, Type ResType,
GenericParamList *GenericParams, GenericSignature Sig, bool Async,
BuiltinThrowsKind Throws, Type ThrownError, bool SendingResult) {
assert(GenericParams && "Missing generic parameters");
auto &Context = ResType->getASTContext();
ModuleDecl *M = Context.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SmallVector<ParamDecl*, 4> params;
for (unsigned i = 0, e = ArgParamTypes.size(); i < e; ++i) {
auto paramIfaceType = ArgParamTypes[i].getPlainType();
auto specifier =
ParamDecl::getParameterSpecifierForValueOwnership(
ArgParamTypes[i].getParameterFlags().getValueOwnership());
auto PD = new (Context) ParamDecl(SourceLoc(), SourceLoc(),
Identifier(), SourceLoc(),
Identifier(), DC);
PD->setSpecifier(specifier);
PD->setInterfaceType(paramIfaceType);
PD->setImplicit();
params.push_back(PD);
}
auto *paramList = ParameterList::create(Context, params);
DeclName Name(Context, Id, paramList);
auto *const func = FuncDecl::createImplicit(
Context, StaticSpellingKind::None, Name,
/*NameLoc=*/SourceLoc(),
Async,
Throws != BuiltinThrowsKind::None, ThrownError,
GenericParams, paramList, ResType, DC);
func->setSendingResult(SendingResult);
func->setAccess(AccessLevel::Public);
func->setGenericSignature(Sig);
if (Throws == BuiltinThrowsKind::Rethrows)
func->getAttrs().add(new (Context) RethrowsAttr(/*ThrowsLoc*/ SourceLoc()));
return func;
}
/// Build a getelementptr operation declaration.
static ValueDecl *getGepRawOperation(ASTContext &ctx,
Identifier id, Type argType) {
// This is always "(i8*, IntTy) -> i8*"
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer, argType),
_rawPointer);
}
static ValueDecl *getStringObjectOrOperation(ASTContext &ctx,
Identifier id, Type argType) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(argType, argType),
argType);
}
/// Build a binary operation declaration.
static ValueDecl *getBinaryOperation(ASTContext &ctx,
Identifier id, Type argType) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(argType, argType),
argType);
}
/// Build a declaration for a binary operation with overflow.
static ValueDecl *getBinaryOperationWithOverflow(ASTContext &ctx,
Identifier id,
Type argType) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(argType, argType, _int(1)),
_tuple(argType, _int(1)));
}
static ValueDecl *getUnaryOperation(ASTContext &ctx, Identifier id,
Type argType) {
return getBuiltinFunction(ctx, id, _thin, _parameters(argType), argType);
}
/// Build a binary predicate declaration.
static ValueDecl *getBinaryPredicate(ASTContext &ctx, Identifier id,
Type argType) {
if (auto vecType = argType->getAs<BuiltinVectorType>()) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(argType, argType),
_vector(vecType->getNumElements(), _int(1)));
}
return getBuiltinFunction(ctx, id, _thin,
_parameters(argType, argType),
_int(1));
}
/// Build a cast. There is some custom type checking here.
static ValueDecl *getCastOperation(ASTContext &Context, Identifier Id,
BuiltinValueKind VK,
ArrayRef<Type> Types) {
if (Types.empty() || Types.size() > 2) return nullptr;
Type Input = Types[0];
Type Output = Types.size() == 2 ? Types[1] : Type();
// If both types are vectors, look through the vectors.
Type CheckInput = Input;
Type CheckOutput = Output;
bool UnwrappedVector = false;
auto InputVec = Input->getAs<BuiltinVectorType>();
auto OutputVec = Output.isNull()? nullptr :Output->getAs<BuiltinVectorType>();
if (InputVec && OutputVec &&
InputVec->getNumElements() == OutputVec->getNumElements()) {
UnwrappedVector = true;
CheckInput = InputVec->getElementType();
CheckOutput = OutputVec->getElementType();
}
// Custom type checking. We know the one or two types have been subjected to
// the "isBuiltinTypeOverloaded" predicate successfully.
switch (VK) {
default: llvm_unreachable("Not a cast operation");
case BuiltinValueKind::Trunc:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getLeastWidth() <=
CheckOutput->castTo<BuiltinIntegerType>()->getGreatestWidth())
return nullptr;
break;
case BuiltinValueKind::TruncOrBitCast:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getLeastWidth() <
CheckOutput->castTo<BuiltinIntegerType>()->getGreatestWidth())
return nullptr;
break;
case BuiltinValueKind::ZExt:
case BuiltinValueKind::SExt: {
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getGreatestWidth() >=
CheckOutput->castTo<BuiltinIntegerType>()->getLeastWidth())
return nullptr;
break;
}
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getGreatestWidth() >
CheckOutput->castTo<BuiltinIntegerType>()->getLeastWidth())
return nullptr;
break;
}
case BuiltinValueKind::FPToUI:
case BuiltinValueKind::FPToSI:
if (CheckOutput.isNull() || !CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinIntegerType>())
return nullptr;
break;
case BuiltinValueKind::UIToFP:
case BuiltinValueKind::SIToFP:
if (CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinFloatType>())
return nullptr;
break;
case BuiltinValueKind::FPTrunc:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinFloatType>() ||
CheckInput->castTo<BuiltinFloatType>()->getFPKind() <=
CheckOutput->castTo<BuiltinFloatType>()->getFPKind())
return nullptr;
break;
case BuiltinValueKind::FPExt:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinFloatType>() ||
CheckInput->castTo<BuiltinFloatType>()->getFPKind() >=
CheckOutput->castTo<BuiltinFloatType>()->getFPKind())
return nullptr;
break;
case BuiltinValueKind::PtrToInt:
// FIXME: Do we care about vectors of pointers?
if (!CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
UnwrappedVector)
return nullptr;
Output = Input;
Input = Context.TheRawPointerType;
break;
case BuiltinValueKind::IntToPtr:
// FIXME: Do we care about vectors of pointers?
if (!CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
UnwrappedVector)
return nullptr;
Output = Context.TheRawPointerType;
break;
case BuiltinValueKind::BitCast:
if (CheckOutput.isNull()) return nullptr;
// Support float <-> int bitcast where the types are the same widths.
if (auto *BIT = CheckInput->getAs<BuiltinIntegerType>())
if (auto *BFT = CheckOutput->getAs<BuiltinFloatType>())
if (BIT->isFixedWidth() && BIT->getFixedWidth() == BFT->getBitWidth())
break;
if (auto *BFT = CheckInput->getAs<BuiltinFloatType>())
if (auto *BIT = CheckOutput->getAs<BuiltinIntegerType>())
if (BIT->isFixedWidth() && BIT->getFixedWidth() == BFT->getBitWidth())
break;
// Support VecNxInt1 -> IntN bitcast for SIMD comparison results.
if (auto *Vec = CheckInput->getAs<BuiltinVectorType>())
if (auto *BIT = CheckOutput->getAs<BuiltinIntegerType>())
if (auto *Element = Vec->getElementType()->getAs<BuiltinIntegerType>())
if (Element->getFixedWidth() == 1 &&
BIT->isFixedWidth() &&
BIT->getFixedWidth() == Vec->getNumElements())
break;
// And IntN -> VecNxInt1 for SIMDMask random generators.
if (auto *Vec = CheckOutput->getAs<BuiltinVectorType>())
if (auto *BIT = CheckInput->getAs<BuiltinIntegerType>())
if (auto *Element = Vec->getElementType()->getAs<BuiltinIntegerType>())
if (Element->getFixedWidth() == 1 &&
BIT->isFixedWidth() &&
BIT->getFixedWidth() == Vec->getNumElements())
break;
// FIXME: Implement bitcast typechecking.
llvm_unreachable("Bitcast not supported yet!");
return nullptr;
}
return getBuiltinFunction(Context, Id, _thin,
_parameters(Input),
Output);
}
namespace {
class BuiltinFunctionBuilder {
public:
ASTContext &Context;
private:
GenericParamList *TheGenericParamList;
SmallVector<AnyFunctionType::Param, 4> InterfaceParams;
Type InterfaceResult;
bool Async = false;
BuiltinThrowsKind Throws = BuiltinThrowsKind::None;
Type ThrownError;
bool SendingResult = false;
// Accumulate params and requirements here, so that we can call
// `buildGenericSignature()` when `build()` is called.
SmallVector<GenericTypeParamType *, 2> genericParamTypes;
SmallVector<Requirement, 2> addedRequirements;
public:
BuiltinFunctionBuilder(ASTContext &ctx, unsigned numGenericParams = 1,
bool wantsAdditionalAnyObjectRequirement = false,
bool areParametersPacks = false)
: Context(ctx) {
TheGenericParamList = getGenericParams(ctx, numGenericParams,
areParametersPacks);
if (wantsAdditionalAnyObjectRequirement) {
Requirement req(RequirementKind::Conformance,
TheGenericParamList->getParams()[0]->getInterfaceType(),
ctx.getAnyObjectConstraint());
addedRequirements.push_back(req);
}
for (auto gp : TheGenericParamList->getParams()) {
genericParamTypes.push_back(
gp->getDeclaredInterfaceType()->castTo<GenericTypeParamType>());
}
}
template <class G>
void addParameter(const G &generator,
ParamSpecifier ownership = ParamSpecifier::Default,
bool isSending = false) {
Type gTyIface = generator.build(*this);
auto flags = ParameterTypeFlags().withOwnershipSpecifier(ownership);
auto p = AnyFunctionType::Param(gTyIface, Identifier(), flags);
if (isSending) {
p = p.withFlags(p.getParameterFlags().withSending(true));
}
InterfaceParams.push_back(p);
}
template <class G>
void setResult(const G &generator) {
InterfaceResult = generator.build(*this);
}
template <class G>
void setThrownError(const G &generator) {
ThrownError = generator.build(*this);
}
template <class G>
void addConformanceRequirement(const G &generator, KnownProtocolKind kp) {
addConformanceRequirement(generator, Context.getProtocol(kp));
}
template <class G>
void addConformanceRequirement(const G &generator, ProtocolDecl *proto) {
assert(proto && "missing protocol");
Requirement req(RequirementKind::Conformance,
generator.build(*this),
proto->getDeclaredInterfaceType());
addedRequirements.push_back(req);
}
void setAsync() {
Async = true;
}
void setThrows() {
Throws = BuiltinThrowsKind::Throws;
}
void setRethrows() {
Throws = BuiltinThrowsKind::Rethrows;
}
void setSendingResult() { SendingResult = true; }
FuncDecl *build(Identifier name) {
auto GenericSig = buildGenericSignature(
Context, GenericSignature(),
std::move(genericParamTypes),
std::move(addedRequirements),
/*allowInverses=*/false);
return getBuiltinGenericFunction(name, InterfaceParams, InterfaceResult,
TheGenericParamList, GenericSig, Async,
Throws, ThrownError, SendingResult);
}
// Don't use these generator classes directly; call the make{...}
// functions which follow this class.
struct ConcreteGenerator {
Type TheType;
Type build(BuiltinFunctionBuilder &builder) const {
return TheType;
}
};
struct ParameterGenerator {
unsigned Index;
Type build(BuiltinFunctionBuilder &builder) const {
return builder.TheGenericParamList->getParams()[Index]
->getDeclaredInterfaceType();
}
};
struct LambdaGenerator {
std::function<Type(BuiltinFunctionBuilder &)> TheFunction;
Type build(BuiltinFunctionBuilder &builder) const {
return TheFunction(builder);
}
};
template <class T>
struct MetatypeGenerator {
T Object;
std::optional<MetatypeRepresentation> Repr;
Type build(BuiltinFunctionBuilder &builder) const {
return MetatypeType::get(Object.build(builder), Repr);
}
};
template <class T>
struct PackExpansionGenerator {
T Object;
Type build(BuiltinFunctionBuilder &builder) const {
auto patternTy = Object.build(builder);
SmallVector<Type, 2> packs;
patternTy->getTypeParameterPacks(packs);
return PackExpansionType::get(patternTy, packs[0]);
}
};
};
} // end anonymous namespace
static BuiltinFunctionBuilder::ConcreteGenerator
makeConcrete(Type type) {
return { type };
}
static BuiltinFunctionBuilder::ParameterGenerator
makeGenericParam(unsigned index = 0) {
return { index };
}
template <class... Gs>
static BuiltinFunctionBuilder::LambdaGenerator
makeTuple(const Gs & ...elementGenerators) {
return {
[=](BuiltinFunctionBuilder &builder) -> Type {
TupleTypeElt elts[] = {
elementGenerators.build(builder)...
};
return TupleType::get(elts, builder.Context);
}
};
}
template <class... Gs>
static BuiltinFunctionBuilder::LambdaGenerator
makeBoundGenericType(NominalTypeDecl *decl,
const Gs & ...argumentGenerators) {
return {
[=](BuiltinFunctionBuilder &builder) -> Type {
Type args[] = {
argumentGenerators.build(builder)...
