Files
swift-mirror/lib/FrontendTool/FrontendTool.cpp
Robert Widmann 057097a6c3 [NFC] Hide LoadedModules From Clients of ASTContext
There's no reason clients need to be able to access this data directly.
It obscures where module loading is actually happening, and makes it too
easy to accidentally register a module with the wrong identifier in the
context.

Hide the registration operations behind opaque accessors.
2020-06-16 15:09:19 -07:00

2266 lines
85 KiB
C++

//===--- FrontendTool.cpp - Swift Compiler Frontend -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the entry point to the swift -frontend functionality, which
/// implements the core compiler functionality along with a number of additional
/// tools for demonstration and testing purposes.
///
/// This is separate from the rest of libFrontend to reduce the dependencies
/// required by that library.
///
//===----------------------------------------------------------------------===//
#include "swift/FrontendTool/FrontendTool.h"
#include "ImportedModules.h"
#include "ScanDependencies.h"
#include "TBD.h"
#include "swift/Subsystems.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/FineGrainedDependencies.h"
#include "swift/AST/GenericSignatureBuilder.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/IRGenRequests.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/TypeRefinementContext.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/Edit.h"
#include "swift/Basic/FileSystem.h"
#include "swift/Basic/JSONSerialization.h"
#include "swift/Basic/LLVMInitialize.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/Timer.h"
#include "swift/Basic/UUID.h"
#include "swift/Frontend/DiagnosticVerifier.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/Frontend/SerializedDiagnosticConsumer.h"
#include "swift/Frontend/ModuleInterfaceLoader.h"
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/Immediate/Immediate.h"
#include "swift/Index/IndexRecord.h"
#include "swift/Option/Options.h"
#include "swift/Migrator/FixitFilter.h"
#include "swift/Migrator/Migrator.h"
#include "swift/PrintAsObjC/PrintAsObjC.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SIL/SILRemarkStreamer.h"
#include "swift/Syntax/Serialization/SyntaxSerialization.h"
#include "swift/Syntax/SyntaxNodes.h"
#include "swift/TBDGen/TBDGen.h"
#include "clang/AST/ASTContext.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Option/Option.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Remarks/RemarkSerializer.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Target/TargetMachine.h"
#include <memory>
#include <unordered_set>
#include <utility>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace swift;
static std::string displayName(StringRef MainExecutablePath) {
std::string Name = llvm::sys::path::stem(MainExecutablePath).str();
Name += " -frontend";
return Name;
}
StringRef
swift::frontend::utils::escapeForMake(StringRef raw,
llvm::SmallVectorImpl<char> &buffer) {
buffer.clear();
// The escaping rules for GNU make are complicated due to the various
// subsitutions and use of the tab in the leading position for recipes.
// Various symbols have significance in different contexts. It is not
// possible to correctly quote all characters in Make (as of 3.7). Match
// gcc and clang's behaviour for the escaping which covers only a subset of
// characters.
for (unsigned I = 0, E = raw.size(); I != E; ++I) {
switch (raw[I]) {
case '#': // Handle '#' the broken GCC way
buffer.push_back('\\');
break;
case ' ':
for (unsigned J = I; J && raw[J - 1] == '\\'; --J)
buffer.push_back('\\');
buffer.push_back('\\');
break;
case '$': // $ is escaped by $
buffer.push_back('$');
break;
}
buffer.push_back(raw[I]);
}
buffer.push_back('\0');
return buffer.data();
}
static std::vector<std::string>
reversePathSortedFilenames(const ArrayRef<std::string> elts) {
std::vector<std::string> tmp(elts.begin(), elts.end());
std::sort(tmp.begin(), tmp.end(), [](const std::string &a,
const std::string &b) -> bool {
return std::lexicographical_compare(a.rbegin(), a.rend(),
b.rbegin(), b.rend());
});
return tmp;
}
/// Emits a Make-style dependencies file.
static bool emitMakeDependenciesIfNeeded(DiagnosticEngine &diags,
DependencyTracker *depTracker,
const FrontendOptions &opts,
const InputFile &input) {
const std::string &dependenciesFilePath = input.dependenciesFilePath();
if (dependenciesFilePath.empty())
return false;
std::error_code EC;
llvm::raw_fd_ostream out(dependenciesFilePath, EC, llvm::sys::fs::F_None);
if (out.has_error() || EC) {
diags.diagnose(SourceLoc(), diag::error_opening_output,
dependenciesFilePath, EC.message());
out.clear_error();
return true;
}
llvm::SmallString<256> buffer;
// collect everything in memory to avoid redundant work
// when there are multiple targets
std::string dependencyString;
// First include all other files in the module. Make-style dependencies
// need to be conservative!
auto inputPaths =
reversePathSortedFilenames(opts.InputsAndOutputs.getInputFilenames());
for (auto const &path : inputPaths) {
dependencyString.push_back(' ');
dependencyString.append(frontend::utils::escapeForMake(path, buffer));
}
// Then print dependencies we've picked up during compilation.
auto dependencyPaths =
reversePathSortedFilenames(depTracker->getDependencies());
for (auto const &path : dependencyPaths) {
dependencyString.push_back(' ');
dependencyString.append(frontend::utils::escapeForMake(path, buffer));
}
// FIXME: Xcode can't currently handle multiple targets in a single
// dependency line.
opts.forAllOutputPaths(input, [&](const StringRef targetName) {
auto targetNameEscaped = frontend::utils::escapeForMake(targetName, buffer);
out << targetNameEscaped << " :" << dependencyString << '\n';
});
return false;
}
static bool emitMakeDependenciesIfNeeded(DiagnosticEngine &diags,
DependencyTracker *depTracker,
const FrontendOptions &opts) {
return opts.InputsAndOutputs.forEachInputProducingSupplementaryOutput(
[&](const InputFile &f) -> bool {
return emitMakeDependenciesIfNeeded(diags, depTracker, opts, f);
});
}
namespace {
struct SwiftModuleTraceInfo {
Identifier Name;
std::string Path;
bool IsImportedDirectly;
bool SupportsLibraryEvolution;
};
struct LoadedModuleTraceFormat {
static const unsigned CurrentVersion = 2;
unsigned Version;
Identifier Name;
std::string Arch;
std::vector<SwiftModuleTraceInfo> SwiftModules;
};
}
namespace swift {
namespace json {
template <> struct ObjectTraits<SwiftModuleTraceInfo> {
static void mapping(Output &out, SwiftModuleTraceInfo &contents) {
StringRef name = contents.Name.str();
out.mapRequired("name", name);
out.mapRequired("path", contents.Path);
out.mapRequired("isImportedDirectly", contents.IsImportedDirectly);
out.mapRequired("supportsLibraryEvolution",
contents.SupportsLibraryEvolution);
}
};
// Version notes:
// 1. Keys: name, arch, swiftmodules
// 2. New keys: version, swiftmodulesDetailedInfo
template <> struct ObjectTraits<LoadedModuleTraceFormat> {
static void mapping(Output &out, LoadedModuleTraceFormat &contents) {
out.mapRequired("version", contents.Version);
StringRef name = contents.Name.str();
out.mapRequired("name", name);
out.mapRequired("arch", contents.Arch);
// The 'swiftmodules' key is kept for backwards compatibility.
std::vector<std::string> moduleNames;
for (auto &m : contents.SwiftModules)
moduleNames.push_back(m.Path);
out.mapRequired("swiftmodules", moduleNames);
out.mapRequired("swiftmodulesDetailedInfo", contents.SwiftModules);
}
};
}
}
/// Compute the per-module information to be recorded in the trace file.
//
// The most interesting/tricky thing here is _which_ paths get recorded in
// the trace file as dependencies. It depends on how the module was synthesized.
// The key points are:
//
// 1. Paths to swiftmodules in the module cache or in the prebuilt cache are not
// recorded - Precondition: the corresponding path to the swiftinterface must
// already be present as a key in pathToModuleDecl.
// 2. swiftmodules next to a swiftinterface are saved if they are up-to-date.
//
// FIXME: Use the VFS instead of handling paths directly. We are particularly
// sloppy about handling relative paths in the dependency tracker.
static void computeSwiftModuleTraceInfo(
const SmallPtrSetImpl<ModuleDecl *> &importedModules,
const llvm::DenseMap<StringRef, ModuleDecl *> &pathToModuleDecl,
const DependencyTracker &depTracker,
StringRef prebuiltCachePath,
std::vector<SwiftModuleTraceInfo> &traceInfo) {
SmallString<256> buffer;
std::string errMsg;
llvm::raw_string_ostream err(errMsg);
// FIXME: Use PrettyStackTrace instead.
auto errorUnexpectedPath =
[&pathToModuleDecl](llvm::raw_string_ostream &errStream) {
errStream << "The module <-> path mapping we have is:\n";
for (auto &m: pathToModuleDecl)
errStream << m.second->getName() << " <-> " << m.first << '\n';
llvm::report_fatal_error(errStream.str());
};
using namespace llvm::sys;
auto computeAdjacentInterfacePath = [](SmallVectorImpl<char> &modPath) {
auto swiftInterfaceExt =
file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile);
path::replace_extension(modPath, swiftInterfaceExt);
};
for (auto &depPath : depTracker.getDependencies()) {
// Decide if this is a swiftmodule based on the extension of the raw
// dependency path, as the true file may have a different one.
// For example, this might happen when the canonicalized path points to
// a Content Addressed Storage (CAS) location.
auto moduleFileType =
file_types::lookupTypeForExtension(path::extension(depPath));
auto isSwiftmodule =
moduleFileType == file_types::TY_SwiftModuleFile;
auto isSwiftinterface =
moduleFileType == file_types::TY_SwiftModuleInterfaceFile;
if (!(isSwiftmodule || isSwiftinterface))
continue;
auto dep = pathToModuleDecl.find(depPath);
if (dep != pathToModuleDecl.end()) {
// Great, we recognize the path! Check if the file is still around.
ModuleDecl *depMod = dep->second;
if(depMod->isResilient() && !isSwiftinterface) {
// FIXME: Ideally, we would check that the swiftmodule has a
// swiftinterface next to it. Tracked by rdar://problem/56351399.
}
// FIXME: Better error handling
StringRef realDepPath
= fs::real_path(depPath, buffer, /*expand_tile*/true)
? StringRef(depPath) // Couldn't find the canonical path, assume
// this is good enough.
: buffer.str();
traceInfo.push_back(
{/*Name=*/
depMod->getName(),
/*Path=*/
realDepPath.str(),
// TODO: There is an edge case which is not handled here.
