Files
swift-mirror/lib/AST/RequirementMachine/RequirementMachine.cpp

1097 lines
36 KiB
C++

//===--- RequirementMachine.cpp - Generics with term rewriting ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/RequirementMachine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/Requirement.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <vector>
#include "EquivalenceClassMap.h"
#include "ProtocolGraph.h"
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
namespace {
/// A utility class for bulding a rewrite system from the top-level requirements
/// of a generic signature, and all protocol requirement signatures from all
/// transitively-referenced protocols.
struct RewriteSystemBuilder {
RewriteContext &Context;
bool Debug;
ProtocolGraph Protocols;
std::vector<std::pair<MutableTerm, MutableTerm>> Rules;
CanType getConcreteSubstitutionSchema(CanType concreteType,
const ProtocolDecl *proto,
SmallVectorImpl<Term> &result);
RewriteSystemBuilder(RewriteContext &ctx, bool debug)
: Context(ctx), Debug(debug) {}
void addGenericSignature(CanGenericSignature sig);
void addAssociatedType(const AssociatedTypeDecl *type,
const ProtocolDecl *proto);
void addRequirement(const Requirement &req,
const ProtocolDecl *proto);
};
} // end namespace
/// Given a concrete type that may contain type parameters in structural positions,
/// collect all the structural type parameter components, and replace them all with
/// fresh generic parameters. The fresh generic parameters all have a depth of 0,
/// and the index is an index into the 'result' array.
///
/// For example, given the concrete type Foo<X.Y, Array<Z>>, this produces the
/// result type Foo<τ_0_0, Array<τ_0_1>>, with result array {X.Y, Z}.
CanType
RewriteSystemBuilder::getConcreteSubstitutionSchema(CanType concreteType,
const ProtocolDecl *proto,
SmallVectorImpl<Term> &result) {
assert(!concreteType->isTypeParameter() && "Must have a concrete type here");
if (!concreteType->hasTypeParameter())
return concreteType;
return CanType(concreteType.transformRec(
[&](Type t) -> Optional<Type> {
if (!t->isTypeParameter())
return None;
unsigned index = result.size();
result.push_back(Context.getTermForType(CanType(t), proto));
return CanGenericTypeParamType::get(/*depth=*/0, index, Context.getASTContext());
}));
}
void RewriteSystemBuilder::addGenericSignature(CanGenericSignature sig) {
// Collect all protocols transitively referenced from the generic signature's
// requirements.
Protocols.visitRequirements(sig->getRequirements());
Protocols.compute();
// Add rewrite rules for each protocol.
for (auto *proto : Protocols.getProtocols()) {
if (Debug) {
llvm::dbgs() << "protocol " << proto->getName() << " {\n";
}
const auto &info = Protocols.getProtocolInfo(proto);
for (auto *assocType : info.AssociatedTypes)
addAssociatedType(assocType, proto);
for (auto *assocType : info.InheritedAssociatedTypes)
addAssociatedType(assocType, proto);
for (auto req : info.Requirements)
addRequirement(req.getCanonical(), proto);
if (Debug) {
llvm::dbgs() << "}\n";
}
}
// Add rewrite rules for all requirements in the top-level signature.
for (const auto &req : sig->getRequirements())
addRequirement(req, /*proto=*/nullptr);
}
/// For an associated type T in a protocol P, we add a rewrite rule:
///
/// [P].T => [P:T]
///
/// Intuitively, this means "if a type conforms to P, it has a nested type
/// named T".
void RewriteSystemBuilder::addAssociatedType(const AssociatedTypeDecl *type,
const ProtocolDecl *proto) {
MutableTerm lhs;
lhs.add(Atom::forProtocol(proto, Context));
lhs.add(Atom::forName(type->getName(), Context));
MutableTerm rhs;
rhs.add(Atom::forAssociatedType(proto, type->getName(), Context));
Rules.emplace_back(lhs, rhs);
}
/// Lowers a generic requirement to a rewrite rule.
///
/// If \p proto is null, this is a generic requirement from the top-level
/// generic signature. The added rewrite rule will be rooted in a generic
/// parameter atom.
///
/// If \p proto is non-null, this is a generic requirement in the protocol's
/// requirement signature. The added rewrite rule will be rooted in a
/// protocol atom.
void RewriteSystemBuilder::addRequirement(const Requirement &req,
const ProtocolDecl *proto) {
if (Debug) {
llvm::dbgs() << "+ ";
req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
// Compute the left hand side.
auto subjectType = CanType(req.getFirstType());
auto subjectTerm = Context.getMutableTermForType(subjectType, proto);
// Compute the right hand side.