};
return BoundGenericType::get(decl, Type(), args);
}
};
}
template <class T>
static BuiltinFunctionBuilder::MetatypeGenerator<T>
makeMetatype(const T &object,
std::optional<MetatypeRepresentation> repr = std::nullopt) {
return { object, repr };
}
template <class T>
static BuiltinFunctionBuilder::PackExpansionGenerator<T>
makePackExpansion(const T &object) {
return { object };
}
/// Create a function with type <T> T -> ().
static ValueDecl *getRefCountingOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _copyable)),
_parameters(_typeparam(0)),
_void);
}
static ValueDecl *getLoadOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _copyable),
_conformsTo(_typeparam(0), _escapable)),
_parameters(_rawPointer),
_typeparam(0));
}
static ValueDecl *getTakeOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _escapable)),
_parameters(_rawPointer),
_typeparam(0));
}
static ValueDecl *getStoreOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_owned(_typeparam(0)),
_rawPointer),
_void);
}
static ValueDecl *getDestroyOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0)),
_rawPointer),
_void);
}
static ValueDecl *getDestroyArrayOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0)),
_rawPointer,
_word),
_void);
}
static ValueDecl *getAssumeAlignment(ASTContext &ctx, Identifier id) {
// This is always "(Builtin.RawPointer, Builtin.Word) -> Builtin.RawPointer"
return getBuiltinFunction(ctx, id, _thin, _parameters(_rawPointer, _word),
_rawPointer);
}
static ValueDecl *getCopyArrayOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _copyable)),
_parameters(_metatype(_typeparam(0)),
_rawPointer,
_rawPointer,
_word),
_void);
}
static ValueDecl *getTransferArrayOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0)),
_rawPointer,
_rawPointer,
_word),
_void);
}
static ValueDecl *getIsUniqueOperation(ASTContext &ctx, Identifier id) {
// <T> (@inout T) -> Int1
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_inout(_typeparam(0))),
_int(1));
}
static ValueDecl *getEndCOWMutation(ASTContext &ctx, Identifier id) {
// <T> (@inout T) -> ()
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_inout(_typeparam(0))),
_void);
}
static ValueDecl *getBindMemoryOperation(ASTContext &ctx, Identifier id) {
FuncDecl *fd = getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_rawPointer,
_word,
_metatype(_typeparam(0))),
_word);
fd->getAttrs().add(new (ctx) DiscardableResultAttr(/*implicit*/true));
return fd;
}
static ValueDecl *getRebindMemoryOperation(ASTContext &ctx, Identifier id) {
FuncDecl *fd = getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer,
_word),
_word);
fd->getAttrs().add(new (ctx) DiscardableResultAttr(/*implicit*/true));
return fd;
}
static ValueDecl *getAllocWithTailElemsOperation(ASTContext &Context,
Identifier Id,
int NumTailTypes) {
if (NumTailTypes < 1 ||
1 + NumTailTypes > (int)std::size(GenericParamNames))
return nullptr;
BuiltinFunctionBuilder builder(Context, 1 + NumTailTypes);
auto resultTy = makeGenericParam(0);
builder.addConformanceRequirement(resultTy, KnownProtocolKind::Escapable);
builder.addParameter(makeMetatype(resultTy));
for (int Idx = 0; Idx < NumTailTypes; ++Idx) {
builder.addParameter(makeConcrete(BuiltinIntegerType::getWordType(Context)));
builder.addParameter(makeMetatype(makeGenericParam(Idx + 1)));
}
builder.setResult(resultTy);
return builder.build(Id);
}
static ValueDecl *getProjectTailElemsOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _unrestricted),
_parameters(_typeparam(0),
_metatype(_typeparam(1))),
_rawPointer);
}
/// Build a getelementptr operation declaration.
static ValueDecl *getGepOperation(ASTContext &ctx, Identifier id,
Type argType) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_rawPointer,
argType,
_metatype(_typeparam(0))),
_rawPointer);
}
static ValueDecl *getGetTailAddrOperation(ASTContext &ctx, Identifier id,
Type argType) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _unrestricted),
_parameters(_rawPointer,
argType,
_metatype(_typeparam(0)),
_metatype(_typeparam(1))),
_rawPointer);
}
static ValueDecl *getBeginUnpairedAccessOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_rawPointer,
_rawPointer,
_metatype(_typeparam(0))),
_void);
}
static ValueDecl *
getPerformInstantaneousReadAccessOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_rawPointer,
_metatype(_typeparam(0))),
_void);
}
static ValueDecl *getEndUnpairedAccessOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer),
_void);
}
static ValueDecl *getSizeOrAlignOfOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0))),
_word);
}
static ValueDecl *getIsPODOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0))),
_int(1));
}
static ValueDecl *getIsConcrete(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0))),
_int(1));
}
static ValueDecl *getIsBitwiseTakable(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0))),
_int(1));
}
static ValueDecl *getIsOptionalOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0))),
_int(1));
}
static ValueDecl *getIsSameMetatypeOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_existentialMetatype(_unconstrainedAny),
_existentialMetatype(_unconstrainedAny)),
_int(1));
}
static ValueDecl *getAllocOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_word, _word),
_rawPointer);
}
static ValueDecl *getDeallocOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer, _word, _word),
_void);
}
static ValueDecl *getStackAllocOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_word, _word, _word),
_rawPointer);
}
static ValueDecl *getStackDeallocOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer),
_void);
}
// Obsolete: only there to be able to read old Swift.interface files which still
// contain the builtin.
static ValueDecl *getAllocVectorOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted),
_parameters(_metatype(_typeparam(0)), _word),
_rawPointer);
}
static ValueDecl *getFenceOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin, _parameters(), _void);
}
static ValueDecl *getIfdefOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin, _parameters(), _int(1));
}
static ValueDecl *getVoidErrorOperation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin, _parameters(_error), _void);
}
static ValueDecl *getUnexpectedErrorOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin, _parameters(_error), _never);
}
static ValueDecl *getCmpXChgOperation(ASTContext &ctx, Identifier id,
Type T) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer, T, T),
_tuple(T, _int(1)));
}
static ValueDecl *getAtomicRMWOperation(ASTContext &ctx, Identifier id,
Type T) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer, T),
T);
}
static ValueDecl *getAtomicLoadOperation(ASTContext &ctx, Identifier id,
Type T) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer),
T);
}
static ValueDecl *getAtomicStoreOperation(ASTContext &ctx, Identifier id,
Type T) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer, T),
_void);
}
static ValueDecl *getNativeObjectCast(ASTContext &Context, Identifier Id,
BuiltinValueKind BV) {
ParamSpecifier ownership;
Type builtinTy;
switch (BV) {
case BuiltinValueKind::CastToNativeObject:
case BuiltinValueKind::UnsafeCastToNativeObject:
case BuiltinValueKind::CastFromNativeObject:
builtinTy = Context.TheNativeObjectType;
ownership = ParamSpecifier::LegacyOwned;
break;
case BuiltinValueKind::BridgeToRawPointer:
case BuiltinValueKind::BridgeFromRawPointer:
builtinTy = Context.TheRawPointerType;
ownership = ParamSpecifier::Default;
break;
default:
llvm_unreachable("unexpected kind");
}
BuiltinFunctionBuilder builder(Context);
auto genParam = makeGenericParam();
// Add safety, unless requested.
if (BV != BuiltinValueKind::UnsafeCastToNativeObject) {
builder.addConformanceRequirement(genParam, KnownProtocolKind::Copyable);
builder.addConformanceRequirement(genParam, KnownProtocolKind::Escapable);
}
if (BV == BuiltinValueKind::CastToNativeObject ||
BV == BuiltinValueKind::UnsafeCastToNativeObject ||
BV == BuiltinValueKind::BridgeToRawPointer) {
builder.addParameter(genParam, ownership);
builder.setResult(makeConcrete(builtinTy));
} else {
builder.addParameter(makeConcrete(builtinTy), ownership);
builder.setResult(genParam);
}
return builder.build(Id);
}
static ValueDecl *getCastToBridgeObjectOperation(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_owned(_typeparam(0)),
_word),
_bridgeObject);
}
static ValueDecl *getCastFromBridgeObjectOperation(ASTContext &ctx,
Identifier id,
BuiltinValueKind BV) {
switch (BV) {
case BuiltinValueKind::CastReferenceFromBridgeObject: {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_owned(_bridgeObject)),
_typeparam(0));
}
case BuiltinValueKind::CastBitPatternFromBridgeObject: {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_bridgeObject),
_word);
}
default:
llvm_unreachable("not a cast from bridge object op");
}
}
/// ClassifyBridgeObject has type:
/// (Builtin.BridgeObject) -> (Builtin.Int1, Builtin.Int1).
static ValueDecl *getClassifyBridgeObject(ASTContext &C, Identifier Id) {
Type int1Ty = BuiltinIntegerType::get(1, C);
Type resultTy = TupleType::get({
TupleTypeElt(int1Ty, C.getIdentifier("isObjCObject")),
TupleTypeElt(int1Ty, C.getIdentifier("isObjCTaggedPointer"))
}, C);
return getBuiltinFunction(Id, { C.TheBridgeObjectType }, resultTy);
}
static ValueDecl *getValueToBridgeObject(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_typeparam(0)),
_bridgeObject);
}
static ValueDecl *getCOWBufferForReading(ASTContext &C, Identifier Id) {
// <T : AnyObject> T -> T
//
BuiltinFunctionBuilder builder(C, 1, true);
auto T = makeGenericParam();
builder.addConformanceRequirement(T, KnownProtocolKind::Escapable);
builder.addParameter(T);
builder.setResult(T);
return builder.build(Id);
}
static ValueDecl *getTypePtrAuthDiscriminator(ASTContext &C, Identifier Id) {
// <T : AnyObject> (T.Type) -> Int64
BuiltinFunctionBuilder builder(C);
builder.addParameter(makeMetatype(makeGenericParam()));
Type Int64Ty = BuiltinIntegerType::get(64, C);
builder.setResult(makeConcrete(Int64Ty));
return builder.build(Id);
}
static ValueDecl *getOnFastPath(ASTContext &Context, Identifier Id) {
return getBuiltinFunction(Id, {}, TupleType::getEmpty(Context));
}
static ValueDecl *getCastReferenceOperation(ASTContext &ctx,
Identifier name) {
// <T, U> T -> U
// SILGen and IRGen check additional constraints during lowering.
BuiltinFunctionBuilder builder(ctx, 2);
builder.addParameter(makeGenericParam(0), ParamSpecifier::LegacyOwned);
auto resultTy = makeGenericParam(1);
builder.addConformanceRequirement(resultTy, KnownProtocolKind::Escapable);
builder.setResult(resultTy);
return builder.build(name);
}
static ValueDecl *getReinterpretCastOperation(ASTContext &ctx,
Identifier name) {
// <T, U> T -> U
// SILGen and IRGen check additional constraints during lowering.
BuiltinFunctionBuilder builder(ctx, 2);
builder.addParameter(makeGenericParam(0), ParamSpecifier::LegacyOwned);
auto resultTy = makeGenericParam(1);
builder.addConformanceRequirement(resultTy, KnownProtocolKind::Escapable);
builder.setResult(resultTy);
return builder.build(name);
}
static ValueDecl *getZeroInitializerOperation(ASTContext &Context,
Identifier Id) {
// <T> () -> T
BuiltinFunctionBuilder builder(Context);
auto genParam = makeGenericParam();
builder.addConformanceRequirement(genParam, KnownProtocolKind::Escapable);
builder.setResult(genParam);
return builder.build(Id);
}
static ValueDecl *getGetObjCTypeEncodingOperation(ASTContext &Context,
Identifier Id) {
// <T> T.Type -> RawPointer
BuiltinFunctionBuilder builder(Context);
builder.addParameter(makeMetatype(makeGenericParam()));
builder.setResult(makeConcrete(Context.TheRawPointerType));
return builder.build(Id);
}
static ValueDecl *getAutoDiffApplyDerivativeFunction(
ASTContext &Context, Identifier Id, AutoDiffDerivativeFunctionKind kind,
unsigned arity, bool throws, Type thrownType) {
assert(arity >= 1);
// JVP:
// <...T...(arity), R> (@differentiable(_forward) (...T) throws -> R, ...T)
// rethrows -> (R, (...T.TangentVector) -> R.TangentVector)
// VJP:
// <...T...(arity), R> (@differentiable(reverse) (...T) throws -> R, ...T)
// rethrows -> (R, (R.TangentVector) -> ...T.TangentVector)
unsigned numGenericParams = 1 + arity;
BuiltinFunctionBuilder builder(Context, numGenericParams);
// Get the `Differentiable` protocol.
auto *diffableProto = Context.getProtocol(KnownProtocolKind::Differentiable);
// Create type parameters and add conformance constraints.
auto fnResultGen = makeGenericParam(arity);
builder.addConformanceRequirement(fnResultGen, diffableProto);
SmallVector<decltype(fnResultGen), 2> fnParamGens;
for (auto i : range(arity)) {
auto T = makeGenericParam(i);
builder.addConformanceRequirement(T, diffableProto);
fnParamGens.push_back(T);
}
// Generator for the first argument, i.e. the `@differentiable` function.
BuiltinFunctionBuilder::LambdaGenerator firstArgGen{
// Generator for the function type at the argument position, i.e. the
// function being differentiated.
[=, &fnParamGens](BuiltinFunctionBuilder &builder) -> Type {
auto extInfo =
FunctionType::ExtInfoBuilder()
// TODO: Use `kind.getMinimalDifferentiabilityKind()`.
.withDifferentiabilityKind(DifferentiabilityKind::Reverse)
.withNoEscape()
.withThrows(throws, thrownType)
.build();
SmallVector<FunctionType::Param, 2> params;
for (auto &paramGen : fnParamGens)
params.push_back(FunctionType::Param(paramGen.build(builder)));
return FunctionType::get(params, fnResultGen.build(builder), extInfo);
}};
// Eagerly build the type of the first arg, then use that to compute the type
// of the result.
auto *diffFnType =
firstArgGen.build(builder)->castTo<AnyFunctionType>();
diffFnType = diffFnType->getWithoutDifferentiability()->withExtInfo(
diffFnType->getExtInfo().withNoEscape(false));
auto *paramIndices = IndexSubset::get(
Context, SmallBitVector(diffFnType->getNumParams(), true));
// Generator for the resultant function type, i.e. the AD derivative function.