// When we build a framework using -import-underlying-module, or an
// app/test using -import-objc-header, we should look at the direct
// imports of the bridging modules, and mark those as our direct
// imports.
/*IsImportedDirectly=*/
importedModules.find(depMod) != importedModules.end(),
/*SupportsLibraryEvolution=*/
depMod->isResilient()});
buffer.clear();
continue;
}
// If the depTracker had an interface, that means that we must've
// built a swiftmodule from that interface, so we should have that
// filename available.
if (isSwiftinterface) {
err << "Unexpected path for swiftinterface file:\n" << depPath << "\n";
errorUnexpectedPath(err);
}
// Skip cached modules in the prebuilt cache. We will add the corresponding
// swiftinterface from the SDK directly, but this isn't checked. :-/
//
// FIXME: This is incorrect if both paths are not relative w.r.t. to the
// same root.
if (StringRef(depPath).startswith(prebuiltCachePath))
continue;
// If we have a swiftmodule next to an interface, that interface path will
// be saved (not checked), so don't save the path to this swiftmodule.
SmallString<256> moduleAdjacentInterfacePath(depPath);
computeAdjacentInterfacePath(moduleAdjacentInterfacePath);
if (pathToModuleDecl.find(moduleAdjacentInterfacePath)
!= pathToModuleDecl.end())
continue;
// FIXME: The behavior of fs::exists for relative paths is undocumented.
// Use something else instead?
if (fs::exists(moduleAdjacentInterfacePath)) {
// This should be an error but it is not because of funkiness around
// compatible modules such as us having both armv7s.swiftinterface
// and armv7.swiftinterface in the dependency tracker.
continue;
}
buffer.clear();
// We might land here when we have a arm.swiftmodule in the cache path
// which added a dependency on a arm.swiftinterface (which was not loaded).
}
// Almost a re-implementation of reversePathSortedFilenames :(.
std::sort(
traceInfo.begin(), traceInfo.end(),
[](const SwiftModuleTraceInfo &m1, const SwiftModuleTraceInfo &m2) -> bool {
return std::lexicographical_compare(
m1.Path.rbegin(), m1.Path.rend(),
m2.Path.rbegin(), m2.Path.rend());
});
}
static bool emitLoadedModuleTraceIfNeeded(ModuleDecl *mainModule,
DependencyTracker *depTracker,
StringRef prebuiltCachePath,
StringRef loadedModuleTracePath) {
ASTContext &ctxt = mainModule->getASTContext();
assert(!ctxt.hadError()
&& "We should've already exited earlier if there was an error.");
if (loadedModuleTracePath.empty())
return false;
std::error_code EC;
llvm::raw_fd_ostream out(loadedModuleTracePath, EC, llvm::sys::fs::F_Append);
if (out.has_error() || EC) {
ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output,
loadedModuleTracePath, EC.message());
out.clear_error();
return true;
}
ModuleDecl::ImportFilter filter = ModuleDecl::ImportFilterKind::Public;
filter |= ModuleDecl::ImportFilterKind::Private;
filter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
filter |= ModuleDecl::ImportFilterKind::ShadowedBySeparateOverlay;
SmallVector<ModuleDecl::ImportedModule, 8> imports;
mainModule->getImportedModules(imports, filter);
SmallPtrSet<ModuleDecl *, 8> importedModules;
for (ModuleDecl::ImportedModule &import : imports)
importedModules.insert(import.importedModule);
llvm::DenseMap<StringRef, ModuleDecl *> pathToModuleDecl;
for (const auto &module : ctxt.getLoadedModules()) {
ModuleDecl *loadedDecl = module.second;
if (!loadedDecl)
llvm::report_fatal_error("Expected loaded modules to be non-null.");
if (loadedDecl == mainModule)
continue;
if (loadedDecl->getModuleFilename().empty()) {
// FIXME: rdar://problem/59853077
// Ideally, this shouldn't happen. As a temporary workaround, avoid
// crashing with a message while we investigate the problem.
llvm::errs() << "WARNING: Module '" << loadedDecl->getName().str()
<< "' has an empty filename. This is probably an "
<< "invariant violation.\n"
<< "Please report it as a compiler bug.\n";
continue;
}
pathToModuleDecl.insert(
std::make_pair(loadedDecl->getModuleFilename(), loadedDecl));
}
std::vector<SwiftModuleTraceInfo> swiftModules;
computeSwiftModuleTraceInfo(importedModules, pathToModuleDecl, *depTracker,
prebuiltCachePath, swiftModules);
LoadedModuleTraceFormat trace = {
/*version=*/LoadedModuleTraceFormat::CurrentVersion,
/*name=*/mainModule->getName(),
/*arch=*/ctxt.LangOpts.Target.getArchName().str(), swiftModules};
// raw_fd_ostream is unbuffered, and we may have multiple processes writing,
// so first write to memory and then dump the buffer to the trace file.
std::string stringBuffer;
{
llvm::raw_string_ostream memoryBuffer(stringBuffer);
json::Output jsonOutput(memoryBuffer, /*UserInfo=*/{},
/*PrettyPrint=*/false);
json::jsonize(jsonOutput, trace, /*Required=*/true);
}
stringBuffer += "\n";
out << stringBuffer;
return true;
}
static bool
emitLoadedModuleTraceForAllPrimariesIfNeeded(ModuleDecl *mainModule,
DependencyTracker *depTracker,
const FrontendOptions &opts) {
return opts.InputsAndOutputs.forEachInputProducingSupplementaryOutput(
[&](const InputFile &input) -> bool {
return emitLoadedModuleTraceIfNeeded(
mainModule, depTracker, opts.PrebuiltModuleCachePath,
input.loadedModuleTracePath());
});
}
/// Gets an output stream for the provided output filename, or diagnoses to the
/// provided AST Context and returns null if there was an error getting the
/// stream.
static std::unique_ptr<llvm::raw_fd_ostream>
getFileOutputStream(StringRef OutputFilename, ASTContext &Ctx) {
std::error_code errorCode;
auto os = std::make_unique<llvm::raw_fd_ostream>(
OutputFilename, errorCode, llvm::sys::fs::F_None);
if (errorCode) {
Ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output,
OutputFilename, errorCode.message());
return nullptr;
}
return os;
}
/// Writes the Syntax tree to the given file
static bool emitSyntax(SourceFile *SF, StringRef OutputFilename) {
auto os = getFileOutputStream(OutputFilename, SF->getASTContext());
if (!os) return true;
json::Output jsonOut(*os, /*UserInfo=*/{}, /*PrettyPrint=*/false);
auto Root = SF->getSyntaxRoot().getRaw();
jsonOut << *Root;
*os << "\n";
return false;
}
/// Writes SIL out to the given file.
static bool writeSIL(SILModule &SM, ModuleDecl *M, const SILOptions &Opts,
StringRef OutputFilename) {
auto OS = getFileOutputStream(OutputFilename, M->getASTContext());
if (!OS) return true;
SM.print(*OS, M, Opts);
return M->getASTContext().hadError();
}
static bool writeSIL(SILModule &SM, const PrimarySpecificPaths &PSPs,
const CompilerInstance &Instance,
const SILOptions &Opts) {
return writeSIL(SM, Instance.getMainModule(), Opts,
PSPs.OutputFilename);
}
/// Prints the Objective-C "generated header" interface for \p M to \p
/// outputPath.
///
/// ...unless \p outputPath is empty, in which case it does nothing.
///
/// \returns true if there were any errors
///
/// \see swift::printAsObjC
static bool printAsObjCIfNeeded(StringRef outputPath, ModuleDecl *M,
StringRef bridgingHeader, bool moduleIsPublic) {
if (outputPath.empty())
return false;
return withOutputFile(M->getDiags(), outputPath,
[&](raw_ostream &out) -> bool {
auto requiredAccess = moduleIsPublic ? AccessLevel::Public
: AccessLevel::Internal;
return printAsObjC(out, M, bridgingHeader, requiredAccess);
});
}
/// Prints the stable module interface for \p M to \p outputPath.
///
/// ...unless \p outputPath is empty, in which case it does nothing.
///
/// \returns true if there were any errors
///
/// \see swift::emitSwiftInterface
static bool
printModuleInterfaceIfNeeded(StringRef outputPath,
ModuleInterfaceOptions const &Opts,
LangOptions const &LangOpts,
ModuleDecl *M) {
if (outputPath.empty())
return false;
DiagnosticEngine &diags = M->getDiags();
if (!LangOpts.isSwiftVersionAtLeast(5)) {
assert(LangOpts.isSwiftVersionAtLeast(4));
diags.diagnose(SourceLoc(),
diag::warn_unsupported_module_interface_swift_version,
LangOpts.isSwiftVersionAtLeast(4, 2) ? "4.2" : "4");
}
if (M->getResilienceStrategy() != ResilienceStrategy::Resilient) {
diags.diagnose(SourceLoc(),
diag::warn_unsupported_module_interface_library_evolution);
}
return withOutputFile(diags, outputPath,
[M, Opts](raw_ostream &out) -> bool {
return swift::emitSwiftInterface(out, Opts, M);
});
}
namespace {
/// If there is an error with fixits it writes the fixits as edits in json
/// format.
class JSONFixitWriter
: public DiagnosticConsumer, public migrator::FixitFilter {
std::string FixitsOutputPath;
std::unique_ptr<llvm::raw_ostream> OSPtr;
bool FixitAll;
std::vector<SingleEdit> AllEdits;
public:
JSONFixitWriter(std::string fixitsOutputPath,
const DiagnosticOptions &DiagOpts)
: FixitsOutputPath(fixitsOutputPath),
FixitAll(DiagOpts.FixitCodeForAllDiagnostics) {}
private:
void handleDiagnostic(SourceManager &SM,
const DiagnosticInfo &Info) override {
if (!(FixitAll || shouldTakeFixit(Info)))
return;
for (const auto &Fix : Info.FixIts) {
AllEdits.push_back({SM, Fix.getRange(), Fix.getText().str()});
}
}
bool finishProcessing() override {
std::error_code EC;
std::unique_ptr<llvm::raw_fd_ostream> OS;
OS.reset(new llvm::raw_fd_ostream(FixitsOutputPath,
EC,
llvm::sys::fs::F_None));
if (EC) {
// Create a temporary diagnostics engine to print the error to stderr.