MutableTerm constraintTerm;
switch (req.getKind()) {
case RequirementKind::Conformance: {
// A conformance requirement T : P becomes a rewrite rule
//
// T.[P] == T
//
// Intuitively, this means "any type ending with T conforms to P".
auto *proto = req.getProtocolDecl();
constraintTerm = subjectTerm;
constraintTerm.add(Atom::forProtocol(proto, Context));
break;
}
case RequirementKind::Superclass: {
// A superclass requirement T : C<X, Y> becomes a rewrite rule
//
// T.[superclass: C<X, Y>] => T
auto otherType = CanType(req.getSecondType());
SmallVector<Term, 1> substitutions;
otherType = getConcreteSubstitutionSchema(otherType, proto,
substitutions);
constraintTerm = subjectTerm;
constraintTerm.add(Atom::forSuperclass(otherType, substitutions,
Context));
break;
}
case RequirementKind::Layout: {
// A layout requirement T : L becomes a rewrite rule
//
// T.[layout: L] == T
constraintTerm = subjectTerm;
constraintTerm.add(Atom::forLayout(req.getLayoutConstraint(),
Context));
break;
}
case RequirementKind::SameType: {
auto otherType = CanType(req.getSecondType());
if (!otherType->isTypeParameter()) {
// A concrete same-type requirement T == C<X, Y> becomes a
// rewrite rule
//
// T.[concrete: C<X, Y>] => T
SmallVector<Term, 1> substitutions;
otherType = getConcreteSubstitutionSchema(otherType, proto,
substitutions);
constraintTerm = subjectTerm;
constraintTerm.add(Atom::forConcreteType(otherType, substitutions,
Context));
break;
}
constraintTerm = Context.getMutableTermForType(otherType, proto);
break;
}
}
Rules.emplace_back(subjectTerm, constraintTerm);
}
/// We use the PIMPL pattern to avoid creeping header dependencies.
struct RequirementMachine::Implementation {
RewriteContext Context;
RewriteSystem System;
EquivalenceClassMap Map;
CanGenericSignature Sig;
bool Complete = false;
/// All conformance access paths computed so far.
llvm::DenseMap<std::pair<CanType, ProtocolDecl *>,
ConformanceAccessPath> ConformanceAccessPaths;
/// Conformance access paths computed during the last round. All elements
/// have the same length. If a conformance access path of greater length
/// is requested, we refill CurrentConformanceAccessPaths with all paths of
/// length N+1, and add them to the ConformanceAccessPaths map.
std::vector<std::pair<CanType, ConformanceAccessPath>>
CurrentConformanceAccessPaths;
explicit Implementation(ASTContext &ctx)
: Context(ctx),
System(Context),
Map(Context, System.getProtocols()) {}
void verify(const MutableTerm &term);
void dump(llvm::raw_ostream &out);
MutableTerm getLongestValidPrefix(const MutableTerm &term);
};
void RequirementMachine::Implementation::verify(const MutableTerm &term) {
#ifndef NDEBUG
MutableTerm erased;
// First, "erase" resolved associated types from the term, and try
// to simplify it again.
for (auto atom : term) {
if (erased.empty()) {
switch (atom.getKind()) {
case Atom::Kind::Protocol:
case Atom::Kind::GenericParam:
erased.add(atom);
continue;
case Atom::Kind::AssociatedType:
erased.add(Atom::forProtocol(atom.getProtocols()[0], Context));
break;
case Atom::Kind::Name:
case Atom::Kind::Layout:
case Atom::Kind::Superclass:
case Atom::Kind::ConcreteType:
llvm::errs() << "Bad initial atom in " << term << "\n";
abort();
break;
}
}
switch (atom.getKind()) {
case Atom::Kind::Name:
assert(!erased.empty());
erased.add(atom);
break;
case Atom::Kind::AssociatedType:
erased.add(Atom::forName(atom.getName(), Context));
break;
case Atom::Kind::Protocol:
case Atom::Kind::GenericParam:
case Atom::Kind::Layout:
case Atom::Kind::Superclass:
case Atom::Kind::ConcreteType:
llvm::errs() << "Bad interior atom " << atom << " in " << term << "\n";
abort();
break;
}
}
MutableTerm simplified = erased;
System.simplify(simplified);
// We should end up with the same term.