BuiltinFunctionBuilder::LambdaGenerator resultGen{
[=](BuiltinFunctionBuilder &builder) -> Type {
auto derivativeFnTy = diffFnType->getAutoDiffDerivativeFunctionType(
paramIndices, kind,
LookUpConformanceInModule());
return derivativeFnTy->getResult();
}};
builder.addParameter(firstArgGen);
for (auto argGen : fnParamGens)
builder.addParameter(argGen);
if (throws)
builder.setRethrows();
builder.setResult(resultGen);
return builder.build(Id);
}
static ValueDecl *getAutoDiffApplyTransposeFunction(
ASTContext &Context, Identifier Id, unsigned arity, bool throws,
Type thrownType) {
assert(arity >= 1);
// <...T...(arity), R>
// (@differentiable(_linear) (...T) throws -> R, ...R.TangentVector)
// rethrows -> (...T.TangentVector)
unsigned numGenericParams = 1 + arity;
BuiltinFunctionBuilder builder(Context, numGenericParams);
auto *diffableProto = Context.getProtocol(KnownProtocolKind::Differentiable);
auto *addArithProto =
Context.getProtocol(KnownProtocolKind::AdditiveArithmetic);
// Create type parameters and add conformance constraints.
auto linearFnResultGen = makeGenericParam(arity);
builder.addConformanceRequirement(linearFnResultGen, diffableProto);
builder.addConformanceRequirement(linearFnResultGen, addArithProto);
SmallVector<decltype(linearFnResultGen), 2> linearFnParamGens;
for (auto i : range(arity)) {
auto T = makeGenericParam(i);
builder.addConformanceRequirement(T, diffableProto);
builder.addConformanceRequirement(T, addArithProto);
linearFnParamGens.push_back(T);
}
// Generator for the first argument, i.e. the `@differentiable(_linear)`
// function.
BuiltinFunctionBuilder::LambdaGenerator firstArgGen {
// Generator for the function type at the argument position, i.e. the
// function being differentiated.
[=, &linearFnParamGens](BuiltinFunctionBuilder &builder) -> Type {
FunctionType::ExtInfo ext;
auto extInfo =
FunctionType::ExtInfoBuilder()
.withDifferentiabilityKind(DifferentiabilityKind::Linear)
.withNoEscape()
.withThrows(throws, thrownType)
.build();
SmallVector<FunctionType::Param, 2> params;
for (auto &paramGen : linearFnParamGens)
params.push_back(FunctionType::Param(paramGen.build(builder)));
// FIXME: Verify ExtInfo state is correct, not working by accident.
FunctionType::ExtInfo info;
auto innerFunction =
FunctionType::get(params, linearFnResultGen.build(builder), info);
return innerFunction->withExtInfo(extInfo);
}
};
builder.addParameter(firstArgGen);
builder.addParameter(linearFnResultGen);
if (throws)
builder.setRethrows();
if (arity == 1)
builder.setResult(linearFnParamGens.front());
else {
BuiltinFunctionBuilder::LambdaGenerator tupleResultGen {
[&](BuiltinFunctionBuilder &builder) -> Type {
SmallVector<TupleTypeElt, 2> tupleElts;
for (auto linearFnParamGen : linearFnParamGens)
tupleElts.push_back(linearFnParamGen.build(builder));
return TupleType::get(tupleElts, Context);
}
};
builder.setResult(tupleResultGen);
}
return builder.build(Id);
}
static ValueDecl *getGlobalStringTablePointer(ASTContext &Context,
Identifier Id) {
// String -> Builtin.RawPointer
auto stringType = Context.getStringType();
return getBuiltinFunction(Id, {stringType}, Context.TheRawPointerType);
}
static ValueDecl *getConvertStrongToUnownedUnsafe(ASTContext &ctx,
Identifier id) {
// We actually want this:
//
// (T, inout unowned (unsafe) T) -> ()
//
// But for simplicity, we actually accept T, U and do the checking
// in the emission method that everything works up. This is a
// builtin, so we can crash.
BuiltinFunctionBuilder builder(ctx, 2);
builder.addParameter(makeGenericParam(0));
builder.addParameter(makeGenericParam(1), ParamSpecifier::InOut);
builder.setResult(makeConcrete(TupleType::getEmpty(ctx)));
return builder.build(id);
}
static ValueDecl *getConvertUnownedUnsafeToGuaranteed(ASTContext &ctx,
Identifier id) {
// We actually want this:
//
/// <BaseT, T> (BaseT, @inout unowned(unsafe) T) -> T
//
// But for simplicity, we actually accept three generic params T, U and do the
// checking in the emission method that everything works up. This is a
// builtin, so we can crash.
BuiltinFunctionBuilder builder(ctx, 3);
builder.addParameter(makeGenericParam(0)); // Base
builder.addParameter(makeGenericParam(1), ParamSpecifier::InOut); // Unmanaged
auto resultTy = makeGenericParam(2);
builder.addConformanceRequirement(resultTy, KnownProtocolKind::Escapable);
builder.setResult(resultTy); // Guaranteed Result
return builder.build(id);
}
static ValueDecl *getGetCurrentAsyncTask(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(id, { }, ctx.TheNativeObjectType);
}
static ValueDecl *getGetCurrentExecutor(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _async(_thin),
_parameters(),
_optional(_executor));
}
static ValueDecl *getCancelAsyncTask(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(
id, { ctx.TheNativeObjectType }, ctx.TheEmptyTupleType);
}
Type swift::getAsyncTaskAndContextType(ASTContext &ctx) {
TupleTypeElt resultTupleElements[2] = {
ctx.TheNativeObjectType, // task,
ctx.TheRawPointerType // initial context
};
return TupleType::get(resultTupleElements, ctx);
}
static ValueDecl *getCreateTask(ASTContext &ctx, Identifier id) {
auto taskExecutorIsAvailable =
ctx.getProtocol(swift::KnownProtocolKind::TaskExecutor) != nullptr;
return getBuiltinFunction(
ctx, id, _thin, _generics(_unrestricted, _conformsToDefaults(0)),
_parameters(
_label("flags", _swiftInt),
_label("initialSerialExecutor",
_defaulted(_optional(_executor), _nil)),
_label("taskGroup", _defaulted(_optional(_rawPointer), _nil)),
_label("initialTaskExecutor", _defaulted(_optional(_executor), _nil)),
_label("initialTaskExecutorConsuming",
_defaulted(_consuming(_optional(_bincompatType(
/*if*/ taskExecutorIsAvailable,
_existential(_taskExecutor),
/*else*/ _executor))),
_nil)),
_label("taskName", _defaulted(_optional(_rawPointer), _nil)),
_label("operation",
_sending(_function(_async(_throws(_thick)), _typeparam(0),
_parameters())))),
_tuple(_nativeObject, _rawPointer));
}
static ValueDecl *getCreateDiscardingTask(ASTContext &ctx, Identifier id) {
auto taskExecutorIsAvailable =
ctx.getProtocol(swift::KnownProtocolKind::TaskExecutor) != nullptr;
return getBuiltinFunction(
ctx, id, _thin,
_parameters(
_label("flags", _swiftInt),
_label("initialSerialExecutor",
_defaulted(_optional(_executor), _nil)),
_label("taskGroup", _defaulted(_optional(_rawPointer), _nil)),
_label("initialTaskExecutor", _defaulted(_optional(_executor), _nil)),
_label("initialTaskExecutorConsuming",
_defaulted(_consuming(_optional(_bincompatType(
/*if*/ taskExecutorIsAvailable,
_existential(_taskExecutor),
/*else*/ _executor))),
_nil)),
_label("taskName", _defaulted(_optional(_rawPointer), _nil)),
_label("operation", _sending(_function(_async(_throws(_thick)), _void,
_parameters())))),
_tuple(_nativeObject, _rawPointer));
}
// Legacy entry point, prefer `createAsyncTask`
static ValueDecl *getCreateAsyncTask(ASTContext &ctx, Identifier id,
bool inGroup, bool withTaskExecutor,
bool isDiscarding) {
unsigned numGenericParams = isDiscarding ? 0 : 1;
BuiltinFunctionBuilder builder(ctx, numGenericParams);
builder.addParameter(makeConcrete(ctx.getIntType())); // 0 flags
if (inGroup) {
builder.addParameter(makeConcrete(ctx.TheRawPointerType)); // group
}
if (withTaskExecutor) {
builder.addParameter(makeConcrete(ctx.TheExecutorType)); // executor
}
bool areSendingArgsEnabled =
ctx.LangOpts.hasFeature(Feature::SendingArgsAndResults);
auto extInfo = ASTExtInfoBuilder()
.withAsync()
.withThrows()
.withSendable(!areSendingArgsEnabled)
.build();
Type operationResultType;
if (isDiscarding) {
operationResultType = TupleType::getEmpty(ctx); // ()
} else {
operationResultType = makeGenericParam().build(builder); // <T>
}
builder.addParameter(
makeConcrete(FunctionType::get({}, operationResultType, extInfo)),
ParamSpecifier::Default,
areSendingArgsEnabled /*isSending*/); // operation
builder.setResult(makeConcrete(getAsyncTaskAndContextType(ctx)));
return builder.build(id);
}
static ValueDecl *getTaskRunInline(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(
ctx, id, _thin, _generics(_unrestricted, _conformsToDefaults(0)),
_parameters(
_function(_async(_noescape(_thick)), _typeparam(0), _parameters())),
_typeparam(0));
}
static ValueDecl *getConvertTaskToJob(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id,
_thin,
_parameters(_owned(_nativeObject)),
_job);
}
static ValueDecl *getDefaultActorInitDestroy(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_nativeObject),
_void);
}
static ValueDecl *getDistributedActorInitializeRemote(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)), // TODO(distributed): restrict to DistributedActor
_parameters(_metatype(_typeparam(0))),
_rawPointer);
}
static ValueDecl *getResumeContinuationReturning(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_rawUnsafeContinuation,
_owned(_typeparam(0))),
_void);
}
static ValueDecl *getResumeContinuationThrowing(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawUnsafeContinuation,
_owned(_error)),
_void);
}
static ValueDecl *getStartAsyncLet(ASTContext &ctx, Identifier id) {
ModuleDecl *M = ctx.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SynthesisContext SC(ctx, DC);
BuiltinFunctionBuilder builder(ctx);
auto genericParam = makeGenericParam().build(builder); // <T>
// AsyncLet*
builder.addParameter(makeConcrete(OptionalType::get(ctx.TheRawPointerType)));
// TaskOptionRecord*
builder.addParameter(makeConcrete(OptionalType::get(ctx.TheRawPointerType)));
// If sending results are enabled, make async let return a set
// value.
//
// NOTE: If our actual returned function does not return something that is
// sent, we will emit an error in Sema. In the case of SILGen, we just in such
// a case want to thunk and not emit an error. So in such a case, we always
// make this builtin take a sending result.