SourceManager dummyMgr;
DiagnosticEngine DE(dummyMgr);
PrintingDiagnosticConsumer PDC;
DE.addConsumer(PDC);
DE.diagnose(SourceLoc(), diag::cannot_open_file,
FixitsOutputPath, EC.message());
return true;
}
swift::writeEditsInJson(llvm::makeArrayRef(AllEdits), *OS);
return false;
}
};
} // anonymous namespace
// This is a separate function so that it shows up in stack traces.
LLVM_ATTRIBUTE_NOINLINE
static void debugFailWithAssertion() {
// Per the user's request, this assertion should always fail in
// builds with assertions enabled.
// This should not be converted to llvm_unreachable, as those are
// treated as optimization hints in builds where they turn into
// __builtin_unreachable().
assert((0) && "This is an assertion!");
}
// This is a separate function so that it shows up in stack traces.
LLVM_ATTRIBUTE_NOINLINE
static void debugFailWithCrash() {
LLVM_BUILTIN_TRAP;
}
static void countStatsOfSourceFile(UnifiedStatsReporter &Stats,
const CompilerInstance &Instance,
SourceFile *SF) {
auto &C = Stats.getFrontendCounters();
auto &SM = Instance.getSourceMgr();
C.NumDecls += SF->getTopLevelDecls().size();
C.NumLocalTypeDecls += SF->LocalTypeDecls.size();
C.NumObjCMethods += SF->ObjCMethods.size();
SmallVector<OperatorDecl *, 2> operators;
SF->getOperatorDecls(operators);
C.NumOperators += operators.size();
SmallVector<PrecedenceGroupDecl *, 2> groups;
SF->getPrecedenceGroups(groups);
C.NumPrecedenceGroups += groups.size();
auto bufID = SF->getBufferID();
if (bufID.hasValue()) {
C.NumSourceLines +=
SM.getEntireTextForBuffer(bufID.getValue()).count('\n');
}
}
static void countStatsPostSema(UnifiedStatsReporter &Stats,
CompilerInstance& Instance) {
auto &C = Stats.getFrontendCounters();
auto &SM = Instance.getSourceMgr();
C.NumSourceBuffers = SM.getLLVMSourceMgr().getNumBuffers();
C.NumLinkLibraries = Instance.getLinkLibraries().size();
auto const &AST = Instance.getASTContext();
C.NumLoadedModules = AST.getNumLoadedModules();
if (auto *D = Instance.getDependencyTracker()) {
C.NumDependencies = D->getDependencies().size();
}
for (auto SF : Instance.getPrimarySourceFiles()) {
auto &Ctx = SF->getASTContext();
Ctx.evaluator.enumerateReferencesInFile(SF, [&C](const auto &ref) {
using NodeKind = evaluator::DependencyCollector::Reference::Kind;
switch (ref.kind) {
case NodeKind::Empty:
case NodeKind::Tombstone:
llvm_unreachable("Cannot enumerate dead dependency!");
case NodeKind::TopLevel:
C.NumReferencedTopLevelNames += 1;
return;
case NodeKind::Dynamic:
C.NumReferencedDynamicNames += 1;
return;
case NodeKind::PotentialMember:
case NodeKind::UsedMember:
C.NumReferencedMemberNames += 1;
return;
}
});
}
if (!Instance.getPrimarySourceFiles().empty()) {
for (auto SF : Instance.getPrimarySourceFiles())
countStatsOfSourceFile(Stats, Instance, SF);
} else if (auto *M = Instance.getMainModule()) {
// No primary source file, but a main module; this is WMO-mode
for (auto *F : M->getFiles()) {
if (auto *SF = dyn_cast<SourceFile>(F)) {
countStatsOfSourceFile(Stats, Instance, SF);
}
}
}
}
static void countStatsPostSILGen(UnifiedStatsReporter &Stats,
const SILModule& Module) {
auto &C = Stats.getFrontendCounters();
// FIXME: calculate these in constant time, via the dense maps.
C.NumSILGenFunctions += Module.getFunctionList().size();
C.NumSILGenVtables += Module.getVTables().size();
C.NumSILGenWitnessTables += Module.getWitnessTableList().size();
C.NumSILGenDefaultWitnessTables += Module.getDefaultWitnessTableList().size();
C.NumSILGenGlobalVariables += Module.getSILGlobalList().size();
}
static bool precompileBridgingHeader(const CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const auto &opts = Invocation.getFrontendOptions();
auto clangImporter = static_cast<ClangImporter *>(
Instance.getASTContext().getClangModuleLoader());
auto &ImporterOpts = Invocation.getClangImporterOptions();
auto &PCHOutDir = ImporterOpts.PrecompiledHeaderOutputDir;
if (!PCHOutDir.empty()) {
// Create or validate a persistent PCH.
auto SwiftPCHHash = Invocation.getPCHHash();
auto PCH = clangImporter->getOrCreatePCH(ImporterOpts, SwiftPCHHash);
return !PCH.hasValue();
}
return clangImporter->emitBridgingPCH(
opts.InputsAndOutputs.getFilenameOfFirstInput(),
opts.InputsAndOutputs.getSingleOutputFilename());
}
static bool precompileClangModule(const CompilerInstance &Instance) {
const auto &opts = Instance.getInvocation().getFrontendOptions();
auto clangImporter = static_cast<ClangImporter *>(
Instance.getASTContext().getClangModuleLoader());
return clangImporter->emitPrecompiledModule(
opts.InputsAndOutputs.getFilenameOfFirstInput(), opts.ModuleName,
opts.InputsAndOutputs.getSingleOutputFilename());
}
static bool dumpPrecompiledClangModule(const CompilerInstance &Instance) {
const auto &opts = Instance.getInvocation().getFrontendOptions();
auto clangImporter = static_cast<ClangImporter *>(
Instance.getASTContext().getClangModuleLoader());
return clangImporter->dumpPrecompiledModule(
opts.InputsAndOutputs.getFilenameOfFirstInput(),
opts.InputsAndOutputs.getSingleOutputFilename());
}
static bool buildModuleFromInterface(CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const FrontendOptions &FEOpts = Invocation.getFrontendOptions();
assert(FEOpts.InputsAndOutputs.hasSingleInput());
StringRef InputPath = FEOpts.InputsAndOutputs.getFilenameOfFirstInput();
StringRef PrebuiltCachePath = FEOpts.PrebuiltModuleCachePath;
ModuleInterfaceLoaderOptions LoaderOpts(FEOpts);
return ModuleInterfaceLoader::buildSwiftModuleFromSwiftInterface(
Instance.getSourceMgr(), Instance.getDiags(),
Invocation.getSearchPathOptions(), Invocation.getLangOptions(),
Invocation.getClangImporterOptions(),
Invocation.getClangModuleCachePath(),
PrebuiltCachePath, Invocation.getModuleName(), InputPath,
Invocation.getOutputFilename(),
FEOpts.SerializeModuleInterfaceDependencyHashes,
FEOpts.TrackSystemDeps, LoaderOpts);
}
static bool compileLLVMIR(CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const auto &inputsAndOutputs =
Invocation.getFrontendOptions().InputsAndOutputs;
// Load in bitcode file.
assert(inputsAndOutputs.hasSingleInput() &&
"We expect a single input for bitcode input!");
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
swift::vfs::getFileOrSTDIN(Instance.getFileSystem(),
inputsAndOutputs.getFilenameOfFirstInput());
if (!FileBufOrErr) {
Instance.getDiags().diagnose(SourceLoc(), diag::error_open_input_file,
inputsAndOutputs.getFilenameOfFirstInput(),
FileBufOrErr.getError().message());
return true;
}
llvm::MemoryBuffer *MainFile = FileBufOrErr.get().get();
llvm::SMDiagnostic Err;
auto LLVMContext = std::make_unique<llvm::LLVMContext>();
std::unique_ptr<llvm::Module> Module =
llvm::parseIR(MainFile->getMemBufferRef(), Err, *LLVMContext.get());
if (!Module) {
// TODO: Translate from the diagnostic info to the SourceManager location
// if available.
Instance.getDiags().diagnose(SourceLoc(), diag::error_parse_input_file,
inputsAndOutputs.getFilenameOfFirstInput(),
Err.getMessage());
return true;
}
return performLLVM(Invocation.getIRGenOptions(), Instance.getASTContext(),
Module.get(), inputsAndOutputs.getSingleOutputFilename());
}
static void verifyGenericSignaturesIfNeeded(const CompilerInvocation &Invocation,
ASTContext &Context) {
auto verifyGenericSignaturesInModule =
Invocation.getFrontendOptions().VerifyGenericSignaturesInModule;
if (verifyGenericSignaturesInModule.empty())
return;
if (auto module = Context.getModuleByName(verifyGenericSignaturesInModule))
GenericSignatureBuilder::verifyGenericSignaturesInModule(module);
}
static void dumpAndPrintScopeMap(const CompilerInstance &Instance,
SourceFile *SF) {
// Not const because may require reexpansion
ASTScope &scope = SF->getScope();
const auto &opts = Instance.getInvocation().getFrontendOptions();
if (opts.DumpScopeMapLocations.empty()) {
llvm::errs() << "***Complete scope map***\n";
scope.buildFullyExpandedTree();
scope.print(llvm::errs());
return;
}
// Probe each of the locations, and dump what we find.
for (auto lineColumn : opts.DumpScopeMapLocations) {
scope.buildFullyExpandedTree();
scope.dumpOneScopeMapLocation(lineColumn);
}
}
static SourceFile *
getPrimaryOrMainSourceFile(const CompilerInstance &Instance) {
SourceFile *SF = Instance.getPrimarySourceFile();
if (!SF) {
SourceFileKind Kind = Instance.getInvocation().getSourceFileKind();
SF = &Instance.getMainModule()->getMainSourceFile(Kind);
}
return SF;
}
/// Dumps the AST of all available primary source files. If corresponding output
/// files were specified, use them; otherwise, dump the AST to stdout.
static void dumpAST(CompilerInstance &Instance) {
auto primaryFiles = Instance.getPrimarySourceFiles();
if (!primaryFiles.empty()) {
for (SourceFile *sourceFile: primaryFiles) {
auto PSPs = Instance.getPrimarySpecificPathsForSourceFile(*sourceFile);
auto OutputFilename = PSPs.OutputFilename;
auto OS = getFileOutputStream(OutputFilename, Instance.getASTContext());
sourceFile->dump(*OS, /*parseIfNeeded*/ true);
}
} else {
// Some invocations don't have primary files. In that case, we default to
// looking for the main file and dumping it to `stdout`.