if (simplified != term) {
llvm::errs() << "Term verification failed\n";
llvm::errs() << "Initial term: " << term << "\n";
llvm::errs() << "Erased term: " << erased << "\n";
llvm::errs() << "Simplified term: " << simplified << "\n";
llvm::errs() << "\n";
dump(llvm::errs());
abort();
}
#endif
}
void RequirementMachine::Implementation::dump(llvm::raw_ostream &out) {
out << "Requirement machine for " << Sig << "\n";
System.dump(out);
Map.dump(out);
}
RequirementMachine::RequirementMachine(ASTContext &ctx) : Context(ctx) {
Impl = new Implementation(ctx);
}
RequirementMachine::~RequirementMachine() {
delete Impl;
}
void RequirementMachine::addGenericSignature(CanGenericSignature sig) {
Impl->Sig = sig;
PrettyStackTraceGenericSignature debugStack("building rewrite system for", sig);
auto *Stats = Context.Stats;
if (Stats)
++Stats->getFrontendCounters().NumRequirementMachines;
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
if (Context.LangOpts.DebugRequirementMachine) {
llvm::dbgs() << "Adding generic signature " << sig << " {\n";
}
// Collect the top-level requirements, and all transtively-referenced
// protocol requirement signatures.
RewriteSystemBuilder builder(Impl->Context,
Context.LangOpts.DebugRequirementMachine);
builder.addGenericSignature(sig);
// Add the initial set of rewrite rules to the rewrite system, also
// providing the protocol graph to use for the linear order on terms.
Impl->System.initialize(std::move(builder.Rules),
std::move(builder.Protocols));
computeCompletion();
if (Context.LangOpts.DebugRequirementMachine) {
llvm::dbgs() << "}\n";
}
}
/// Attempt to obtain a confluent rewrite system using the completion
/// procedure.
void RequirementMachine::computeCompletion() {
while (true) {
// First, run the Knuth-Bendix algorithm to resolve overlapping rules.
auto result = Impl->System.computeConfluentCompletion(
Context.LangOpts.RequirementMachineStepLimit,
Context.LangOpts.RequirementMachineDepthLimit);
if (Context.Stats) {
Context.Stats->getFrontendCounters()
.NumRequirementMachineCompletionSteps += result.second;
}
// Check for failure.
auto checkCompletionResult = [&]() {
switch (result.first) {
case RewriteSystem::CompletionResult::Success:
break;
case RewriteSystem::CompletionResult::MaxIterations:
llvm::errs() << "Generic signature " << Impl->Sig
<< " exceeds maximum completion step count\n";
Impl->System.dump(llvm::errs());
abort();
case RewriteSystem::CompletionResult::MaxDepth:
llvm::errs() << "Generic signature " << Impl->Sig
<< " exceeds maximum completion depth\n";
Impl->System.dump(llvm::errs());
abort();
}
};
checkCompletionResult();
// Simplify right hand sides in preparation for building the
// equivalence class map.
Impl->System.simplifyRightHandSides();
// Build the equivalence class map, which performs concrete term
// unification; if this added any new rules, run the completion
// procedure again.
result = Impl->System.buildEquivalenceClassMap(
Impl->Map,
Context.LangOpts.RequirementMachineStepLimit,
Context.LangOpts.RequirementMachineDepthLimit);
if (Context.Stats) {
Context.Stats->getFrontendCounters()
.NumRequirementMachineUnifiedConcreteTerms += result.second;
}
checkCompletionResult();
// If buildEquivalenceClassMap() added new rules, we run another
// round of Knuth-Bendix, and build the equivalence class map again.
if (result.second == 0)
break;
}
if (Context.LangOpts.DebugRequirementMachine) {
dump(llvm::dbgs());
}
assert(!Impl->Complete);
Impl->Complete = true;
}
bool RequirementMachine::isComplete() const {
return Impl->Complete;
}
void RequirementMachine::dump(llvm::raw_ostream &out) const {
Impl->dump(out);
}
/// Collects all requirements on a type parameter that are used to construct
/// its ArchetypeType in a GenericEnvironment.