bool hasSendingResult =
ctx.LangOpts.hasFeature(Feature::RegionBasedIsolation);
// operation async function pointer: () async throws -> sending T
auto extInfo = ASTExtInfoBuilder()
.withAsync()
.withThrows()
.withNoEscape()
.withSendingResult(hasSendingResult)
.build();
builder.addParameter(
makeConcrete(FunctionType::get({ }, genericParam, extInfo)));
// -> Builtin.RawPointer
builder.setResult(makeConcrete(synthesizeType(SC, _rawPointer)));
return builder.build(id);
}
static ValueDecl *getEndAsyncLet(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer),
_void);
}
static ValueDecl *getCreateTaskGroup(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_metatype(_typeparam(0))),
_rawPointer);
}
static ValueDecl *getCreateTaskGroupWithFlags(ASTContext &ctx, Identifier id) {
ModuleDecl *M = ctx.TheBuiltinModule;
DeclContext *DC = &M->getMainFile(FileUnitKind::Builtin);
SynthesisContext SC(ctx, DC);
BuiltinFunctionBuilder builder(ctx);
// int
builder.addParameter(makeConcrete(ctx.getIntType())); // 0 flags
// T.self
builder.addParameter(makeMetatype(makeGenericParam(0))); // 1 ChildTaskResult.Type
// -> Builtin.RawPointer
builder.setResult(makeConcrete(synthesizeType(SC, _rawPointer)));
return builder.build(id);
}
static ValueDecl *getDestroyTaskGroup(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_parameters(_rawPointer),
_void);
}
static ValueDecl *getBuildMainActorExecutorRef(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin, _parameters(), _executor);
}
static ValueDecl *getBuildDefaultActorExecutorRef(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsToDefaults(0),
_layout(_typeparam(0), _classLayout())),
_parameters(_typeparam(0)),
_executor);
}
static ValueDecl *getExtractFunctionIsolation(ASTContext &ctx, Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_typeparam(0)),
_optional(_existential(_actor)));
}
static ValueDecl *getTargetOSVersionAtLeast(ASTContext &Context,
Identifier Id) {
auto int32Type = BuiltinIntegerType::get(32, Context);
return getBuiltinFunction(Id, {int32Type, int32Type, int32Type}, int32Type);
}
static ValueDecl *getTargetVariantOSVersionAtLeast(ASTContext &Context,
Identifier Id) {
auto int32Type = BuiltinIntegerType::get(32, Context);
return getBuiltinFunction(Id, {int32Type, int32Type, int32Type}, int32Type);
}
static ValueDecl *
getTargetOSVersionOrVariantOSVersionAtLeast(ASTContext &Context,
Identifier Id) {
auto int32Type = BuiltinIntegerType::get(32, Context);
return getBuiltinFunction(Id, {int32Type, int32Type, int32Type,
int32Type, int32Type, int32Type},
int32Type);
}
static ValueDecl *getBuildOrdinaryTaskExecutorRef(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _taskExecutor)),
_parameters(_typeparam(0)),
_executor);
}
static ValueDecl *getBuildOrdinarySerialExecutorRef(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _serialExecutor)),
_parameters(_typeparam(0)),
_executor);
}
static ValueDecl *getBuildComplexEqualitySerialExecutorRef(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(ctx, id, _thin,
_generics(_unrestricted,
_conformsTo(_typeparam(0), _serialExecutor)),
_parameters(_typeparam(0)),
_executor);
}
static ValueDecl *getAutoDiffCreateLinearMapContext(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(
ctx, id, _thin, _generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_metatype(_typeparam(0))), _nativeObject);
}
static ValueDecl *getAutoDiffProjectTopLevelSubcontext(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(
id, {ctx.TheNativeObjectType}, ctx.TheRawPointerType);
}
static ValueDecl *getAutoDiffAllocateSubcontext(ASTContext &ctx,
Identifier id) {
return getBuiltinFunction(
ctx, id, _thin, _generics(_unrestricted, _conformsToDefaults(0)),
_parameters(_nativeObject, _metatype(_typeparam(0))), _rawPointer);
}
static ValueDecl *getPoundAssert(ASTContext &Context, Identifier Id) {
auto int1Type = BuiltinIntegerType::get(1, Context);
auto optionalRawPointerType = BoundGenericEnumType::get(
Context.getOptionalDecl(), Type(), {Context.TheRawPointerType});
return getBuiltinFunction(Id, {int1Type, optionalRawPointerType},
Context.TheEmptyTupleType);
}
static ValueDecl *getTSanInoutAccess(ASTContext &Context, Identifier Id) {
// <T> T -> ()
BuiltinFunctionBuilder builder(Context);
builder.addParameter(makeGenericParam());
builder.setResult(makeConcrete(Context.TheEmptyTupleType));
return builder.build(Id);
}
static ValueDecl *getAddressOfOperation(ASTContext &Context, Identifier Id) {
// <T> (@inout T) -> RawPointer
BuiltinFunctionBuilder builder(Context);
builder.addParameter(makeGenericParam(), ParamSpecifier::InOut);
builder.setResult(makeConcrete(Context.TheRawPointerType));
return builder.build(Id);
}
static ValueDecl *getAddressOfBorrowOperation(ASTContext &Context,
Identifier Id) {
// <T> (T) -> RawPointer
BuiltinFunctionBuilder builder(Context);
builder.addParameter(makeGenericParam());
builder.setResult(makeConcrete(Context.TheRawPointerType));
return builder.build(Id);
}
static ValueDecl *getTypeJoinOperation(ASTContext &Context, Identifier Id) {
// <T,U,V> (T.Type, U.Type) -> V.Type
BuiltinFunctionBuilder builder(Context, 3);
builder.addParameter(makeMetatype(makeGenericParam(0)));
builder.addParameter(makeMetatype(makeGenericParam(1)));
builder.setResult(makeMetatype(makeGenericParam(2)));
return builder.build(Id);
}
static ValueDecl *getTypeJoinInoutOperation(ASTContext &Context,
Identifier Id) {
// <T,U,V> (inout T, U.Type) -> V.Type
BuiltinFunctionBuilder builder(Context, 3);
builder.addParameter(makeGenericParam(0), ParamSpecifier::InOut);
builder.addParameter(makeMetatype(makeGenericParam(1)));
builder.setResult(makeMetatype(makeGenericParam(2)));
return builder.build(Id);
}
static ValueDecl *getTypeJoinMetaOperation(ASTContext &Context, Identifier Id) {
// <T,U,V> (T.Type, U.Type) -> V.Type
BuiltinFunctionBuilder builder(Context, 3);
builder.addParameter(makeMetatype(makeGenericParam(0)));
builder.addParameter(makeMetatype(makeGenericParam(1)));
builder.setResult(makeMetatype(makeGenericParam(2)));
return builder.build(Id);
}
static ValueDecl *getTriggerFallbackDiagnosticOperation(ASTContext &Context,
Identifier Id) {
// () -> Void
return getBuiltinFunction(Id, {}, Context.TheEmptyTupleType);
}
static ValueDecl *getCanBeObjCClassOperation(ASTContext &Context,
Identifier Id) {
// <T> T.Type -> Builtin.Int8
BuiltinFunctionBuilder builder(Context);
builder.addParameter(makeMetatype(makeGenericParam()));
builder.setResult(makeConcrete(BuiltinIntegerType::get(8, Context)));
return builder.build(Id);
}
static ValueDecl *getLegacyCondFailOperation(ASTContext &C, Identifier Id) {
// Int1 -> ()
auto CondTy = BuiltinIntegerType::get(1, C);
auto VoidTy = TupleType::getEmpty(C);
return getBuiltinFunction(Id, {CondTy}, VoidTy);
}
static ValueDecl *getCondFailOperation(ASTContext &C, Identifier Id) {
// Int1 -> ()
auto CondTy = BuiltinIntegerType::get(1, C);
auto MsgTy = C.TheRawPointerType;
auto VoidTy = TupleType::getEmpty(C);
return getBuiltinFunction(Id, {CondTy, MsgTy}, VoidTy);
}
static ValueDecl *getAssertConfOperation(ASTContext &C, Identifier Id) {
// () -> Int32
auto Int32Ty = BuiltinIntegerType::get(32, C);
return getBuiltinFunction(Id, {}, Int32Ty);
}
static ValueDecl *getFixLifetimeOperation(ASTContext &C, Identifier Id) {
// <T> T -> ()
BuiltinFunctionBuilder builder(C);
builder.addParameter(makeGenericParam());
builder.setResult(makeConcrete(TupleType::getEmpty(C)));
return builder.build(Id);
}
static ValueDecl *getExtractElementOperation(ASTContext &Context, Identifier Id,
Type FirstTy, Type SecondTy) {
// (Vector<N, T>, Int32) -> T
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
if (!VecTy)
return nullptr;
auto IndexTy = SecondTy->getAs<BuiltinIntegerType>();
if (!IndexTy || !IndexTy->isFixedWidth() || IndexTy->getFixedWidth() != 32)
return nullptr;
Type ResultTy = VecTy->getElementType();
return getBuiltinFunction(Id, { VecTy, IndexTy }, ResultTy);
}
static ValueDecl *getInsertElementOperation(ASTContext &Context, Identifier Id,
Type FirstTy, Type SecondTy,
Type ThirdTy) {
// (Vector<N, T>, T, Int32) -> Vector<N, T>
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
if (!VecTy)
return nullptr;
auto ElementTy = VecTy->getElementType();
if (!SecondTy->isEqual(ElementTy))
return nullptr;
auto IndexTy = ThirdTy->getAs<BuiltinIntegerType>();
if (!IndexTy || !IndexTy->isFixedWidth() || IndexTy->getFixedWidth() != 32)
return nullptr;
Type ArgElts[] = { VecTy, ElementTy, IndexTy };
return getBuiltinFunction(Id, ArgElts, VecTy);
}
static ValueDecl *getSelectOperation(ASTContext &Context, Identifier Id,
Type PredTy, Type ValueTy) {
// Check for (NxInt1, NxTy, NxTy) -> NxTy
auto VecPredTy = PredTy->getAs<BuiltinVectorType>();
if (VecPredTy) {
// ValueTy must also be vector type with matching element count.
auto VecValueTy = ValueTy->getAs<BuiltinVectorType>();
if (!VecValueTy ||
VecPredTy->getNumElements() != VecValueTy->getNumElements())
return nullptr;
} else {
// Type is (Int1, Ty, Ty) -> Ty
auto IntTy = PredTy->getAs<BuiltinIntegerType>();
if (!IntTy || !IntTy->isFixedWidth() || IntTy->getFixedWidth() != 1)
return nullptr;
}
Type ArgElts[] = { PredTy, ValueTy, ValueTy };
return getBuiltinFunction(Id, ArgElts, ValueTy);
}
static ValueDecl *getShuffleVectorOperation(ASTContext &Context, Identifier Id,
Type FirstTy, Type SecondTy) {
// (Vector<N, T>, Vector<N, T>, Vector<M, Int32) -> Vector<M, T>
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
if (!VecTy)
return nullptr;
auto ElementTy = VecTy->getElementType();
auto IndexTy = SecondTy->getAs<BuiltinVectorType>();
if (!IndexTy)
return nullptr;
auto IdxElTy = IndexTy->getElementType()->getAs<BuiltinIntegerType>();
if (!IdxElTy || !IdxElTy->isFixedWidth() || IdxElTy->getFixedWidth() != 32)
return nullptr;
Type ArgElts[] = { VecTy, VecTy, IndexTy };
Type ResultTy = BuiltinVectorType::get(Context, ElementTy,
IndexTy->getNumElements());
return getBuiltinFunction(Id, ArgElts, ResultTy);
}
static ValueDecl *getInterleaveOperation(ASTContext &Context, Identifier Id,
Type FirstTy) {
// (Vector<N,T>, Vector<N,T>) -> (Vector<N,T>, Vector<N,T>)
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
// Require even length because we don't need anything else to support Swift's
// SIMD types and it saves us from having to define what happens for odd
// lengths until we actually need to care about them.
if (!VecTy || VecTy->getNumElements() % 2 != 0)
return nullptr;
Type ArgElts[] = { VecTy, VecTy };
TupleTypeElt ResultElts[] = { FirstTy, FirstTy };
Type ResultTy = TupleType::get(ResultElts, Context);
return getBuiltinFunction(Id, ArgElts, ResultTy);
}
static ValueDecl *getDeinterleaveOperation(ASTContext &Context, Identifier Id,
Type FirstTy) {
// (Vector<N,T>, Vector<N,T>) -> (Vector<N,T>, Vector<N,T>)
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
// Require even length because we don't need anything else to support Swift's
// SIMD types and it saves us from having to define what happens for odd
// lengths until we actually need to care about them.
if (!VecTy || VecTy->getNumElements() % 2 != 0)
return nullptr;
Type ArgElts[] = { VecTy, VecTy };
TupleTypeElt ResultElts[] = { FirstTy, FirstTy };
Type ResultTy = TupleType::get(ResultElts, Context);
return getBuiltinFunction(Id, ArgElts, ResultTy);
}
static ValueDecl *getStaticReportOperation(ASTContext &Context, Identifier Id) {
auto BoolTy = BuiltinIntegerType::get(1, Context);
auto MessageTy = Context.TheRawPointerType;
Type ArgElts[] = { BoolTy, BoolTy, MessageTy };
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinFunction(Id, ArgElts, ResultTy);
}
static ValueDecl *getCheckedTruncOperation(ASTContext &Context, Identifier Id,
Type InputTy, Type OutputTy,
bool AllowLiteral) {
auto InTy = InputTy->getAs<AnyBuiltinIntegerType>();
auto OutTy = OutputTy->getAs<BuiltinIntegerType>();
if (!InTy || !OutTy)
return nullptr;
if (isa<BuiltinIntegerLiteralType>(InTy)) {
if (!AllowLiteral)
return nullptr;
} else if (cast<BuiltinIntegerType>(InTy)->getLeastWidth()
< OutTy->getGreatestWidth()) {
return nullptr;
}
Type OverflowBitTy = BuiltinIntegerType::get(1, Context);
TupleTypeElt ResultElts[] = { Type(OutTy), OverflowBitTy };
Type ResultTy = TupleType::get(ResultElts, Context);
return getBuiltinFunction(Id, { InTy }, ResultTy);
}
static ValueDecl *getIntToFPWithOverflowOperation(ASTContext &Context,
Identifier Id, Type InputTy,
Type OutputTy) {
auto InTy = InputTy->getAs<BuiltinIntegerLiteralType>();
auto OutTy = OutputTy->getAs<BuiltinFloatType>();
if (!InTy || !OutTy)
return nullptr;
return getBuiltinFunction(Id, { InTy }, OutTy);
}
static ValueDecl *getBitWidthOperation(
ASTContext &ctx,
Identifier id,
Type valueTy
) {
if (!valueTy->getAs<BuiltinIntegerLiteralType>()) return nullptr;
return getBuiltinFunction(ctx, id, _thin, _parameters(valueTy), _word);
}
static ValueDecl *getIsNegativeOperation(
ASTContext &ctx,
Identifier id,
Type valueTy
) {
if (!valueTy->getAs<BuiltinIntegerLiteralType>()) return nullptr;
return getBuiltinFunction(ctx, id, _thin, _parameters(valueTy), _int(1));
}
static ValueDecl *getWordAtIndexOperation(
ASTContext &ctx,
Identifier id,
Type valueTy
) {
if (!valueTy->getAs<BuiltinIntegerLiteralType>()) return nullptr;
return getBuiltinFunction(ctx, id, _thin, _parameters(valueTy, _word), _word);
}
static ValueDecl *getUnreachableOperation(ASTContext &Context,
Identifier Id) {
auto NeverTy = Context.getNeverType();
if (!NeverTy)
return nullptr;
// () -> Never
return getBuiltinFunction(Id, {}, NeverTy);
}
static ValueDecl *getOnceOperation(ASTContext &Context,
Identifier Id,
bool withContext) {
// (RawPointer, @convention(c) (Context) -> ()[, Context]) -> ()
auto HandleTy = Context.TheRawPointerType;
auto VoidTy = Context.TheEmptyTupleType;
SmallVector<AnyFunctionType::Param, 1> CFuncParams;
swift::CanType ContextTy = Context.TheRawPointerType;
auto ContextArg = FunctionType::Param(ContextTy);
CFuncParams.push_back(ContextArg);
auto Rep = FunctionTypeRepresentation::CFunctionPointer;
auto ClangType = Context.getClangFunctionType(CFuncParams, VoidTy, Rep);
auto Thin =
FunctionType::ExtInfoBuilder(FunctionTypeRepresentation::CFunctionPointer,
/*throws*/ false, Type())
.withClangFunctionType(ClangType)
.build();
auto BlockTy = FunctionType::get(CFuncParams, VoidTy, Thin);
SmallVector<swift::Type, 3> ArgTypes = {HandleTy, BlockTy};
if (withContext) {
ArgTypes.push_back(ContextTy);
return getBuiltinFunction(Id, ArgTypes, VoidTy);
}
return getBuiltinFunction(Id, ArgTypes, Context.TheSILTokenType);
}
static ValueDecl *getPolymorphicBinaryOperation(ASTContext &ctx,
Identifier id) {
BuiltinFunctionBuilder builder(ctx);
// Builtins of the form: func binOp<T>(_ t: T, _ t: T) -> T
auto genericParam = makeGenericParam();
builder.addConformanceRequirement(genericParam, KnownProtocolKind::Escapable);
builder.addParameter(genericParam);
builder.addParameter(genericParam);
builder.setResult(genericParam);
return builder.build(id);
}
static ValueDecl *getWithUnsafeContinuation(ASTContext &ctx,
Identifier id,
bool throws) {
BuiltinFunctionBuilder builder(ctx);
auto contTy = ctx.TheRawUnsafeContinuationType;
SmallVector<AnyFunctionType::Param, 1> params;
params.emplace_back(contTy);
auto voidTy = ctx.TheEmptyTupleType;
auto extInfo = FunctionType::ExtInfoBuilder().withNoEscape().build();
auto *fnTy = FunctionType::get(params, voidTy, extInfo);
builder.addParameter(makeConcrete(fnTy));
auto resultTy = makeGenericParam();
builder.addConformanceRequirement(resultTy, KnownProtocolKind::Escapable);
builder.setResult(resultTy);
builder.setAsync();
if (throws)
builder.setThrows();
builder.setSendingResult();
return builder.build(id);
}
static ValueDecl *getHopToActor(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx);
auto *actorProto = ctx.getProtocol(KnownProtocolKind::Actor);
// Create type parameters and add conformance constraints.