auto *SF = getPrimaryOrMainSourceFile(Instance);
SF->dump(llvm::outs(), /*parseIfNeeded*/ true);
}
}
/// We may have been told to dump the AST (either after parsing or
/// type-checking, which is already differentiated in
/// CompilerInstance::performSema()), so dump or print the main source file and
/// return.
static Optional<bool> dumpASTIfNeeded(CompilerInstance &Instance) {
const auto &opts = Instance.getInvocation().getFrontendOptions();
const FrontendOptions::ActionType Action = opts.RequestedAction;
ASTContext &Context = Instance.getASTContext();
switch (Action) {
default:
return None;
case FrontendOptions::ActionType::PrintAST:
getPrimaryOrMainSourceFile(Instance)
->print(llvm::outs(), PrintOptions::printEverything());
break;
case FrontendOptions::ActionType::DumpScopeMaps:
dumpAndPrintScopeMap(Instance, getPrimaryOrMainSourceFile(Instance));
break;
case FrontendOptions::ActionType::DumpTypeRefinementContexts:
getPrimaryOrMainSourceFile(Instance)
->getTypeRefinementContext()
->dump(llvm::errs(), Context.SourceMgr);
break;
case FrontendOptions::ActionType::DumpInterfaceHash:
getPrimaryOrMainSourceFile(Instance)->dumpInterfaceHash(llvm::errs());
break;
case FrontendOptions::ActionType::EmitSyntax:
emitSyntax(getPrimaryOrMainSourceFile(Instance),
opts.InputsAndOutputs.getSingleOutputFilename());
break;
case FrontendOptions::ActionType::DumpParse:
case FrontendOptions::ActionType::DumpAST:
dumpAST(Instance);
break;
case FrontendOptions::ActionType::EmitImportedModules:
emitImportedModules(Context, Instance.getMainModule(), opts);
break;
}
return Context.hadError();
}
static void emitReferenceDependenciesForAllPrimaryInputsIfNeeded(
CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
if (Invocation.getFrontendOptions()
.InputsAndOutputs.hasReferenceDependenciesPath() &&
Instance.getPrimarySourceFiles().empty()) {
Instance.getDiags().diagnose(
SourceLoc(), diag::emit_reference_dependencies_without_primary_file);
return;
}
for (auto *SF : Instance.getPrimarySourceFiles()) {
const std::string &referenceDependenciesFilePath =
Invocation.getReferenceDependenciesFilePathForPrimary(
SF->getFilename());
if (!referenceDependenciesFilePath.empty()) {
const auto LangOpts = Invocation.getLangOptions();
(void)fine_grained_dependencies::emitReferenceDependencies(
Instance.getDiags(), SF, *Instance.getDependencyTracker(),
referenceDependenciesFilePath,
LangOpts.EmitFineGrainedDependencySourcefileDotFiles);
}
}
}
static void
emitSwiftRangesForAllPrimaryInputsIfNeeded(CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
if (Invocation.getFrontendOptions().InputsAndOutputs.hasSwiftRangesPath() &&
Instance.getPrimarySourceFiles().empty()) {
Instance.getDiags().diagnose(SourceLoc(),
diag::emit_swift_ranges_without_primary_file);
return;
}
for (auto *SF : Instance.getPrimarySourceFiles()) {
const std::string &swiftRangesFilePath =
Invocation.getSwiftRangesFilePathForPrimary(SF->getFilename());
if (!swiftRangesFilePath.empty()) {
(void)Instance.emitSwiftRanges(Instance.getDiags(), SF,
swiftRangesFilePath);
}
}
}
static void emitCompiledSourceForAllPrimaryInputsIfNeeded(
CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
if (Invocation.getFrontendOptions()
.InputsAndOutputs.hasCompiledSourcePath() &&
Instance.getPrimarySourceFiles().empty()) {
Instance.getDiags().diagnose(
SourceLoc(), diag::emit_compiled_source_without_primary_file);
return;
}
for (auto *SF : Instance.getPrimarySourceFiles()) {
const std::string &compiledSourceFilePath =
Invocation.getCompiledSourceFilePathForPrimary(SF->getFilename());
if (!compiledSourceFilePath.empty()) {
(void)Instance.emitCompiledSource(Instance.getDiags(), SF,
compiledSourceFilePath);
}
}
}
static bool writeTBDIfNeeded(CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const auto &frontendOpts = Invocation.getFrontendOptions();
const auto &tbdOpts = Invocation.getTBDGenOptions();
if (!frontendOpts.InputsAndOutputs.hasTBDPath())
return false;
if (!frontendOpts.InputsAndOutputs.isWholeModule()) {
Instance.getDiags().diagnose(SourceLoc(),
diag::tbd_only_supported_in_whole_module);
return false;
}
if (Invocation.getSILOptions().CrossModuleOptimization) {
Instance.getDiags().diagnose(SourceLoc(),
diag::tbd_not_supported_with_cmo);
return false;
}
const std::string &TBDPath = Invocation.getTBDPathForWholeModule();
return writeTBD(Instance.getMainModule(), TBDPath, tbdOpts);
}
static std::string changeToLdAdd(StringRef ldHide) {
SmallString<64> SymbolBuffer;
llvm::raw_svector_ostream OS(SymbolBuffer);
auto Parts = ldHide.split("$hide$");
assert(!Parts.first.empty());
assert(!Parts.second.empty());
OS << Parts.first << "$add$" << Parts.second;
return OS.str().str();
}
static bool writeLdAddCFileIfNeeded(CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const auto &frontendOpts = Invocation.getFrontendOptions();
if (!frontendOpts.InputsAndOutputs.isWholeModule())
return false;
auto Path = Invocation.getLdAddCFileOutputPathForWholeModule();
if (Path.empty())
return false;
if (!frontendOpts.InputsAndOutputs.isWholeModule()) {
Instance.getDiags().diagnose(SourceLoc(),
diag::tbd_only_supported_in_whole_module);
return true;
}
if (!Invocation.getTBDGenOptions().ModuleInstallNameMapPath.empty()) {
Instance.getDiags().diagnose(SourceLoc(),
diag::linker_directives_choice_confusion);
return true;
}
auto tbdOpts = Invocation.getTBDGenOptions();
tbdOpts.LinkerDirectivesOnly = true;
llvm::StringSet<> ldSymbols;
auto *module = Instance.getMainModule();
enumeratePublicSymbols(module, ldSymbols, tbdOpts);
std::error_code EC;
llvm::raw_fd_ostream OS(Path, EC, llvm::sys::fs::F_None);
if (EC) {
Instance.getDiags().diagnose(SourceLoc(), diag::error_opening_output, Path,
EC.message());
return true;
}
OS << "// Automatically generated C source file from the Swift compiler \n"
<< "// to add removed symbols back to the high-level framework for deployment\n"
<< "// targets prior to the OS version when these symbols were moved to\n"
<< "// a low-level framework " << module->getName().str() << ".\n\n";
unsigned Idx = 0;
for (auto &S: ldSymbols) {
SmallString<32> NameBuffer;
llvm::raw_svector_ostream NameOS(NameBuffer);
NameOS << "ldAdd_" << Idx;
OS << "extern const char " << NameOS.str() << " __asm(\"" <<
changeToLdAdd(S.getKey()) << "\");\n";
OS << "const char " << NameOS.str() << " = 0;\n";
++ Idx;
}
return false;
}
static bool performCompileStepsPostSILGen(CompilerInstance &Instance,
std::unique_ptr<SILModule> SM,
ModuleOrSourceFile MSF,
const PrimarySpecificPaths &PSPs,
int &ReturnValue,
FrontendObserver *observer);
static bool performCompileStepsPostSema(CompilerInstance &Instance,
int &ReturnValue,
FrontendObserver *observer) {
const auto &Invocation = Instance.getInvocation();
const SILOptions &SILOpts = Invocation.getSILOptions();
const FrontendOptions &opts = Invocation.getFrontendOptions();
auto *mod = Instance.getMainModule();
if (!opts.InputsAndOutputs.hasPrimaryInputs()) {
// If there are no primary inputs the compiler is in WMO mode and builds one
// SILModule for the entire module.
auto SM = performASTLowering(mod, Instance.getSILTypes(), SILOpts);
const PrimarySpecificPaths PSPs =
Instance.getPrimarySpecificPathsForWholeModuleOptimizationMode();
return performCompileStepsPostSILGen(Instance, std::move(SM), mod, PSPs,
ReturnValue, observer);
}
// If there are primary source files, build a separate SILModule for
// each source file, and run the remaining SILOpt-Serialize-IRGen-LLVM
// once for each such input.
if (!Instance.getPrimarySourceFiles().empty()) {
bool result = false;
for (auto *PrimaryFile : Instance.getPrimarySourceFiles()) {
auto SM = performASTLowering(*PrimaryFile, Instance.getSILTypes(),
SILOpts);
const PrimarySpecificPaths PSPs =
Instance.getPrimarySpecificPathsForSourceFile(*PrimaryFile);
result |= performCompileStepsPostSILGen(Instance, std::move(SM),
PrimaryFile, PSPs, ReturnValue,
observer);
}
return result;
}
// If there are primary inputs but no primary _source files_, there might be
// a primary serialized input.
bool result = false;
for (FileUnit *fileUnit : mod->getFiles()) {
if (auto SASTF = dyn_cast<SerializedASTFile>(fileUnit))
if (opts.InputsAndOutputs.isInputPrimary(SASTF->getFilename())) {
auto SM = performASTLowering(*SASTF, Instance.getSILTypes(), SILOpts);
const PrimarySpecificPaths &PSPs =
Instance.getPrimarySpecificPathsForPrimary(SASTF->getFilename());
result |= performCompileStepsPostSILGen(Instance, std::move(SM), mod,
PSPs, ReturnValue, observer);
}
}
return result;
}
static void emitIndexDataForSourceFile(SourceFile *PrimarySourceFile,
const CompilerInstance &Instance);
/// Emits index data for all primary inputs, or the main module.
static void emitIndexData(const CompilerInstance &Instance) {
if (Instance.getPrimarySourceFiles().empty()) {
emitIndexDataForSourceFile(nullptr, Instance);
} else {
for (SourceFile *SF : Instance.getPrimarySourceFiles())
emitIndexDataForSourceFile(SF, Instance);
}
}
/// Emits all "one-per-module" supplementary outputs that don't depend on
/// anything past type-checking.