GenericSignature::LocalRequirements
RequirementMachine::getLocalRequirements(
Type depType,
TypeArrayView<GenericTypeParamType> genericParams) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto &protos = Impl->System.getProtocols();
GenericSignature::LocalRequirements result;
result.anchor = Impl->Context.getTypeForTerm(term, genericParams, protos);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return result;
if (equivClass->isConcreteType()) {
result.concreteType = equivClass->getConcreteType({}, protos,
Impl->Context);
return result;
}
if (equivClass->hasSuperclassBound()) {
result.superclass = equivClass->getSuperclassBound({}, protos,
Impl->Context);
}
for (const auto *proto : equivClass->getConformsToExcludingSuperclassConformances())
result.protos.push_back(const_cast<ProtocolDecl *>(proto));
result.layout = equivClass->getLayoutConstraint();
return result;
}
bool RequirementMachine::requiresClass(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return false;
if (equivClass->isConcreteType())
return false;
auto layout = equivClass->getLayoutConstraint();
return (layout && layout->isClass());
}
LayoutConstraint RequirementMachine::getLayoutConstraint(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return LayoutConstraint();
return equivClass->getLayoutConstraint();
}
bool RequirementMachine::requiresProtocol(Type depType,
const ProtocolDecl *proto) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return false;
if (equivClass->isConcreteType())
return false;
for (auto *otherProto : equivClass->getConformsTo()) {
if (otherProto == proto)
return true;
}
return false;
}
GenericSignature::RequiredProtocols
RequirementMachine::getRequiredProtocols(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return { };
if (equivClass->isConcreteType())
return { };
GenericSignature::RequiredProtocols result;
for (auto *otherProto : equivClass->getConformsTo()) {
result.push_back(const_cast<ProtocolDecl *>(otherProto));
}
ProtocolType::canonicalizeProtocols(result);
return result;
}
Type RequirementMachine::getSuperclassBound(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return Type();
if (!equivClass->hasSuperclassBound())
return Type();
auto &protos = Impl->System.getProtocols();
return equivClass->getSuperclassBound({ }, protos, Impl->Context);
}
bool RequirementMachine::isConcreteType(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return false;
return equivClass->isConcreteType();
}
Type RequirementMachine::getConcreteType(Type depType) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return Type();
if (!equivClass->isConcreteType())
return Type();
auto &protos = Impl->System.getProtocols();
return equivClass->getConcreteType({ }, protos, Impl->Context);
}
bool RequirementMachine::areSameTypeParameterInContext(Type depType1,
Type depType2) const {
auto term1 = Impl->Context.getMutableTermForType(depType1->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term1);
Impl->verify(term1);
auto term2 = Impl->Context.getMutableTermForType(depType2->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term2);
Impl->verify(term2);
return (term1 == term2);
}
MutableTerm
RequirementMachine::Implementation::getLongestValidPrefix(const MutableTerm &term) {
MutableTerm prefix;
for (auto atom : term) {
switch (atom.getKind()) {
case Atom::Kind::Name:
return prefix;
case Atom::Kind::Protocol:
assert(prefix.empty() &&
"Protocol atom can only appear at the start of a type term");
if (!System.getProtocols().isKnownProtocol(atom.getProtocol()))
return prefix;
break;
case Atom::Kind::GenericParam:
assert(prefix.empty() &&
"Generic parameter atom can only appear at the start of a type term");
break;
case Atom::Kind::AssociatedType: {
const auto *equivClass = Map.lookUpEquivalenceClass(prefix);
if (!equivClass)
return prefix;
auto conformsTo = equivClass->getConformsTo();
for (const auto *proto : atom.getProtocols()) {
if (!System.getProtocols().isKnownProtocol(proto))
return prefix;
// T.[P:A] is valid iff T conforms to P.
if (std::find(conformsTo.begin(), conformsTo.end(), proto)
== conformsTo.end())
return prefix;
}
break;
}
case Atom::Kind::Layout:
case Atom::Kind::Superclass:
case Atom::Kind::ConcreteType:
llvm_unreachable("Property atom cannot appear in a type term");
}
// This atom is valid, add it to the longest prefix.
prefix.add(atom);
}
return prefix;
}
/// Unlike most other queries, the input type can be any type, not just a
/// type parameter.