auto actorParam = makeGenericParam();
builder.addParameter(actorParam);
builder.addConformanceRequirement(actorParam, actorProto);
builder.setResult(makeConcrete(TupleType::getEmpty(ctx)));
return builder.build(id);
}
static ValueDecl *getFlowSensitiveSelfIsolation(
ASTContext &ctx, Identifier id, bool isDistributed
) {
BuiltinFunctionBuilder builder(ctx);
return getBuiltinFunction(
ctx, id, _thin,
_generics(_unrestricted,
_conformsToDefaults(0),
_conformsTo(_typeparam(0),
isDistributed ? _distributedActor : _actor)),
_parameters(_typeparam(0)),
_optional(_existential(_actor)));
}
static ValueDecl *getDistributedActorAsAnyActor(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx);
auto *distributedActorProto = ctx.getProtocol(KnownProtocolKind::DistributedActor);
auto *actorProto = ctx.getProtocol(KnownProtocolKind::Actor);
// Create type parameters and add conformance constraints.
auto actorParam = makeGenericParam();
builder.addParameter(actorParam);
builder.addConformanceRequirement(actorParam, distributedActorProto);
builder.setResult(makeConcrete(actorProto->getDeclaredExistentialType()));
return builder.build(id);
}
static ValueDecl *getPackLength(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx, /* genericParamCount */ 1,
/* anyObject */ false,
/* areParametersPack */ true);
auto paramTy = makeMetatype(makeTuple(makePackExpansion(makeGenericParam())));
builder.addParameter(paramTy);
builder.setResult(makeConcrete(BuiltinIntegerType::getWordType(ctx)));
return builder.build(id);
}
static ValueDecl *getGetEnumTag(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx, /* genericParamCount */ 1);
auto paramTy = makeGenericParam();
builder.addParameter(paramTy);
builder.setResult(makeConcrete(BuiltinIntegerType::get(32, ctx)));
return builder.build(id);
}
static ValueDecl *getInjectEnumTag(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx, /* genericParamCount */ 1);
builder.addParameter(makeGenericParam(), ParamSpecifier::InOut);
builder.addParameter(makeConcrete(BuiltinIntegerType::get(32, ctx)));
builder.setResult(makeConcrete(TupleType::getEmpty(ctx)));
return builder.build(id);
}
static ValueDecl *getAddressOfRawLayout(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx, /* genericParamCount */ 1);
builder.addParameter(makeGenericParam(), ParamSpecifier::Borrowing);
builder.setResult(makeConcrete(ctx.TheRawPointerType));
return builder.build(id);
}
static ValueDecl *getEmplace(ASTContext &ctx, Identifier id) {
BuiltinFunctionBuilder builder(ctx, /* genericParamCount */ 2);
// <T: ~Copyable, E: Error>(
// _: (Builtin.RawPointer) throws(E) -> ()
// ) throws(E) -> T
auto T = makeGenericParam(0);
builder.addConformanceRequirement(T, KnownProtocolKind::Escapable);
auto E = makeGenericParam(1);
builder.addConformanceRequirement(E, KnownProtocolKind::Error);
auto extInfo = ASTExtInfoBuilder()
.withNoEscape()
.withThrows(/* throws */ true, E.build(builder))
.build();
auto fnParamTy = FunctionType::get(FunctionType::Param(ctx.TheRawPointerType),
ctx.TheEmptyTupleType,
extInfo);
builder.addParameter(makeConcrete(fnParamTy), ParamSpecifier::Borrowing);
builder.setResult(T);
builder.setThrows();
builder.setThrownError(E);
return builder.build(id);
}
/// An array of the overloaded builtin kinds.
static const OverloadedBuiltinKind OverloadedBuiltinKinds[] = {
OverloadedBuiltinKind::None,
// There's deliberately no BUILTIN clause here so that we'll blow up
// if new builtin categories are added there and not here.
#define BUILTIN_CAST_OPERATION(id, attrs, name) \
OverloadedBuiltinKind::Special,
#define BUILTIN_CAST_OR_BITCAST_OPERATION(id, attrs, name) \
OverloadedBuiltinKind::Special,
#define BUILTIN_BINARY_OPERATION_OVERLOADED_STATIC(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_BINARY_OPERATION_POLYMORPHIC(id, name) \
OverloadedBuiltinKind::Special,
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_UNARY_OPERATION(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_SIL_OPERATION(id, name, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_MISC_OPERATION(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_SANITIZER_OPERATION(id, name, attrs) \
OverloadedBuiltinKind::None,
#define BUILTIN_TYPE_CHECKER_OPERATION(id, name) OverloadedBuiltinKind::Special,
#define BUILTIN_TYPE_TRAIT_OPERATION(id, name) \
OverloadedBuiltinKind::Special,
#define BUILTIN_RUNTIME_CALL(id, attrs, name) \
OverloadedBuiltinKind::Special,
#include "swift/AST/Builtins.def"
};
/// Determines if a builtin type falls within the given category.
inline bool isBuiltinTypeOverloaded(Type T, OverloadedBuiltinKind OK) {
switch (OK) {
case OverloadedBuiltinKind::None:
return false; // always fail.
case OverloadedBuiltinKind::Integer:
return T->is<BuiltinIntegerType>();
case OverloadedBuiltinKind::IntegerOrVector:
return T->is<BuiltinIntegerType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinIntegerType>());
case OverloadedBuiltinKind::IntegerOrRawPointer:
return T->is<BuiltinIntegerType>() || T->is<BuiltinRawPointerType>();
case OverloadedBuiltinKind::IntegerOrRawPointerOrVector:
return T->is<BuiltinIntegerType>() || T->is<BuiltinRawPointerType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinIntegerType>());
case OverloadedBuiltinKind::Float:
return T->is<BuiltinFloatType>();
case OverloadedBuiltinKind::FloatOrVector:
return T->is<BuiltinFloatType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinFloatType>());
case OverloadedBuiltinKind::Special:
return true;
}
llvm_unreachable("bad overloaded builtin kind");
}
bool swift::canBuiltinBeOverloadedForType(BuiltinValueKind ID, Type Ty) {
if (ID == BuiltinValueKind::None)
return false;
return isBuiltinTypeOverloaded(Ty, OverloadedBuiltinKinds[unsigned(ID)]);
}
/// Table of string intrinsic names indexed by enum value.
static const char *const IntrinsicNameTable[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_NAME_TABLE
};
#define GET_INTRINSIC_TARGET_DATA
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_TARGET_DATA
llvm::Intrinsic::ID swift::getLLVMIntrinsicID(StringRef InName) {
using namespace llvm;
// Swift intrinsic names start with int_.
if (!InName.starts_with("int_"))
return llvm::Intrinsic::not_intrinsic;
InName = InName.drop_front(strlen("int_"));
// Prepend "llvm." and change _ to . in name.
SmallString<128> NameS;
NameS.append("llvm.");
for (char C : InName)
NameS.push_back(C == '_' ? '.' : C);
const char *Name = NameS.c_str();
ArrayRef<const char *> NameTable(&IntrinsicNameTable[1],
TargetInfos[1].Offset);
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
return static_cast<Intrinsic::ID>(Idx + 1);
}
llvm::Intrinsic::ID
swift::getLLVMIntrinsicIDForBuiltinWithOverflow(BuiltinValueKind ID) {
switch (ID) {
default: break;
case BuiltinValueKind::SAddOver:
return llvm::Intrinsic::sadd_with_overflow;
case BuiltinValueKind::UAddOver:
return llvm::Intrinsic::uadd_with_overflow;
case BuiltinValueKind::SSubOver:
return llvm::Intrinsic::ssub_with_overflow;
case BuiltinValueKind::USubOver:
return llvm::Intrinsic::usub_with_overflow;
case BuiltinValueKind::SMulOver:
return llvm::Intrinsic::smul_with_overflow;
case BuiltinValueKind::UMulOver:
return llvm::Intrinsic::umul_with_overflow;
}
llvm_unreachable("Cannot convert the overflow builtin to llvm intrinsic.");
}
namespace {
class IntrinsicTypeDecoder {
ArrayRef<llvm::Intrinsic::IITDescriptor> &Table;
ArrayRef<Type> TypeArguments;
ASTContext &Context;
public:
IntrinsicTypeDecoder(ArrayRef<llvm::Intrinsic::IITDescriptor> &table,
ArrayRef<Type> typeArguments, ASTContext &ctx)
: Table(table), TypeArguments(typeArguments), Context(ctx) {}
Type decodeImmediate();
/// Return the type argument at the given index.
Type getTypeArgument(unsigned index) {
if (index >= TypeArguments.size())
return Type();
return TypeArguments[index];
}
/// Create a pointer type.
Type makePointer(Type eltType, unsigned addrspace) {
// Reject non-default address space pointers.
if (addrspace)
return Type();
// For now, always ignore the element type and use RawPointer.
return Context.TheRawPointerType;
}
/// Create a vector type.
Type makeVector(Type eltType, unsigned width) {
return BuiltinVectorType::get(Context, eltType, width);
}
/// Return the first type or, if the second type is a vector type, a vector
/// of the first type of the same length as the second type.
Type maybeMakeVectorized(Type eltType, Type maybeVectorType) {
if (auto vectorType = maybeVectorType->getAs<BuiltinVectorType>()) {
return makeVector(eltType, vectorType->getNumElements());
}
return eltType;
}
};
} // end anonymous namespace
static Type DecodeIntrinsicType(ArrayRef<llvm::Intrinsic::IITDescriptor> &table,
ArrayRef<Type> typeArguments, ASTContext &ctx) {
return IntrinsicTypeDecoder(table, typeArguments, ctx).decodeImmediate();
}
Type IntrinsicTypeDecoder::decodeImmediate() {
typedef llvm::Intrinsic::IITDescriptor IITDescriptor;
IITDescriptor D = Table.front();
Table = Table.slice(1);
switch (D.Kind) {
case IITDescriptor::BFloat:
case IITDescriptor::MMX:
case IITDescriptor::AMX:
case IITDescriptor::Metadata:
case IITDescriptor::ExtendArgument:
case IITDescriptor::TruncArgument:
case IITDescriptor::HalfVecArgument:
case IITDescriptor::VarArg:
case IITDescriptor::Token:
case IITDescriptor::VecOfAnyPtrsToElt:
case IITDescriptor::VecOfBitcastsToInt:
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument:
case IITDescriptor::PPCQuad:
case IITDescriptor::AArch64Svcount:
// These types cannot be expressed in swift yet.
return Type();
// Fundamental types.
case IITDescriptor::Void:
return TupleType::getEmpty(Context);
case IITDescriptor::Half:
return Context.TheIEEE16Type;
case IITDescriptor::Float:
return Context.TheIEEE32Type;
case IITDescriptor::Double:
return Context.TheIEEE64Type;
case IITDescriptor::Quad:
return Context.TheIEEE128Type;
case IITDescriptor::Integer:
return BuiltinIntegerType::get(D.Integer_Width, Context);
// A vector of an immediate type.
case IITDescriptor::Vector: {
Type eltType = decodeImmediate();
if (!eltType) return Type();
return makeVector(eltType, D.Vector_Width.getKnownMinValue());
}
// The element type of a vector type.
case IITDescriptor::VecElementArgument: {
Type argType = getTypeArgument(D.getArgumentNumber());
if (!argType) return Type();
auto vecType = argType->getAs<BuiltinVectorType>();
if (!vecType) return Type();
return vecType->getElementType();
}
// A pointer to an immediate type.
case IITDescriptor::Pointer: {
Type pointeeType = decodeImmediate();
if (!pointeeType) return Type();
return makePointer(pointeeType, D.Pointer_AddressSpace);
}
// A type argument.
case IITDescriptor::Argument:
return getTypeArgument(D.getArgumentNumber());
// A vector of the same width as a type argument.
case IITDescriptor::SameVecWidthArgument: {
Type maybeVectorType = getTypeArgument(D.getArgumentNumber());
if (!maybeVectorType) return Type();
Type eltType = decodeImmediate();
if (!eltType) return Type();
return maybeMakeVectorized(eltType, maybeVectorType);
}
// A struct, which we translate as a tuple.
case IITDescriptor::Struct: {
SmallVector<TupleTypeElt, 5> Elts;
for (unsigned i = 0; i != D.Struct_NumElements; ++i) {
Type T = decodeImmediate();
if (!T) return Type();
Elts.push_back(T);
}
return TupleType::get(Elts, Context);
}
}
llvm_unreachable("unhandled");
}
/// \returns true on success, false on failure.
static bool
getSwiftFunctionTypeForIntrinsic(llvm::Intrinsic::ID ID,
ArrayRef<Type> TypeArgs,
ASTContext &Context,
SmallVectorImpl<Type> &ArgElts,
Type &ResultTy) {
typedef llvm::Intrinsic::IITDescriptor IITDescriptor;
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<IITDescriptor> TableRef = Table;
// Decode the intrinsic's LLVM IR type, and map it to swift builtin types.