///
/// These are extracted out so that they can be invoked early when using
/// `-typecheck`, but skipped for any mode that runs SIL diagnostics if there's
/// an error found there (to get those diagnostics back to the user faster).
static bool emitAnyWholeModulePostTypeCheckSupplementaryOutputs(
CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const FrontendOptions &opts = Invocation.getFrontendOptions();
// Record whether we failed to emit any of these outputs, but keep going; one
// failure does not mean skipping the rest.
bool hadAnyError = false;
if (opts.InputsAndOutputs.hasObjCHeaderOutputPath()) {
std::string BridgingHeaderPathForPrint;
if (!opts.ImplicitObjCHeaderPath.empty()) {
if (opts.BridgingHeaderDirForPrint.hasValue()) {
// User specified preferred directory for including, use that dir.
llvm::SmallString<32> Buffer(*opts.BridgingHeaderDirForPrint);
llvm::sys::path::append(Buffer,
llvm::sys::path::filename(opts.ImplicitObjCHeaderPath));
BridgingHeaderPathForPrint = Buffer.str();
} else {
// By default, include the given bridging header path directly.
BridgingHeaderPathForPrint = opts.ImplicitObjCHeaderPath;
}
}
hadAnyError |= printAsObjCIfNeeded(
Invocation.getObjCHeaderOutputPathForAtMostOnePrimary(),
Instance.getMainModule(), BridgingHeaderPathForPrint,
Invocation.isModuleExternallyConsumed(Instance.getMainModule()));
}
if (opts.InputsAndOutputs.hasModuleInterfaceOutputPath()) {
hadAnyError |= printModuleInterfaceIfNeeded(
Invocation.getModuleInterfaceOutputPathForWholeModule(),
Invocation.getModuleInterfaceOptions(),
Invocation.getLangOptions(),
Instance.getMainModule());
}
if (opts.InputsAndOutputs.hasPrivateModuleInterfaceOutputPath()) {
// Copy the settings from the module interface
ModuleInterfaceOptions privOpts = Invocation.getModuleInterfaceOptions();
privOpts.PrintSPIs = true;
hadAnyError |= printModuleInterfaceIfNeeded(
Invocation.getPrivateModuleInterfaceOutputPathForWholeModule(),
privOpts,
Invocation.getLangOptions(),
Instance.getMainModule());
}
{
hadAnyError |= writeTBDIfNeeded(Instance);
}
{
hadAnyError |= writeLdAddCFileIfNeeded(Instance);
}
return hadAnyError;
}
/// Perform any actions that must have access to the ASTContext, and need to be
/// delayed until the Swift compile pipeline has finished. This may be called
/// before or after LLVM depending on when the ASTContext gets freed.
static void performEndOfPipelineActions(CompilerInstance &Instance) {
assert(Instance.hasASTContext());
auto &ctx = Instance.getASTContext();
// Make sure we didn't load a module during a parse-only invocation, unless
// it's -emit-imported-modules, which can load modules.
auto action = Instance.getInvocation().getFrontendOptions().RequestedAction;
if (FrontendOptions::shouldActionOnlyParse(action) &&
action != FrontendOptions::ActionType::EmitImportedModules) {
assert(ctx.getNumLoadedModules() == 1 &&
"Loaded a module during parse-only");
assert(ctx.getLoadedModules().begin()->second == Instance.getMainModule());
}
// Verify the AST for all the modules we've loaded.
ctx.verifyAllLoadedModules();
// Emit dependencies and index data.
emitReferenceDependenciesForAllPrimaryInputsIfNeeded(Instance);
emitIndexData(Instance);
}
/// Performs the compile requested by the user.
/// \param Instance Will be reset after performIRGeneration when the verifier
/// mode is NoVerify and there were no errors.
/// \returns true on error
static bool performCompile(CompilerInstance &Instance,
ArrayRef<const char *> Args,
int &ReturnValue,
FrontendObserver *observer) {
const auto &Invocation = Instance.getInvocation();
const auto &opts = Invocation.getFrontendOptions();
const FrontendOptions::ActionType Action = opts.RequestedAction;
// We've been asked to precompile a bridging header or module; we want to
// avoid touching any other inputs and just parse, emit and exit.
if (Action == FrontendOptions::ActionType::EmitPCH)
return precompileBridgingHeader(Instance);
if (Action == FrontendOptions::ActionType::EmitPCM)
return precompileClangModule(Instance);
if (Action == FrontendOptions::ActionType::DumpPCM)
return dumpPrecompiledClangModule(Instance);
if (Action == FrontendOptions::ActionType::CompileModuleFromInterface)
return buildModuleFromInterface(Instance);
if (Invocation.getInputKind() == InputFileKind::LLVM)
return compileLLVMIR(Instance);
// If we aren't in a parse-only context and expect an implicit stdlib import,
// load in the standard library. If we either fail to find it or encounter an
// error while loading it, bail early. Continuing the compilation will at best
// trigger a bunch of other errors due to the stdlib being missing, or at
// worst crash downstream as many call sites don't currently handle a missing
// stdlib.
if (!FrontendOptions::shouldActionOnlyParse(Action)) {
if (Instance.loadStdlibIfNeeded())
return true;
}
SWIFT_DEFER {
// We might have freed the ASTContext already, but in that case we would
// have already performed these actions.
if (Instance.hasASTContext())
performEndOfPipelineActions(Instance);
};
if (FrontendOptions::shouldActionOnlyParse(Action)) {
// Parsing gets triggered lazily, but let's make sure we have the right
// input kind.
auto kind = Invocation.getInputKind();
assert((kind == InputFileKind::Swift ||
kind == InputFileKind::SwiftLibrary ||
kind == InputFileKind::SwiftModuleInterface) &&
"Only supports parsing .swift files");
(void)kind;
} else if (Action == FrontendOptions::ActionType::ResolveImports) {
Instance.performParseAndResolveImportsOnly();
} else {
Instance.performSema();
}
ASTContext &Context = Instance.getASTContext();
if (Action == FrontendOptions::ActionType::Parse) {
// A -parse invocation only cares about the side effects of parsing, so
// force the parsing of all the source files.
for (auto *file : Instance.getMainModule()->getFiles()) {
if (auto *SF = dyn_cast<SourceFile>(file))
(void)SF->getTopLevelDecls();
}
return Context.hadError();
}
if (Action == FrontendOptions::ActionType::ScanDependencies) {
scanDependencies(Instance);
}
(void)emitMakeDependenciesIfNeeded(Instance.getDiags(),
Instance.getDependencyTracker(), opts);
if (Action == FrontendOptions::ActionType::ResolveImports ||
Action == FrontendOptions::ActionType::ScanDependencies)
return Context.hadError();
if (observer)
observer->performedSemanticAnalysis(Instance);
if (auto *Stats = Context.Stats) {
countStatsPostSema(*Stats, Instance);
}
{
FrontendOptions::DebugCrashMode CrashMode = opts.CrashMode;
if (CrashMode == FrontendOptions::DebugCrashMode::AssertAfterParse)
debugFailWithAssertion();
else if (CrashMode == FrontendOptions::DebugCrashMode::CrashAfterParse)
debugFailWithCrash();
}
verifyGenericSignaturesIfNeeded(Invocation, Context);
(void)migrator::updateCodeAndEmitRemapIfNeeded(&Instance);
if (Action == FrontendOptions::ActionType::REPL) {
llvm::report_fatal_error("Compiler-internal integrated REPL has been "
"removed; use the LLDB-enhanced REPL instead.");
}
if (auto r = dumpASTIfNeeded(Instance))
return *r;
// If we were asked to print Clang stats, do so.
if (opts.PrintClangStats && Context.getClangModuleLoader())
Context.getClangModuleLoader()->printStatistics();
emitSwiftRangesForAllPrimaryInputsIfNeeded(Instance);
emitCompiledSourceForAllPrimaryInputsIfNeeded(Instance);
if (Context.hadError())
return true;
(void)emitLoadedModuleTraceForAllPrimariesIfNeeded(
Instance.getMainModule(), Instance.getDependencyTracker(), opts);
// We've just been told to perform a typecheck, so we can return now.
if (Action == FrontendOptions::ActionType::Typecheck) {
// FIXME: Whole-module outputs with a non-whole-module -typecheck ought to
// be disallowed, but the driver implements -index-file mode by generating a
// regular whole-module frontend command line and modifying it to index just
// one file (by making it a primary) instead of all of them. If that
// invocation also has flags to emit whole-module supplementary outputs, the
// compiler can crash trying to access information for non-type-checked
// declarations in the non-primary files. For now, prevent those crashes by
// guarding the emission of whole-module supplementary outputs.
if (opts.InputsAndOutputs.isWholeModule()) {
if (emitAnyWholeModulePostTypeCheckSupplementaryOutputs(Instance)) {
return true;
}
}
return false;
}
assert(FrontendOptions::doesActionGenerateSIL(Action) &&
"All actions not requiring SILGen must have been handled!");
return performCompileStepsPostSema(Instance, ReturnValue, observer);
}
static bool serializeSIB(SILModule *SM, const PrimarySpecificPaths &PSPs,
const ASTContext &Context, ModuleOrSourceFile MSF) {
const std::string &moduleOutputPath =
PSPs.SupplementaryOutputs.ModuleOutputPath;
assert(!moduleOutputPath.empty() && "must have an output path");
SerializationOptions serializationOpts;
serializationOpts.OutputPath = moduleOutputPath.c_str();
serializationOpts.SerializeAllSIL = true;
serializationOpts.IsSIB = true;
serialize(MSF, serializationOpts, SM);
return Context.hadError();
}
static GeneratedModule
generateIR(const IRGenOptions &IRGenOpts,
std::unique_ptr<SILModule> SM,
const PrimarySpecificPaths &PSPs,
StringRef OutputFilename, ModuleOrSourceFile MSF,
llvm::GlobalVariable *&HashGlobal,
ArrayRef<std::string> parallelOutputFilenames,
llvm::StringSet<> &LinkerDirectives) {
if (auto *SF = MSF.dyn_cast<SourceFile *>()) {
return performIRGeneration(IRGenOpts, *SF,
std::move(SM), OutputFilename, PSPs,
SF->getPrivateDiscriminator().str(),
&HashGlobal,
&LinkerDirectives);
} else {
return performIRGeneration(IRGenOpts, MSF.get<ModuleDecl *>(),
std::move(SM), OutputFilename, PSPs,
parallelOutputFilenames,
&HashGlobal, &LinkerDirectives);
}
}
static bool processCommandLineAndRunImmediately(CompilerInstance &Instance,
std::unique_ptr<SILModule> &&SM,
ModuleOrSourceFile MSF,
FrontendObserver *observer,
int &ReturnValue) {
const auto &Invocation = Instance.getInvocation();
const auto &opts = Invocation.getFrontendOptions();
assert(!MSF.is<SourceFile *>() && "-i doesn't work in -primary-file mode");
const IRGenOptions &IRGenOpts = Invocation.getIRGenOptions();
const ProcessCmdLine &CmdLine =
ProcessCmdLine(opts.ImmediateArgv.begin(), opts.ImmediateArgv.end());
PrettyStackTraceStringAction trace(
"running user code",
MSF.is<SourceFile *>() ? MSF.get<SourceFile *>()->getFilename()
: MSF.get<ModuleDecl *>()->getModuleFilename());
ReturnValue =
RunImmediately(Instance, CmdLine, IRGenOpts, Invocation.getSILOptions(),
std::move(SM));
return Instance.getASTContext().hadError();
}
static bool validateTBDIfNeeded(const CompilerInvocation &Invocation,
ModuleOrSourceFile MSF,
const llvm::Module &IRModule) {
const auto mode = Invocation.getFrontendOptions().ValidateTBDAgainstIR;
const bool canPerformTBDValidation = [&]() {
// If the user has requested we skip validation, honor it.