ResultTy = DecodeIntrinsicType(TableRef, TypeArgs, Context);
if (!ResultTy)
return false;
while (!TableRef.empty()) {
Type ArgTy = DecodeIntrinsicType(TableRef, TypeArgs, Context);
if (!ArgTy)
return false;
ArgElts.push_back(ArgTy);
}
// Translate LLVM function attributes to Swift function attributes.
IntrinsicInfo II;
II.ID = ID;
auto attrs = II.getOrCreateAttributes(Context);
if (attrs.hasFnAttr(llvm::Attribute::NoReturn)) {
ResultTy = Context.getNeverType();
if (!ResultTy)
return false;
}
return true;
}
static bool isValidFenceOrdering(StringRef Ordering) {
return Ordering == "acquire" || Ordering == "release" ||
Ordering == "acqrel" || Ordering == "seqcst";
}
static bool isValidRMWOrdering(StringRef Ordering) {
return Ordering == "unordered" || Ordering == "monotonic" ||
Ordering == "acquire" || Ordering == "release" ||
Ordering == "acqrel" || Ordering == "seqcst";
}
static bool isValidLoadOrdering(StringRef Ordering) {
return Ordering == "unordered" || Ordering == "monotonic" ||
Ordering == "acquire" ||
Ordering == "seqcst";
}
static bool isValidStoreOrdering(StringRef Ordering) {
return Ordering == "unordered" || Ordering == "monotonic" ||
Ordering == "release" ||
Ordering == "seqcst";
}
llvm::AtomicOrdering swift::decodeLLVMAtomicOrdering(StringRef O) {
using namespace llvm;
return StringSwitch<AtomicOrdering>(O)
.Case("unordered", AtomicOrdering::Unordered)
.Case("monotonic", AtomicOrdering::Monotonic)
.Case("acquire", AtomicOrdering::Acquire)
.Case("release", AtomicOrdering::Release)
.Case("acqrel", AtomicOrdering::AcquireRelease)
.Case("seqcst", AtomicOrdering::SequentiallyConsistent)
.Default(AtomicOrdering::NotAtomic);
}
static bool isUnknownOrUnordered(llvm::AtomicOrdering ordering) {
using namespace llvm;
switch (ordering) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
return true;
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return false;
}
llvm_unreachable("Unhandled AtomicOrdering in switch.");
}
static bool isValidCmpXChgOrdering(StringRef SuccessString,
StringRef FailureString) {
using namespace llvm;
AtomicOrdering SuccessOrdering = decodeLLVMAtomicOrdering(SuccessString);
AtomicOrdering FailureOrdering = decodeLLVMAtomicOrdering(FailureString);
// Unordered and unknown values are not allowed.
if (isUnknownOrUnordered(SuccessOrdering) ||
isUnknownOrUnordered(FailureOrdering))
return false;
// Success must be at least as strong as failure.
if (!isAtLeastOrStrongerThan(SuccessOrdering, FailureOrdering))
return false;
// Failure may not release because no store occurred.
if (FailureOrdering == AtomicOrdering::Release ||
FailureOrdering == AtomicOrdering::AcquireRelease)
return false;
return true;
}
ValueDecl *swift::getBuiltinValueDecl(ASTContext &Context, Identifier Id) {
// Builtin.TheTupleType resolves to the singleton instance of BuiltinTupleDecl.
if (Id == Context.Id_TheTupleType)
return Context.getBuiltinTupleDecl();
if (Id == Context.Id_Copyable)
return Context.synthesizeInvertibleProtocolDecl(InvertibleProtocolKind::Copyable);
if (Id == Context.Id_Escapable)
return Context.synthesizeInvertibleProtocolDecl(InvertibleProtocolKind::Escapable);
SmallVector<Type, 4> Types;
StringRef OperationName = getBuiltinBaseName(Context, Id.str(), Types);
// If this is the name of an LLVM intrinsic, cons up a swift function with a
// type that matches the IR types.
if (llvm::Intrinsic::ID ID = getLLVMIntrinsicID(OperationName)) {
SmallVector<Type, 8> ArgElts;
Type ResultTy;
if (getSwiftFunctionTypeForIntrinsic(ID, Types, Context, ArgElts, ResultTy))
return getBuiltinFunction(Id, ArgElts, ResultTy);
}
// If this starts with fence, we have special suffixes to handle.
if (OperationName.starts_with("ifdef_")) {
OperationName = OperationName.drop_front(strlen("ifdef_"));
if (!Types.empty()) return nullptr;
if (OperationName.empty()) return nullptr;
return getIfdefOperation(Context, Id);
}
// If this starts with fence, we have special suffixes to handle.
if (OperationName.starts_with("fence_")) {
OperationName = OperationName.drop_front(strlen("fence_"));
// Verify we have a single integer, floating point, or pointer type.
if (!Types.empty()) return nullptr;
// Get and validate the ordering argument, which is required.
auto Underscore = OperationName.find('_');
if (!isValidFenceOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept singlethread if present.
if (OperationName.starts_with("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getFenceOperation(Context, Id);
}
// If this starts with cmpxchg, we have special suffixes to handle.
if (OperationName.starts_with("cmpxchg_")) {
OperationName = OperationName.drop_front(strlen("cmpxchg_"));
// Verify we have a single integer, floating point, or pointer type.
if (Types.size() != 1) return nullptr;
Type T = Types[0];
if (!T->is<BuiltinIntegerType>() && !T->is<BuiltinRawPointerType>() &&
!T->is<BuiltinFloatType>())
return nullptr;
// Get and validate the ordering arguments, which are both required.
SmallVector<StringRef, 4> Parts;
OperationName.split(Parts, "_");
if (Parts.size() < 2)
return nullptr;
if (!isValidCmpXChgOrdering(Parts[0], Parts[1]))
return nullptr;
auto NextPart = Parts.begin() + 2;
// Accept weak, volatile, and singlethread if present.
if (NextPart != Parts.end() && *NextPart == "weak")
++NextPart;
if (NextPart != Parts.end() && *NextPart == "volatile")
++NextPart;
if (NextPart != Parts.end() && *NextPart == "singlethread")
++NextPart;
// Nothing else is allowed in the name.
if (NextPart != Parts.end())
return nullptr;
return getCmpXChgOperation(Context, Id, T);
}
// If this starts with atomicrmw, we have special suffixes to handle.
if (OperationName.starts_with("atomicrmw_")) {
OperationName = OperationName.drop_front(strlen("atomicrmw_"));
// Verify we have a single integer or pointer type.
if (Types.size() != 1) return nullptr;
Type Ty = Types[0];
if (!Ty->is<BuiltinIntegerType>() && !Ty->is<BuiltinRawPointerType>())
return nullptr;
// Get and validate the suboperation name, which is required.
auto Underscore = OperationName.find('_');
if (Underscore == StringRef::npos) return nullptr;
StringRef SubOp = OperationName.substr(0, Underscore);
if (SubOp != "xchg" && SubOp != "add" && SubOp != "sub" && SubOp != "and" &&
SubOp != "nand" && SubOp != "or" && SubOp != "xor" && SubOp != "max" &&
SubOp != "min" && SubOp != "umax" && SubOp != "umin")
return nullptr;
OperationName = OperationName.drop_front(Underscore+1);
// Get and validate the ordering argument, which is required.
Underscore = OperationName.find('_');
if (!isValidRMWOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept volatile and singlethread if present.
if (OperationName.starts_with("_volatile"))
OperationName = OperationName.drop_front(strlen("_volatile"));
if (OperationName.starts_with("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getAtomicRMWOperation(Context, Id, Ty);
}
// If this starts with atomicload or atomicstore, we have special suffixes to
// handle.
if (OperationName.starts_with("atomicload_")) {
OperationName = OperationName.drop_front(strlen("atomicload_"));
// Verify we have a single integer, floating point, or pointer type.
if (Types.size() != 1) return nullptr;
Type T = Types[0];
if (!T->is<BuiltinIntegerType>() && !T->is<BuiltinRawPointerType>() &&
!T->is<BuiltinFloatType>())
return nullptr;
// Get and validate the ordering argument, which is required.
auto Underscore = OperationName.find('_');
if (!isValidLoadOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept volatile and singlethread if present.
if (OperationName.starts_with("_volatile"))
OperationName = OperationName.drop_front(strlen("_volatile"));
if (OperationName.starts_with("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getAtomicLoadOperation(Context, Id, T);
}
if (OperationName.starts_with("atomicstore_")) {
OperationName = OperationName.drop_front(strlen("atomicstore_"));
// Verify we have a single integer, floating point, or pointer type.
if (Types.size() != 1) return nullptr;
Type T = Types[0];
if (!T->is<BuiltinIntegerType>() && !T->is<BuiltinRawPointerType>() &&
!T->is<BuiltinFloatType>())
return nullptr;
// Get and validate the ordering argument, which is required.
auto Underscore = OperationName.find('_');
if (!isValidStoreOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept volatile and singlethread if present.
if (OperationName.starts_with("_volatile"))
OperationName = OperationName.drop_front(strlen("_volatile"));
if (OperationName.starts_with("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getAtomicStoreOperation(Context, Id, T);
}
if (OperationName.starts_with("allocWithTailElems_")) {
OperationName = OperationName.drop_front(strlen("allocWithTailElems_"));
int NumTailTypes = 0;
if (OperationName.getAsInteger(10, NumTailTypes))
return nullptr;
return getAllocWithTailElemsOperation(Context, Id, NumTailTypes);
}
if (OperationName.starts_with("applyDerivative_")) {
AutoDiffDerivativeFunctionKind kind;
unsigned arity;
bool throws;
if (!autodiff::getBuiltinApplyDerivativeConfig(
OperationName, kind, arity, throws))
return nullptr;
return getAutoDiffApplyDerivativeFunction(Context, Id, kind, arity,
throws, /*thrownType=*/Type());
}
if (OperationName.starts_with("applyTranspose_")) {
unsigned arity;
bool throws;
if (!autodiff::getBuiltinApplyTransposeConfig(
OperationName, arity, throws))
return nullptr;
return getAutoDiffApplyTransposeFunction(Context, Id, arity, throws,
/*thrownType=*/Type());
}
auto BV = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(id, name, Attrs) .Case(name, BuiltinValueKind::id)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
// Filter out inappropriate overloads.