if (mode == FrontendOptions::TBDValidationMode::None) {
return false;
}
// Cross-module optimization does not support TBD.
if (Invocation.getSILOptions().CrossModuleOptimization) {
return false;
}
// If we can't validate the given input file, bail early. This covers cases
// like passing raw SIL as a primary file.
if (!inputFileKindCanHaveTBDValidated(Invocation.getInputKind())) {
return false;
}
// Modules with SIB files cannot be validated. This is because SIB files
// may have serialized hand-crafted SIL definitions that are invisible to
// TBDGen as it is an AST-only traversal.
if (auto *mod = MSF.dyn_cast<ModuleDecl *>()) {
return llvm::none_of(mod->getFiles(), [](const FileUnit *File) -> bool {
auto SASTF = dyn_cast<SerializedASTFile>(File);
return SASTF && SASTF->isSIB();
});
}
// "Default" mode's behavior varies if using a debug compiler.
if (mode == FrontendOptions::TBDValidationMode::Default) {
#ifndef NDEBUG
// With a debug compiler, we do some validation by default.
return true;
#else
// Otherwise, the default is to do nothing.
return false;
#endif
}
return true;
}();
if (!canPerformTBDValidation) {
return false;
}
const bool diagnoseExtraSymbolsInTBD = [mode]() {
switch (mode) {
case FrontendOptions::TBDValidationMode::None:
llvm_unreachable("Handled Above!");
case FrontendOptions::TBDValidationMode::Default:
case FrontendOptions::TBDValidationMode::MissingFromTBD:
return false;
case FrontendOptions::TBDValidationMode::All:
return true;
}
llvm_unreachable("invalid mode");
}();
TBDGenOptions Opts = Invocation.getTBDGenOptions();
// Ignore embedded symbols from external modules for validation to remove
// noise from e.g. statically-linked libraries.
Opts.embedSymbolsFromModules.clear();
if (auto *SF = MSF.dyn_cast<SourceFile *>()) {
return validateTBD(SF, IRModule, Opts, diagnoseExtraSymbolsInTBD);
} else {
return validateTBD(MSF.get<ModuleDecl *>(), IRModule, Opts,
diagnoseExtraSymbolsInTBD);
}
}
static void freeASTContextIfPossible(CompilerInstance &Instance) {
// If the stats reporter is installed, we need the ASTContext to live through
// the entire compilation process.
if (Instance.getASTContext().Stats) {
return;
}
// If we're going to dump the API of the module, we cannot tear down
// the ASTContext, as that would cause the module to be freed prematurely.
const auto &opts = Instance.getInvocation().getFrontendOptions();
if (!opts.DumpAPIPath.empty()) {
return;
}
// Verifying incremental dependencies relies on access to the Swift Module's
// source files.
if (opts.EnableIncrementalDependencyVerifier) {
return;
}
// If there are multiple primary inputs it is too soon to free
// the ASTContext, etc.. OTOH, if this compilation generates code for > 1
// primary input, then freeing it after processing the last primary is
// unlikely to reduce the peak heap size. So, only optimize the
// single-primary-case (or WMO).
if (opts.InputsAndOutputs.hasMultiplePrimaryInputs()) {
return;
}
// Make sure to perform the end of pipeline actions now, because they need
// access to the ASTContext.
performEndOfPipelineActions(Instance);
Instance.freeASTContext();
}
static bool generateCode(CompilerInstance &Instance, StringRef OutputFilename,
llvm::Module *IRModule,
llvm::GlobalVariable *HashGlobal) {
const auto &opts = Instance.getInvocation().getIRGenOptions();
std::unique_ptr<llvm::TargetMachine> TargetMachine =
createTargetMachine(opts, Instance.getASTContext());
version::Version EffectiveLanguageVersion =
Instance.getASTContext().LangOpts.EffectiveLanguageVersion;
// Free up some compiler resources now that we have an IRModule.
freeASTContextIfPossible(Instance);
// Now that we have a single IR Module, hand it over to performLLVM.
return performLLVM(opts, Instance.getDiags(), nullptr, HashGlobal, IRModule,
TargetMachine.get(), EffectiveLanguageVersion,
OutputFilename, Instance.getStatsReporter());
}
static void collectLinkerDirectives(const CompilerInvocation &Invocation,
ModuleOrSourceFile MSF,
llvm::StringSet<> &Symbols) {
auto tbdOpts = Invocation.getTBDGenOptions();
tbdOpts.LinkerDirectivesOnly = true;
if (MSF.is<SourceFile*>())
enumeratePublicSymbols(MSF.get<SourceFile*>(), Symbols, tbdOpts);
else
enumeratePublicSymbols(MSF.get<ModuleDecl*>(), Symbols, tbdOpts);
}
static bool performCompileStepsPostSILGen(CompilerInstance &Instance,
std::unique_ptr<SILModule> SM,
ModuleOrSourceFile MSF,
const PrimarySpecificPaths &PSPs,
int &ReturnValue,
FrontendObserver *observer) {
const auto &Invocation = Instance.getInvocation();
const auto &opts = Invocation.getFrontendOptions();
FrontendOptions::ActionType Action = opts.RequestedAction;
const ASTContext &Context = Instance.getASTContext();
const IRGenOptions &IRGenOpts = Invocation.getIRGenOptions();
Optional<BufferIndirectlyCausingDiagnosticRAII> ricd;
if (auto *SF = MSF.dyn_cast<SourceFile *>())
ricd.emplace(*SF);
if (observer)
observer->performedSILGeneration(*SM);
auto *Stats = Instance.getASTContext().Stats;
if (Stats)
countStatsPostSILGen(*Stats, *SM);
// We've been told to emit SIL after SILGen, so write it now.
if (Action == FrontendOptions::ActionType::EmitSILGen) {
return writeSIL(*SM, PSPs, Instance, Invocation.getSILOptions());
}
if (Action == FrontendOptions::ActionType::EmitSIBGen) {
serializeSIB(SM.get(), PSPs, Context, MSF);
return Context.hadError();
}
SM->installSILRemarkStreamer();
// This is the action to be used to serialize SILModule.
// It may be invoked multiple times, but it will perform
// serialization only once. The serialization may either happen
// after high-level optimizations or after all optimizations are
// done, depending on the compiler setting.
auto SerializeSILModuleAction = [&]() {
const SupplementaryOutputPaths &outs = PSPs.SupplementaryOutputs;
if (outs.ModuleOutputPath.empty())
return;
SerializationOptions serializationOpts =
Invocation.computeSerializationOptions(outs, Instance.getMainModule());
serialize(MSF, serializationOpts, SM.get());
};
// Set the serialization action, so that the SIL module
// can be serialized at any moment, e.g. during the optimization pipeline.
SM->setSerializeSILAction(SerializeSILModuleAction);
// Perform optimizations and mandatory/diagnostic passes.
if (Instance.performSILProcessing(SM.get()))
return true;
if (observer)
observer->performedSILProcessing(*SM);
emitAnyWholeModulePostTypeCheckSupplementaryOutputs(Instance);
if (Action == FrontendOptions::ActionType::EmitSIB)
return serializeSIB(SM.get(), PSPs, Context, MSF);
if (PSPs.haveModuleOrModuleDocOutputPaths()) {
if (Action == FrontendOptions::ActionType::MergeModules ||
Action == FrontendOptions::ActionType::EmitModuleOnly) {
return Context.hadError();
}
}
assert(Action >= FrontendOptions::ActionType::EmitSIL &&
"All actions not requiring SILPasses must have been handled!");
// We've been told to write canonical SIL, so write it now.
if (Action == FrontendOptions::ActionType::EmitSIL)
return writeSIL(*SM, PSPs, Instance, Invocation.getSILOptions());
assert(Action >= FrontendOptions::ActionType::Immediate &&
"All actions not requiring IRGen must have been handled!");
assert(Action != FrontendOptions::ActionType::REPL &&
"REPL mode must be handled immediately after Instance->performSema()");
// Check if we had any errors; if we did, don't proceed to IRGen.
if (Context.hadError())
return true;
runSILLoweringPasses(*SM);
// TODO: at this point we need to flush any the _tracing and profiling_
// in the UnifiedStatsReporter, because the those subsystems of the USR
// retain _pointers into_ the SILModule, and the SILModule's lifecycle is
// not presently such that it will outlive the USR (indeed, as it's
// destroyed on a separate thread, this fact isn't even _deterministic_
// after this point). If future plans require the USR tracing or
// profiling entities after this point, more rearranging will be required.
if (Stats)
Stats->flushTracesAndProfiles();
if (Action == FrontendOptions::ActionType::DumpTypeInfo)
return performDumpTypeInfo(IRGenOpts, *SM);
if (Action == FrontendOptions::ActionType::Immediate)
return processCommandLineAndRunImmediately(
Instance, std::move(SM), MSF, observer, ReturnValue);
llvm::StringSet<> LinkerDirectives;
collectLinkerDirectives(Invocation, MSF, LinkerDirectives);
// Don't proceed to IRGen if collecting linker directives failed.
if (Context.hadError())
return true;
StringRef OutputFilename = PSPs.OutputFilename;
std::vector<std::string> ParallelOutputFilenames =
opts.InputsAndOutputs.copyOutputFilenames();
llvm::GlobalVariable *HashGlobal;
auto IRModule = generateIR(
IRGenOpts, std::move(SM), PSPs, OutputFilename, MSF, HashGlobal,
ParallelOutputFilenames, LinkerDirectives);
// Just because we had an AST error it doesn't mean we can't performLLVM.
bool HadError = Instance.getASTContext().hadError();
// If the AST Context has no errors but no IRModule is available,
// parallelIRGen happened correctly, since parallel IRGen produces multiple
// modules.
if (!IRModule)
return HadError;
if (validateTBDIfNeeded(Invocation, MSF, *IRModule.getModule()))
return true;
return generateCode(Instance, OutputFilename, IRModule.getModule(),
HashGlobal) ||
HadError;
}
static void emitIndexDataForSourceFile(SourceFile *PrimarySourceFile,
const CompilerInstance &Instance) {
const auto &Invocation = Instance.getInvocation();
const auto &opts = Invocation.getFrontendOptions();
if (opts.IndexStorePath.empty())
return;
// FIXME: provide index unit token(s) explicitly and only use output file
// paths as a fallback.
bool isDebugCompilation;
switch (Invocation.getSILOptions().OptMode) {
case OptimizationMode::NotSet:
case OptimizationMode::NoOptimization:
isDebugCompilation = true;
break;
case OptimizationMode::ForSpeed:
case OptimizationMode::ForSize:
isDebugCompilation = false;
break;
}
if (PrimarySourceFile) {
const PrimarySpecificPaths &PSPs =
opts.InputsAndOutputs.getPrimarySpecificPathsForPrimary(
PrimarySourceFile->getFilename());
(void) index::indexAndRecord(PrimarySourceFile, PSPs.OutputFilename,
opts.IndexStorePath, opts.IndexSystemModules,
opts.IndexIgnoreStdlib, isDebugCompilation,
Invocation.getTargetTriple(),
*Instance.getDependencyTracker());
} else {
std::string moduleToken =
Invocation.getModuleOutputPathForAtMostOnePrimary();
if (moduleToken.empty())
moduleToken = opts.InputsAndOutputs.getSingleOutputFilename();
(void) index::indexAndRecord(Instance.getMainModule(), opts.InputsAndOutputs.copyOutputFilenames(),
moduleToken, opts.IndexStorePath,
opts.IndexSystemModules, opts.IndexIgnoreStdlib,
isDebugCompilation, Invocation.getTargetTriple(),
*Instance.getDependencyTracker());
}
}
/// Returns true if an error occurred.
static bool dumpAPI(ModuleDecl *Mod, StringRef OutDir) {
using namespace llvm::sys;
auto getOutPath = [&](SourceFile *SF) -> std::string {
SmallString<256> Path = OutDir;
StringRef Filename = SF->getFilename();
path::append(Path, path::filename(Filename));
return std::string(Path.str());
};
std::unordered_set<std::string> Filenames;
auto dumpFile = [&](SourceFile *SF) -> bool {
SmallString<512> TempBuf;
llvm::raw_svector_ostream TempOS(TempBuf);
PrintOptions PO = PrintOptions::printInterface();
PO.PrintOriginalSourceText = true;
PO.Indent = 2;
PO.PrintAccess = false;
PO.SkipUnderscoredStdlibProtocols = true;
SF->print(TempOS, PO);
if (TempOS.str().trim().empty())
return false; // nothing to show.
std::string OutPath = getOutPath(SF);
bool WasInserted = Filenames.insert(OutPath).second;
if (!WasInserted) {
llvm::errs() << "multiple source files ended up with the same dump API "
"filename to write to: " << OutPath << '\n';
return true;
}
std::error_code EC;
llvm::raw_fd_ostream OS(OutPath, EC, fs::FA_Read | fs::FA_Write);
if (EC) {
llvm::errs() << "error opening file '" << OutPath << "': "
<< EC.message() << '\n';
return true;
}
OS << TempOS.str();
return false;
};
std::error_code EC = fs::create_directories(OutDir);
if (EC) {
llvm::errs() << "error creating directory '" << OutDir << "': "
<< EC.message() << '\n';
return true;
}
for (auto *FU : Mod->getFiles()) {
if (auto *SF = dyn_cast<SourceFile>(FU))
if (dumpFile(SF))
return true;
}
return false;
}
/// Creates a diagnostic consumer that handles dispatching diagnostics to
/// multiple output files, based on the supplementary output paths specified by
/// \p inputsAndOutputs.
///
/// If no output files are needed, returns null.
static std::unique_ptr<DiagnosticConsumer>
createDispatchingDiagnosticConsumerIfNeeded(
const FrontendInputsAndOutputs &inputsAndOutputs,
llvm::function_ref<std::unique_ptr<DiagnosticConsumer>(const InputFile &)>
maybeCreateConsumerForDiagnosticsFrom) {
// The "4" here is somewhat arbitrary. In practice we're going to have one
// sub-consumer for each diagnostic file we're trying to output, which (again
// in practice) is going to be 1 in WMO mode and equal to the number of
// primary inputs in batch mode. That in turn is going to be "the number of
// files we need to recompile in this build, divided by the number of jobs".
// So a value of "4" here means that there would be no heap allocation on a
// clean build of a module with up to 32 files on an 8-core machine, if the
// user doesn't customize anything.
SmallVector<FileSpecificDiagnosticConsumer::Subconsumer, 4> subconsumers;
inputsAndOutputs.forEachInputProducingSupplementaryOutput(
[&](const InputFile &input) -> bool {
if (auto consumer = maybeCreateConsumerForDiagnosticsFrom(input))
subconsumers.emplace_back(input.file(), std::move(consumer));
return false;
});
// For batch mode, the compiler must sometimes swallow diagnostics pertaining
// to non-primary files in order to avoid Xcode showing the same diagnostic
// multiple times. So, create a diagnostic "eater" for those non-primary
// files.
//
// This routine gets called in cases where no primary subconsumers are created.
// Don't bother to create non-primary subconsumers if there aren't any primary
// ones.
//
// To avoid introducing bugs into WMO or single-file modes, test for multiple
// primaries.
if (!subconsumers.empty() && inputsAndOutputs.hasMultiplePrimaryInputs()) {
inputsAndOutputs.forEachNonPrimaryInput(
[&](const InputFile &input) -> bool {
subconsumers.emplace_back(input.file(), nullptr);
return false;
});
}
return FileSpecificDiagnosticConsumer::consolidateSubconsumers(subconsumers);
}
/// Creates a diagnostic consumer that handles serializing diagnostics, based on
/// the supplementary output paths specified by \p inputsAndOutputs.
///
/// The returned consumer will handle producing multiple serialized diagnostics
/// files if necessary, by using sub-consumers for each file and dispatching to
/// the right one.
///
/// If no serialized diagnostics are being produced, returns null.
static std::unique_ptr<DiagnosticConsumer>
createSerializedDiagnosticConsumerIfNeeded(
const FrontendInputsAndOutputs &inputsAndOutputs) {
return createDispatchingDiagnosticConsumerIfNeeded(
inputsAndOutputs,
[](const InputFile &input) -> std::unique_ptr<DiagnosticConsumer> {
std::string serializedDiagnosticsPath = input.serializedDiagnosticsPath();
if (serializedDiagnosticsPath.empty())
return nullptr;
return serialized_diagnostics::createConsumer(serializedDiagnosticsPath);
});
}
/// Creates a diagnostic consumer that handles serializing diagnostics, based on
/// the supplementary output paths specified in \p options.
///
/// The returned consumer will handle producing multiple serialized diagnostics
/// files if necessary, by using sub-consumers for each file and dispatching to
/// the right one.
///
/// If no serialized diagnostics are being produced, returns null.
static std::unique_ptr<DiagnosticConsumer>
createJSONFixItDiagnosticConsumerIfNeeded(
const CompilerInvocation &invocation) {
return createDispatchingDiagnosticConsumerIfNeeded(
invocation.getFrontendOptions().InputsAndOutputs,
[&](const InputFile &input) -> std::unique_ptr<DiagnosticConsumer> {
std::string fixItsOutputPath = input.fixItsOutputPath();
if (fixItsOutputPath.empty())
return nullptr;
return std::make_unique<JSONFixitWriter>(
fixItsOutputPath, invocation.getDiagnosticOptions());
});
}
/// Print information about the target triple in JSON.
static void printTripleInfo(const llvm::Triple &triple,
llvm::raw_ostream &out) {
out << "{\n";
out << " \"triple\": \"";
out.write_escaped(triple.getTriple());
out << "\",\n";
out << " \"unversionedTriple\": \"";
out.write_escaped(getUnversionedTriple(triple).getTriple());
out << "\",\n";
out << " \"moduleTriple\": \"";
out.write_escaped(getTargetSpecificModuleTriple(triple).getTriple());
out << "\",\n";
if (auto runtimeVersion = getSwiftRuntimeCompatibilityVersionForTarget(
triple)) {
out << " \"swiftRuntimeCompatibilityVersion\": \"";
out.write_escaped(runtimeVersion->getAsString());
out << "\",\n";
}
out << " \"librariesRequireRPath\": "
<< (tripleRequiresRPathForSwiftInOS(triple) ? "true" : "false")
<< "\n";
out << " }";
}
/// Print information about the selected target in JSON.
static void printTargetInfo(const CompilerInvocation &invocation,
llvm::raw_ostream &out) {
out << "{\n";
// Target triple and target variant triple.
auto &langOpts = invocation.getLangOptions();
out << " \"target\": ";
printTripleInfo(langOpts.Target, out);
out << ",\n";
if (auto &variant = langOpts.TargetVariant) {
out << " \"targetVariant\": ";
printTripleInfo(*variant, out);
out << ",\n";
}
// Various paths.
auto &searchOpts = invocation.getSearchPathOptions();
out << " \"paths\": {\n";
if (!searchOpts.SDKPath.empty()) {
out << " \"sdkPath\": \"";
out.write_escaped(searchOpts.SDKPath);
out << "\",\n";
}
auto outputPaths = [&](StringRef name, const std::vector<std::string> &paths){
out << " \"" << name << "\": [\n";
llvm::interleave(paths, [&out](const std::string &path) {
out << " \"";
out.write_escaped(path);
out << "\"";
}, [&out] {
out << ",\n";
});
out << "\n ],\n";
};
outputPaths("runtimeLibraryPaths", searchOpts.RuntimeLibraryPaths);
outputPaths("runtimeLibraryImportPaths",
searchOpts.RuntimeLibraryImportPaths);
out << " \"runtimeResourcePath\": \"";
out.write_escaped(searchOpts.RuntimeResourcePath);
out << "\"\n";
out << " }\n";
out << "}\n";
}
int swift::performFrontend(ArrayRef<const char *> Args,
const char *Argv0, void *MainAddr,
FrontendObserver *observer) {
INITIALIZE_LLVM();
llvm::EnablePrettyStackTraceOnSigInfoForThisThread();
PrintingDiagnosticConsumer PDC;
// Hopefully we won't trigger any LLVM-level fatal errors, but if we do try
// to route them through our usual textual diagnostics before crashing.