OverloadedBuiltinKind OBK = OverloadedBuiltinKinds[unsigned(BV)];
// Verify that all types match the overload filter.
for (Type T : Types)
if (!isBuiltinTypeOverloaded(T, OBK))
return nullptr;
switch (BV) {
case BuiltinValueKind::Fence:
case BuiltinValueKind::Ifdef:
case BuiltinValueKind::CmpXChg:
case BuiltinValueKind::AtomicRMW:
case BuiltinValueKind::AtomicLoad:
case BuiltinValueKind::AtomicStore:
case BuiltinValueKind::AllocWithTailElems:
llvm_unreachable("Handled above");
case BuiltinValueKind::None: return nullptr;
case BuiltinValueKind::GepRaw:
if (Types.size() != 1) return nullptr;
return getGepRawOperation(Context, Id, Types[0]);
case BuiltinValueKind::StringObjectOr:
if (Types.size() != 1)
return nullptr;
return getStringObjectOrOperation(Context, Id, Types[0]);
case BuiltinValueKind::Gep:
if (Types.size() != 1) return nullptr;
return getGepOperation(Context, Id, Types[0]);
case BuiltinValueKind::GetTailAddr:
if (Types.size() != 1) return nullptr;
return getGetTailAddrOperation(Context, Id, Types[0]);
case BuiltinValueKind::PerformInstantaneousReadAccess:
if (!Types.empty()) return nullptr;
return getPerformInstantaneousReadAccessOperation(Context, Id);
case BuiltinValueKind::BeginUnpairedModifyAccess:
if (!Types.empty()) return nullptr;
return getBeginUnpairedAccessOperation(Context, Id);
case BuiltinValueKind::EndUnpairedAccess:
if (!Types.empty()) return nullptr;
return getEndUnpairedAccessOperation(Context, Id);
case BuiltinValueKind::AssumeAlignment:
if (!Types.empty())
return nullptr;
return getAssumeAlignment(Context, Id);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION(id, name, attrs)
#define BUILTIN_BINARY_OPERATION_OVERLOADED_STATIC(id, name, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryOperation(Context, Id, Types[0]);
#define BUILTIN(id, name, attrs)
#define BUILTIN_BINARY_OPERATION(id, name, attrs)
#define BUILTIN_BINARY_OPERATION_POLYMORPHIC(id, name) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (!Types.empty())
return nullptr;
return getPolymorphicBinaryOperation(Context, Id);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryOperationWithOverflow(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryPredicate(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_UNARY_OPERATION(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getUnaryOperation(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_CAST_OPERATION(id, name, attrs) case BuiltinValueKind::id:
#define BUILTIN_CAST_OR_BITCAST_OPERATION(id, name, attrs) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return getCastOperation(Context, Id, BV, Types);
case BuiltinValueKind::Retain:
case BuiltinValueKind::Release:
case BuiltinValueKind::Autorelease:
if (!Types.empty()) return nullptr;
return getRefCountingOperation(Context, Id);
case BuiltinValueKind::Load:
case BuiltinValueKind::LoadRaw:
case BuiltinValueKind::LoadInvariant:
if (!Types.empty()) return nullptr;
return getLoadOperation(Context, Id);
case BuiltinValueKind::Take:
if (!Types.empty()) return nullptr;
return getTakeOperation(Context, Id);
case BuiltinValueKind::Destroy:
if (!Types.empty()) return nullptr;
return getDestroyOperation(Context, Id);
case BuiltinValueKind::Assign:
case BuiltinValueKind::Init:
case BuiltinValueKind::StoreRaw:
if (!Types.empty()) return nullptr;
return getStoreOperation(Context, Id);
case BuiltinValueKind::DestroyArray:
if (!Types.empty()) return nullptr;
return getDestroyArrayOperation(Context, Id);
case BuiltinValueKind::CopyArray:
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
if (!Types.empty()) return nullptr;
return getCopyArrayOperation(Context, Id);
case BuiltinValueKind::TakeArrayNoAlias:
case BuiltinValueKind::TakeArrayFrontToBack:
case BuiltinValueKind::TakeArrayBackToFront:
case BuiltinValueKind::AssignTakeArray:
if (!Types.empty()) return nullptr;
return getTransferArrayOperation(Context, Id);
case BuiltinValueKind::IsUnique:
case BuiltinValueKind::IsUnique_native:
case BuiltinValueKind::BeginCOWMutation:
case BuiltinValueKind::BeginCOWMutation_native:
if (!Types.empty()) return nullptr;
// BeginCOWMutation has the same signature as IsUnique.
return getIsUniqueOperation(Context, Id);
case BuiltinValueKind::EndCOWMutation:
if (!Types.empty()) return nullptr;
return getEndCOWMutation(Context, Id);
case BuiltinValueKind::BindMemory:
if (!Types.empty()) return nullptr;
return getBindMemoryOperation(Context, Id);
case BuiltinValueKind::RebindMemory:
if (!Types.empty()) return nullptr;
return getRebindMemoryOperation(Context, Id);
case BuiltinValueKind::ProjectTailElems:
if (!Types.empty()) return nullptr;
return getProjectTailElemsOperation(Context, Id);
case BuiltinValueKind::Sizeof:
case BuiltinValueKind::Strideof:
case BuiltinValueKind::Alignof:
return getSizeOrAlignOfOperation(Context, Id);
case BuiltinValueKind::IsPOD:
return getIsPODOperation(Context, Id);
case BuiltinValueKind::IsConcrete:
return getIsConcrete(Context, Id);
case BuiltinValueKind::IsBitwiseTakable:
return getIsBitwiseTakable(Context, Id);
case BuiltinValueKind::IsOptionalType:
return getIsOptionalOperation(Context, Id);
case BuiltinValueKind::IsSameMetatype:
return getIsSameMetatypeOperation(Context, Id);
case BuiltinValueKind::AllocRaw:
return getAllocOperation(Context, Id);
case BuiltinValueKind::DeallocRaw:
return getDeallocOperation(Context, Id);
case BuiltinValueKind::StackAlloc:
case BuiltinValueKind::UnprotectedStackAlloc:
return getStackAllocOperation(Context, Id);
case BuiltinValueKind::StackDealloc:
return getStackDeallocOperation(Context, Id);
case BuiltinValueKind::AllocVector:
return getAllocVectorOperation(Context, Id);
case BuiltinValueKind::CastToNativeObject:
case BuiltinValueKind::UnsafeCastToNativeObject:
case BuiltinValueKind::CastFromNativeObject:
case BuiltinValueKind::BridgeToRawPointer:
case BuiltinValueKind::BridgeFromRawPointer:
if (!Types.empty()) return nullptr;
return getNativeObjectCast(Context, Id, BV);
case BuiltinValueKind::CastToBridgeObject:
if (!Types.empty()) return nullptr;
return getCastToBridgeObjectOperation(Context, Id);
case BuiltinValueKind::CastReferenceFromBridgeObject:
case BuiltinValueKind::CastBitPatternFromBridgeObject:
if (!Types.empty()) return nullptr;
return getCastFromBridgeObjectOperation(Context, Id, BV);
case BuiltinValueKind::CastReference:
if (!Types.empty()) return nullptr;
return getCastReferenceOperation(Context, Id);
case BuiltinValueKind::ReinterpretCast:
if (!Types.empty()) return nullptr;
return getReinterpretCastOperation(Context, Id);
case BuiltinValueKind::AddressOf:
case BuiltinValueKind::UnprotectedAddressOf:
if (!Types.empty()) return nullptr;
return getAddressOfOperation(Context, Id);
case BuiltinValueKind::LegacyCondFail:
return getLegacyCondFailOperation(Context, Id);
case BuiltinValueKind::AddressOfBorrow:
case BuiltinValueKind::AddressOfBorrowOpaque:
case BuiltinValueKind::UnprotectedAddressOfBorrow:
case BuiltinValueKind::UnprotectedAddressOfBorrowOpaque:
if (!Types.empty()) return nullptr;
return getAddressOfBorrowOperation(Context, Id);
case BuiltinValueKind::CondFailMessage:
return getCondFailOperation(Context, Id);
case BuiltinValueKind::AssertConf:
return getAssertConfOperation(Context, Id);
case BuiltinValueKind::FixLifetime:
return getFixLifetimeOperation(Context, Id);
case BuiltinValueKind::CanBeObjCClass:
return getCanBeObjCClassOperation(Context, Id);
case BuiltinValueKind::CondUnreachable:
case BuiltinValueKind::Unreachable:
return getUnreachableOperation(Context, Id);
case BuiltinValueKind::ZeroInitializer:
case BuiltinValueKind::PrepareInitialization:
return getZeroInitializerOperation(Context, Id);
case BuiltinValueKind::Once:
case BuiltinValueKind::OnceWithContext:
return getOnceOperation(Context, Id, BV == BuiltinValueKind::OnceWithContext);
case BuiltinValueKind::WillThrow:
case BuiltinValueKind::ErrorInMain:
return getVoidErrorOperation(Context, Id);
case BuiltinValueKind::UnexpectedError:
return getUnexpectedErrorOperation(Context, Id);
case BuiltinValueKind::ExtractElement:
if (Types.size() != 2) return nullptr;
return getExtractElementOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::InsertElement:
if (Types.size() != 3) return nullptr;
return getInsertElementOperation(Context, Id, Types[0], Types[1], Types[2]);
case BuiltinValueKind::Select:
if (Types.size() != 2) return nullptr;
return getSelectOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::ShuffleVector:
if (Types.size() != 2) return nullptr;
return getShuffleVectorOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::Interleave:
if (Types.size() != 1) return nullptr;
return getInterleaveOperation(Context, Id, Types[0]);
case BuiltinValueKind::Deinterleave:
if (Types.size() != 1) return nullptr;
return getDeinterleaveOperation(Context, Id, Types[0]);
case BuiltinValueKind::StaticReport:
if (!Types.empty()) return nullptr;
return getStaticReportOperation(Context, Id);
case BuiltinValueKind::SToSCheckedTrunc:
case BuiltinValueKind::SToUCheckedTrunc:
if (Types.size() != 2) return nullptr;
return getCheckedTruncOperation(Context, Id, Types[0], Types[1], true);
case BuiltinValueKind::UToSCheckedTrunc:
case BuiltinValueKind::UToUCheckedTrunc:
if (Types.size() != 2) return nullptr;
return getCheckedTruncOperation(Context, Id, Types[0], Types[1], false);
case BuiltinValueKind::ClassifyBridgeObject:
if (!Types.empty()) return nullptr;
return getClassifyBridgeObject(Context, Id);
case BuiltinValueKind::ValueToBridgeObject:
if (!Types.empty())
return nullptr;
return getValueToBridgeObject(Context, Id);
case BuiltinValueKind::COWBufferForReading:
return getCOWBufferForReading(Context, Id);
case BuiltinValueKind::ApplyDerivative:
case BuiltinValueKind::ApplyTranspose:
llvm_unreachable("Handled above");
case BuiltinValueKind::OnFastPath:
return getOnFastPath(Context, Id);
case BuiltinValueKind::IntToFPWithOverflow:
if (Types.size() != 2) return nullptr;
return getIntToFPWithOverflowOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::BitWidth:
if (Types.size() != 1) return nullptr;
return getBitWidthOperation(Context, Id, Types[0]);
case BuiltinValueKind::IsNegative:
if (Types.size() != 1) return nullptr;
return getIsNegativeOperation(Context, Id, Types[0]);
case BuiltinValueKind::WordAtIndex:
if (Types.size() != 1) return nullptr;
return getWordAtIndexOperation(Context, Id, Types[0]);
case BuiltinValueKind::GetObjCTypeEncoding:
return getGetObjCTypeEncodingOperation(Context, Id);
case BuiltinValueKind::GlobalStringTablePointer:
return getGlobalStringTablePointer(Context, Id);
case BuiltinValueKind::ConvertStrongToUnownedUnsafe:
return getConvertStrongToUnownedUnsafe(Context, Id);
case BuiltinValueKind::ConvertUnownedUnsafeToGuaranteed:
return getConvertUnownedUnsafeToGuaranteed(Context, Id);
case BuiltinValueKind::GetCurrentAsyncTask:
return getGetCurrentAsyncTask(Context, Id);
case BuiltinValueKind::GetCurrentExecutor:
return getGetCurrentExecutor(Context, Id);
case BuiltinValueKind::CancelAsyncTask:
return getCancelAsyncTask(Context, Id);
case BuiltinValueKind::CreateTask:
return getCreateTask(Context, Id);
case BuiltinValueKind::CreateDiscardingTask:
return getCreateDiscardingTask(Context, Id);
case BuiltinValueKind::CreateAsyncTask:
return getCreateAsyncTask(Context, Id, /*inGroup=*/false,
/*withExecutor=*/false, /*isDiscarding=*/false);
case BuiltinValueKind::CreateAsyncTaskInGroup:
return getCreateAsyncTask(Context, Id, /*inGroup=*/true,
/*withExecutor=*/false, /*isDiscarding=*/false);
case BuiltinValueKind::CreateAsyncDiscardingTaskInGroup:
return getCreateAsyncTask(Context, Id, /*inGroup=*/true,
/*withExecutor=*/false, /*isDiscarding=*/true);
case BuiltinValueKind::CreateAsyncTaskWithExecutor:
return getCreateAsyncTask(Context, Id, /*inGroup=*/false,
/*withExecutor=*/true, /*isDiscarding=*/false);
case BuiltinValueKind::CreateAsyncTaskInGroupWithExecutor:
return getCreateAsyncTask(Context, Id, /*inGroup=*/true,
/*withExecutor=*/true, /*isDiscarding=*/false);
case BuiltinValueKind::CreateAsyncDiscardingTaskInGroupWithExecutor:
return getCreateAsyncTask(Context, Id, /*inGroup=*/true,
/*withExecutor=*/true, /*isDiscarding=*/true);
case BuiltinValueKind::TaskRunInline:
return getTaskRunInline(Context, Id);
case BuiltinValueKind::TargetOSVersionAtLeast:
return getTargetOSVersionAtLeast(Context, Id);
case BuiltinValueKind::TargetVariantOSVersionAtLeast:
return getTargetVariantOSVersionAtLeast(Context, Id);
case BuiltinValueKind::TargetOSVersionOrVariantOSVersionAtLeast:
return getTargetOSVersionOrVariantOSVersionAtLeast(Context, Id);
case BuiltinValueKind::ConvertTaskToJob:
return getConvertTaskToJob(Context, Id);
case BuiltinValueKind::BuildMainActorExecutorRef:
return getBuildMainActorExecutorRef(Context, Id);
case BuiltinValueKind::BuildDefaultActorExecutorRef:
return getBuildDefaultActorExecutorRef(Context, Id);
case BuiltinValueKind::BuildOrdinaryTaskExecutorRef:
return getBuildOrdinaryTaskExecutorRef(Context, Id);
case BuiltinValueKind::BuildOrdinarySerialExecutorRef:
return getBuildOrdinarySerialExecutorRef(Context, Id);
case BuiltinValueKind::BuildComplexEqualitySerialExecutorRef:
return getBuildComplexEqualitySerialExecutorRef(Context, Id);
case BuiltinValueKind::ExtractFunctionIsolation:
return getExtractFunctionIsolation(Context, Id);
case BuiltinValueKind::PoundAssert:
return getPoundAssert(Context, Id);
case BuiltinValueKind::TSanInoutAccess:
return getTSanInoutAccess(Context, Id);
case BuiltinValueKind::TypePtrAuthDiscriminator:
return getTypePtrAuthDiscriminator(Context, Id);
case BuiltinValueKind::TypeJoin:
return getTypeJoinOperation(Context, Id);
case BuiltinValueKind::TypeJoinInout:
return getTypeJoinInoutOperation(Context, Id);
case BuiltinValueKind::TypeJoinMeta:
return getTypeJoinMetaOperation(Context, Id);
case BuiltinValueKind::TriggerFallbackDiagnostic:
return getTriggerFallbackDiagnosticOperation(Context, Id);
case BuiltinValueKind::InitializeDefaultActor:
case BuiltinValueKind::InitializeNonDefaultDistributedActor:
case BuiltinValueKind::DestroyDefaultActor:
return getDefaultActorInitDestroy(Context, Id);
case BuiltinValueKind::InitializeDistributedRemoteActor:
return getDistributedActorInitializeRemote(Context, Id);
case BuiltinValueKind::StartAsyncLet:
case BuiltinValueKind::StartAsyncLetWithLocalBuffer:
return getStartAsyncLet(Context, Id);
case BuiltinValueKind::EndAsyncLet:
case BuiltinValueKind::EndAsyncLetLifetime:
return getEndAsyncLet(Context, Id);
case BuiltinValueKind::CreateTaskGroup:
return getCreateTaskGroup(Context, Id);
case BuiltinValueKind::CreateTaskGroupWithFlags:
return getCreateTaskGroupWithFlags(Context, Id);
case BuiltinValueKind::DestroyTaskGroup:
return getDestroyTaskGroup(Context, Id);
case BuiltinValueKind::ResumeNonThrowingContinuationReturning:
case BuiltinValueKind::ResumeThrowingContinuationReturning:
return getResumeContinuationReturning(Context, Id);
case BuiltinValueKind::ResumeThrowingContinuationThrowing:
return getResumeContinuationThrowing(Context, Id);
case BuiltinValueKind::WithUnsafeContinuation:
return getWithUnsafeContinuation(Context, Id, /*throws=*/false);
case BuiltinValueKind::WithUnsafeThrowingContinuation:
return getWithUnsafeContinuation(Context, Id, /*throws=*/true);
case BuiltinValueKind::HopToActor:
return getHopToActor(Context, Id);
case BuiltinValueKind::FlowSensitiveSelfIsolation:
return getFlowSensitiveSelfIsolation(Context, Id, false);
case BuiltinValueKind::FlowSensitiveDistributedSelfIsolation:
return getFlowSensitiveSelfIsolation(Context, Id, true);
case BuiltinValueKind::AutoDiffCreateLinearMapContextWithType:
return getAutoDiffCreateLinearMapContext(Context, Id);
case BuiltinValueKind::AutoDiffProjectTopLevelSubcontext:
return getAutoDiffProjectTopLevelSubcontext(Context, Id);
case BuiltinValueKind::AutoDiffAllocateSubcontextWithType:
return getAutoDiffAllocateSubcontext(Context, Id);
case BuiltinValueKind::PackLength:
return getPackLength(Context, Id);
case BuiltinValueKind::GetEnumTag:
return getGetEnumTag(Context, Id);
case BuiltinValueKind::InjectEnumTag:
return getInjectEnumTag(Context, Id);
case BuiltinValueKind::DistributedActorAsAnyActor:
return getDistributedActorAsAnyActor(Context, Id);
case BuiltinValueKind::AddressOfRawLayout:
return getAddressOfRawLayout(Context, Id);
case BuiltinValueKind::Emplace:
return getEmplace(Context, Id);
}
llvm_unreachable("bad builtin value!");
}
StringRef swift::getBuiltinName(BuiltinValueKind ID) {
switch (ID) {
case BuiltinValueKind::None:
llvm_unreachable("no builtin kind");
#define BUILTIN(Id, Name, Attrs) \
case BuiltinValueKind::Id: \
return Name;
#include "swift/AST/Builtins.def"
}
llvm_unreachable("bad BuiltinValueKind");
}
bool swift::isPolymorphicBuiltin(BuiltinValueKind id) {
switch (id) {
case BuiltinValueKind::None:
llvm_unreachable("no builtin kind");
#define BUILTIN(Id, Name, Attrs) \
case BuiltinValueKind::Id: \
return false;
#define BUILTIN_BINARY_OPERATION_POLYMORPHIC(Id, Name) \
case BuiltinValueKind::Id: \
return true;
#include "swift/AST/Builtins.def"
}
llvm_unreachable("bad BuiltinValueKind");
}
BuiltinTypeKind BuiltinType::getBuiltinTypeKind() const {
// If we do not have a vector or an integer our job is easy.
return BuiltinTypeKind(std::underlying_type<TypeKind>::type(getKind()));
}
bool BuiltinType::isBitwiseCopyable() const {
switch (getBuiltinTypeKind()) {
case BuiltinTypeKind::BuiltinInteger:
case BuiltinTypeKind::BuiltinIntegerLiteral:
case BuiltinTypeKind::BuiltinFloat:
case BuiltinTypeKind::BuiltinPackIndex:
case BuiltinTypeKind::BuiltinRawPointer:
case BuiltinTypeKind::BuiltinVector:
case BuiltinTypeKind::BuiltinExecutor:
case BuiltinTypeKind::BuiltinJob:
case BuiltinTypeKind::BuiltinRawUnsafeContinuation:
return true;
case BuiltinTypeKind::BuiltinNativeObject:
case BuiltinTypeKind::BuiltinBridgeObject:
case BuiltinTypeKind::BuiltinUnsafeValueBuffer:
case BuiltinTypeKind::BuiltinDefaultActorStorage:
case BuiltinTypeKind::BuiltinNonDefaultDistributedActorStorage:
case BuiltinTypeKind::BuiltinUnboundGeneric:
return false;
case BuiltinTypeKind::BuiltinFixedArray: {
// FixedArray<N, X> : BitwiseCopyable whenever X : BitwiseCopyable
auto bfa = cast<BuiltinFixedArrayType>(this);
auto &C = bfa->getASTContext();
return (bool)checkConformance(
bfa->getElementType(),
C.getProtocol(KnownProtocolKind::BitwiseCopyable));
}
}
}
StringRef BuiltinType::getTypeName(SmallVectorImpl<char> &result,
bool prependBuiltinNamespace) const {
#ifdef MAYBE_GET_NAMESPACED_BUILTIN
#error \
"We define MAYBE_GET_NAMESPACED_BUILTIN here. Do not define before this?!"
#endif
#define MAYBE_GET_NAMESPACED_BUILTIN(NAME) \
((prependBuiltinNamespace) ? NAME : NAME.getWithoutPrefix())
llvm::raw_svector_ostream printer(result);
switch (getBuiltinTypeKind()) {
case BuiltinTypeKind::BuiltinRawPointer:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_RAWPOINTER);
break;
case BuiltinTypeKind::BuiltinRawUnsafeContinuation:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_RAWUNSAFECONTINUATION);
break;
case BuiltinTypeKind::BuiltinJob:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_JOB);
break;
case BuiltinTypeKind::BuiltinExecutor:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_EXECUTOR);
break;
case BuiltinTypeKind::BuiltinDefaultActorStorage:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_DEFAULTACTORSTORAGE);
break;
case BuiltinTypeKind::BuiltinNonDefaultDistributedActorStorage:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_NONDEFAULTDISTRIBUTEDACTORSTORAGE);
break;
case BuiltinTypeKind::BuiltinPackIndex:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_PACKINDEX);
break;
case BuiltinTypeKind::BuiltinNativeObject:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_NATIVEOBJECT);
break;
case BuiltinTypeKind::BuiltinBridgeObject:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_BRIDGEOBJECT);
break;
case BuiltinTypeKind::BuiltinUnsafeValueBuffer:
printer << MAYBE_GET_NAMESPACED_BUILTIN(
BUILTIN_TYPE_NAME_UNSAFEVALUEBUFFER);
break;
case BuiltinTypeKind::BuiltinIntegerLiteral:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_INTLITERAL);
break;
case BuiltinTypeKind::BuiltinVector: {
const auto *t = cast<const BuiltinVectorType>(this);
llvm::SmallString<32> UnderlyingStrVec;
StringRef UnderlyingStr;
{
// FIXME: Ugly hack: remove the .Builtin from the element type.
{
llvm::raw_svector_ostream UnderlyingOS(UnderlyingStrVec);
t->getElementType().print(UnderlyingOS);
}
if (UnderlyingStrVec.str().starts_with(BUILTIN_TYPE_NAME_PREFIX))
UnderlyingStr = UnderlyingStrVec.substr(8);
else
UnderlyingStr = UnderlyingStrVec;
}
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_VEC)
<< t->getNumElements() << "x" << UnderlyingStr;
break;
}
case BuiltinTypeKind::BuiltinInteger: {
auto width = cast<const BuiltinIntegerType>(this)->getWidth();
if (width.isFixedWidth()) {
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_INT)
<< width.getFixedWidth();
break;
}
if (width.isPointerWidth()) {
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_WORD);
break;
}
llvm_unreachable("impossible bit width");
}
case BuiltinTypeKind::BuiltinFloat: {
switch (cast<const BuiltinFloatType>(this)->getFPKind()) {
case BuiltinFloatType::IEEE16:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT) << "16";
break;
case BuiltinFloatType::IEEE32:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT) << "32";
break;
case BuiltinFloatType::IEEE64:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT) << "64";
break;
case BuiltinFloatType::IEEE80:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT) << "80";
break;
case BuiltinFloatType::IEEE128:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT) << "128";
break;
case BuiltinFloatType::PPC128:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FLOAT_PPC)
<< "128";
break;
}
break;
}
case BuiltinTypeKind::BuiltinFixedArray:
printer << MAYBE_GET_NAMESPACED_BUILTIN(BUILTIN_TYPE_NAME_FIXEDARRAY);
break;
case BuiltinTypeKind::BuiltinUnboundGeneric: {
auto bug = cast<BuiltinUnboundGenericType>(this);
printer << MAYBE_GET_NAMESPACED_BUILTIN(bug->getBuiltinTypeName());
break;
}
}
#undef MAYBE_GET_NAMESPACED_BUILTIN
return printer.str();
}
BuiltinNameStringLiteral
BuiltinUnboundGenericType::getBuiltinTypeName() const {
switch (BoundGenericTypeKind) {
case TypeKind::BuiltinFixedArray:
return BUILTIN_TYPE_NAME_FIXEDARRAY;
case TypeKind::BuiltinInteger:
return BUILTIN_TYPE_NAME_INT;
default:
llvm_unreachable("not a generic builtin kind");
}
}
StringRef
BuiltinUnboundGenericType::getBuiltinTypeNameString() const {
return getBuiltinTypeName();
}
GenericSignature
BuiltinUnboundGenericType::getGenericSignature() const {
auto &C = getASTContext();
switch (BoundGenericTypeKind) {
case TypeKind::BuiltinFixedArray: {
auto Count = GenericTypeParamType::get(C.getIdentifier("Count"),
GenericTypeParamKind::Value,
0, 0, C.getIntType(), C);
auto Element = GenericTypeParamType::get(C.getIdentifier("Element"),
GenericTypeParamKind::Type,
0, 1, Type(), C);
return GenericSignature::get({Count, Element}, {});
}
case TypeKind::BuiltinInteger: {
auto bits = GenericTypeParamType::get(C.getIdentifier("Bits"),
GenericTypeParamKind::Type,
0, 0, C.getIntType(), C);
return GenericSignature::get(bits, {});
}
default:
llvm_unreachable("not a generic builtin");
}
}
Type
BuiltinUnboundGenericType::getBound(SubstitutionMap subs) const {
if (!subs.getGenericSignature()->isEqual(getGenericSignature())) {
return ErrorType::get(const_cast<BuiltinUnboundGenericType*>(this));
}
switch (BoundGenericTypeKind) {
case TypeKind::BuiltinFixedArray: {
auto types = subs.getReplacementTypes();
auto size = types[0]->getCanonicalType();
if (size->getMatchingParamKind() != GenericTypeParamKind::Value) {
return ErrorType::get(const_cast<BuiltinUnboundGenericType*>(this));
}
auto element = types[1]->getCanonicalType();
if (element->getMatchingParamKind() != GenericTypeParamKind::Type) {
return ErrorType::get(const_cast<BuiltinUnboundGenericType*>(this));
}
return BuiltinFixedArrayType::get(size, element);
}
case TypeKind::BuiltinInteger: {
auto size = subs.getReplacementTypes()[0];
if (size->getMatchingParamKind() != GenericTypeParamKind::Value) {
return ErrorType::get(const_cast<BuiltinUnboundGenericType*>(this));
}
// TODO: support actual generic parameters
auto literalSize = size->getAs<IntegerType>();
if (!literalSize) {
return ErrorType::get(const_cast<BuiltinUnboundGenericType*>(this));
}
return BuiltinIntegerType::get(literalSize->getValue().getLimitedValue(),
getASTContext());
}
default:
llvm_unreachable("not a generic builtin kind");
}
}
std::optional<uint64_t>
BuiltinFixedArrayType::getFixedInhabitedSize() const {
if (auto intSize = getSize()->getAs<IntegerType>()) {
if (intSize->getValue().isNegative()) {
return std::nullopt;
}
return intSize->getValue().getLimitedValue();
}
return std::nullopt;
}
bool
BuiltinFixedArrayType::isFixedNegativeSize() const {
if (auto intSize = getSize()->getAs<IntegerType>()) {
return intSize->getValue().isNegative();
}
return false;
}