//
// Unfortunately it's not really safe to do anything else, since very
// low-level operations in LLVM can trigger fatal errors.
auto diagnoseFatalError = [&PDC](const std::string &reason, bool shouldCrash){
static const std::string *recursiveFatalError = nullptr;
if (recursiveFatalError) {
// Report the /original/ error through LLVM's default handler, not
// whatever we encountered.
llvm::remove_fatal_error_handler();
llvm::report_fatal_error(*recursiveFatalError, shouldCrash);
}
recursiveFatalError = &reason;
SourceManager dummyMgr;
DiagnosticInfo errorInfo(
DiagID(0), SourceLoc(), DiagnosticKind::Error,
"fatal error encountered during compilation; please file a bug report "
"with your project and the crash log",
{}, SourceLoc(), {}, {}, {}, false);
DiagnosticInfo noteInfo(DiagID(0), SourceLoc(), DiagnosticKind::Note,
reason, {}, SourceLoc(), {}, {}, {}, false);
PDC.handleDiagnostic(dummyMgr, errorInfo);
PDC.handleDiagnostic(dummyMgr, noteInfo);
if (shouldCrash)
abort();
};
llvm::ScopedFatalErrorHandler handler([](void *rawCallback,
const std::string &reason,
bool shouldCrash) {
auto *callback = static_cast<decltype(&diagnoseFatalError)>(rawCallback);
(*callback)(reason, shouldCrash);
}, &diagnoseFatalError);
std::unique_ptr<CompilerInstance> Instance =
std::make_unique<CompilerInstance>();
Instance->addDiagnosticConsumer(&PDC);
struct FinishDiagProcessingCheckRAII {
bool CalledFinishDiagProcessing = false;
~FinishDiagProcessingCheckRAII() {
assert(CalledFinishDiagProcessing && "returned from the function "
"without calling finishDiagProcessing");
}
} FinishDiagProcessingCheckRAII;
auto finishDiagProcessing = [&](int retValue, bool verifierEnabled) -> int {
FinishDiagProcessingCheckRAII.CalledFinishDiagProcessing = true;
PDC.setSuppressOutput(false);
bool diagnosticsError = Instance->getDiags().finishProcessing();
// If the verifier is enabled and did not encounter any verification errors,
// return 0 even if the compile failed. This behavior isn't ideal, but large
// parts of the test suite are reliant on it.
if (verifierEnabled && !diagnosticsError) {
return 0;
}
return retValue ? retValue : diagnosticsError;
};
if (Args.empty()) {
Instance->getDiags().diagnose(SourceLoc(), diag::error_no_frontend_args);
return finishDiagProcessing(1, /*verifierEnabled*/ false);
}
CompilerInvocation Invocation;
std::string MainExecutablePath = llvm::sys::fs::getMainExecutable(Argv0,
MainAddr);
Invocation.setMainExecutablePath(MainExecutablePath);
SmallString<128> workingDirectory;
llvm::sys::fs::current_path(workingDirectory);
// Parse arguments.
SmallVector<std::unique_ptr<llvm::MemoryBuffer>, 4> configurationFileBuffers;
if (Invocation.parseArgs(Args, Instance->getDiags(),
&configurationFileBuffers, workingDirectory)) {
return finishDiagProcessing(1, /*verifierEnabled*/ false);
}
// Make an array of PrettyStackTrace objects to dump the configuration files
// we used to parse the arguments. These are RAII objects, so they and the
// buffers they refer to must be kept alive in order to be useful. (That is,
// we want them to be alive for the entire rest of performFrontend.)
//
// This can't be a SmallVector or similar because PrettyStackTraces can't be
// moved (or copied)...and it can't be an array of non-optionals because
// PrettyStackTraces can't be default-constructed. So we end up with a
// dynamically-sized array of optional PrettyStackTraces, which get
// initialized by iterating over the buffers we collected above.
auto configurationFileStackTraces =
std::make_unique<Optional<PrettyStackTraceFileContents>[]>(
configurationFileBuffers.size());
for_each(configurationFileBuffers.begin(), configurationFileBuffers.end(),
&configurationFileStackTraces[0],
[](const std::unique_ptr<llvm::MemoryBuffer> &buffer,
Optional<PrettyStackTraceFileContents> &trace) {
trace.emplace(*buffer);
});
// Setting DWARF Version depend on platform
IRGenOptions &IRGenOpts = Invocation.getIRGenOptions();
IRGenOpts.DWARFVersion = swift::DWARFVersion;
// The compiler invocation is now fully configured; notify our observer.
if (observer) {
observer->parsedArgs(Invocation);
}
if (Invocation.getFrontendOptions().PrintHelp ||
Invocation.getFrontendOptions().PrintHelpHidden) {
unsigned IncludedFlagsBitmask = options::FrontendOption;
unsigned ExcludedFlagsBitmask =
Invocation.getFrontendOptions().PrintHelpHidden ? 0 :
llvm::opt::HelpHidden;
std::unique_ptr<llvm::opt::OptTable> Options(createSwiftOptTable());
Options->PrintHelp(llvm::outs(), displayName(MainExecutablePath).c_str(),
"Swift frontend", IncludedFlagsBitmask,
ExcludedFlagsBitmask, /*ShowAllAliases*/false);
return finishDiagProcessing(0, /*verifierEnabled*/ false);
}
if (Invocation.getFrontendOptions().PrintTargetInfo) {
printTargetInfo(Invocation, llvm::outs());
return finishDiagProcessing(0, /*verifierEnabled*/ false);
}
if (Invocation.getFrontendOptions().RequestedAction ==
FrontendOptions::ActionType::NoneAction) {
Instance->getDiags().diagnose(SourceLoc(),
diag::error_missing_frontend_action);
return finishDiagProcessing(1, /*verifierEnabled*/ false);
}
// Because the serialized diagnostics consumer is initialized here,
// diagnostics emitted above, within CompilerInvocation::parseArgs, are never
// serialized. This is a non-issue because, in nearly all cases, frontend
// arguments are generated by the driver, not directly by a user. The driver
// is responsible for emitting diagnostics for its own errors. See SR-2683
// for details.
std::unique_ptr<DiagnosticConsumer> SerializedConsumerDispatcher =
createSerializedDiagnosticConsumerIfNeeded(
Invocation.getFrontendOptions().InputsAndOutputs);
if (SerializedConsumerDispatcher)
Instance->addDiagnosticConsumer(SerializedConsumerDispatcher.get());
std::unique_ptr<DiagnosticConsumer> FixItsConsumer =
createJSONFixItDiagnosticConsumerIfNeeded(Invocation);
if (FixItsConsumer)
Instance->addDiagnosticConsumer(FixItsConsumer.get());
if (Invocation.getDiagnosticOptions().UseColor)
PDC.forceColors();
PDC.setPrintEducationalNotes(
Invocation.getDiagnosticOptions().PrintEducationalNotes);
PDC.setFormattingStyle(
Invocation.getDiagnosticOptions().PrintedFormattingStyle);
if (Invocation.getFrontendOptions().DebugTimeCompilation)
SharedTimer::enableCompilationTimers();
if (Invocation.getFrontendOptions().PrintStats) {
llvm::EnableStatistics();
}
const DiagnosticOptions &diagOpts = Invocation.getDiagnosticOptions();
bool verifierEnabled = diagOpts.VerifyMode != DiagnosticOptions::NoVerify;
if (Invocation.getFrontendOptions()
.InputsAndOutputs.hasDependencyTrackerPath() ||
!Invocation.getFrontendOptions().IndexStorePath.empty() ||
Invocation.getFrontendOptions().TrackSystemDeps) {
// Note that we're tracking dependencies even when we don't need to write
// them directly; in particular, -track-system-dependencies affects how
// module interfaces get loaded, and so we need to be consistently tracking
// system dependencies throughout the compiler.
Instance->createDependencyTracker(
Invocation.getFrontendOptions().TrackSystemDeps);
}
if (Instance->setup(Invocation)) {
return finishDiagProcessing(1, /*verifierEnabled*/ false);
}
// The compiler instance has been configured; notify our observer.
if (observer) {
observer->configuredCompiler(*Instance);
}
if (verifierEnabled) {
// Suppress printed diagnostic output during the compile if the verifier is
// enabled.
PDC.setSuppressOutput(true);
}
int ReturnValue = 0;
bool HadError = performCompile(*Instance, Args, ReturnValue, observer);
if (!HadError) {
Mangle::printManglingStats();
}
if (!HadError && !Invocation.getFrontendOptions().DumpAPIPath.empty()) {
HadError = dumpAPI(Instance->getMainModule(),
Invocation.getFrontendOptions().DumpAPIPath);
}
// Verify reference dependencies of the current compilation job *before*
// verifying diagnostics so that the former can be tested via the latter.
if (Invocation.getFrontendOptions().EnableIncrementalDependencyVerifier) {
if (!Instance->getPrimarySourceFiles().empty()) {
HadError |= swift::verifyDependencies(Instance->getSourceMgr(),
Instance->getPrimarySourceFiles());
} else {
HadError |= swift::verifyDependencies(
Instance->getSourceMgr(),
Instance->getMainModule()->getFiles());
}
}
if (verifierEnabled) {
DiagnosticEngine &diags = Instance->getDiags();
if (diags.hasFatalErrorOccurred() &&
!Invocation.getDiagnosticOptions().ShowDiagnosticsAfterFatalError) {
diags.resetHadAnyError();
PDC.setSuppressOutput(false);
diags.diagnose(SourceLoc(), diag::verify_encountered_fatal);
HadError = true;
}
}
auto r = finishDiagProcessing(HadError ? 1 : ReturnValue, verifierEnabled);
if (auto *StatsReporter = Instance->getStatsReporter())
StatsReporter->noteCurrentProcessExitStatus(r);
return r;
}
void FrontendObserver::parsedArgs(CompilerInvocation &invocation) {}
void FrontendObserver::configuredCompiler(CompilerInstance &instance) {}
void FrontendObserver::performedSemanticAnalysis(CompilerInstance &instance) {}
void FrontendObserver::performedSILGeneration(SILModule &module) {}
void FrontendObserver::performedSILProcessing(SILModule &module) {}