///
/// Returns true if all structural components that are type parameters are
/// in their canonical form, and are not concrete (in which case they're
/// not considered canonical, since they can be replaced with their
/// concrete type).
bool RequirementMachine::isCanonicalTypeInContext(Type type) const {
auto &protos = Impl->System.getProtocols();
// Look for non-canonical type parameters.
return !type.findIf([&](Type component) -> bool {
if (!component->isTypeParameter())
return false;
auto term = Impl->Context.getMutableTermForType(component->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return false;
if (equivClass->isConcreteType())
return true;
auto anchor = Impl->Context.getTypeForTerm(term, {}, protos);
return CanType(anchor) != CanType(component);
});
}
/// Unlike most other queries, the input type can be any type, not just a
/// type parameter.
///
/// Replaces all structural components that are type parameters with their
/// most canonical form, which is either a (possibly different)
/// type parameter, or a concrete type, in which case we recursively
/// simplify any type parameters appearing in structural positions of
/// that concrete type as well, and so on.
Type RequirementMachine::getCanonicalTypeInContext(
Type type,
TypeArrayView<GenericTypeParamType> genericParams) const {
const auto &protos = Impl->System.getProtocols();
return type.transformRec([&](Type t) -> Optional<Type> {
if (!t->isTypeParameter())
return None;
// Get a simplified term T.
auto term = Impl->Context.getMutableTermForType(t->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
// We need to handle "purely concrete" member types, eg if I have a
// signature <T where T == Foo>, and we're asked to canonicalize the
// type T.[P:A] where Foo : A.
//
// This comes up because we can derive the signature <T where T == Foo>
// from a generic signature like <T where T : P>; adding the
// concrete requirement 'T == Foo' renders 'T : P' redundant. We then
// want to take interface types written against the original signature
// and canonicalize them with respect to the derived signature.
//
// The problem is that T.[P:A] is not a valid term in the rewrite system
// for <T where T == Foo>, since we do not have the requirement T : P.
//
// A more principled solution would build a substitution map when
// building a derived generic signature that adds new requirements;
// interface types would first be substituted before being canonicalized
// in the new signature.
//
// For now, we handle this with a two-step process; we split a term up
// into a longest valid prefix, which must resolve to a concrete type,
// and the remaining suffix, which we use to perform a concrete
// substitution using subst().
// In the below, let T be a type term, with T == UV, where U is the
// longest valid prefix.
//
// Note that V can be empty if T is fully valid; we expect this to be
// true most of the time.
auto prefix = Impl->getLongestValidPrefix(term);
// Get a type (concrete or dependent) for U.
auto prefixType = [&]() -> Type {
Impl->verify(prefix);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(prefix);
if (equivClass && equivClass->isConcreteType()) {
auto concreteType = equivClass->getConcreteType(genericParams,
protos, Impl->Context);
if (!concreteType->hasTypeParameter())
return concreteType;
// FIXME: Recursion guard is needed here
return getCanonicalTypeInContext(concreteType, genericParams);
}
return Impl->Context.getTypeForTerm(prefix, genericParams, protos);
}();
// If T is already valid, the longest valid prefix U of T is T itself, and
// V is empty. Just return the type we computed above.
//
// This is the only case where U is allowed to be dependent.
if (prefix.size() == term.size())
return prefixType;
// If U is not concrete, we have an invalid member type of a dependent
// type, which is not valid in this generic signature. Give up.
if (prefixType->isTypeParameter()) {
llvm::errs() << "Invalid type parameter in getCanonicalTypeInContext()\n";
llvm::errs() << "Original type: " << type << "\n";
llvm::errs() << "Simplified term: " << term << "\n";
llvm::errs() << "Longest valid prefix: " << prefix << "\n";
llvm::errs() << "Prefix type: " << prefixType << "\n";
llvm::errs() << "\n";
dump(llvm::errs());
abort();
}
// Compute the type of the unresolved suffix term V, rooted in the
// generic parameter τ_0_0.
auto origType = Impl->Context.getRelativeTypeForTerm(
term, prefix, Impl->System.getProtocols());
// Substitute τ_0_0 in the above relative type with the concrete type
// for U.
//
// Example: if T == A.B.C and the longest valid prefix is A.B which
// maps to a concrete type Foo<Int>, then we have:
//
// U == A.B
// V == C
//
// prefixType == Foo<Int>
// origType == τ_0_0.C
// substType == Foo<Int>.C
//
auto substType = origType.subst(
[&](SubstitutableType *type) -> Type {
assert(cast<GenericTypeParamType>(type)->getDepth() == 0);
assert(cast<GenericTypeParamType>(type)->getIndex() == 0);
return prefixType;
},
LookUpConformanceInSignature(Impl->Sig.getPointer()));
// FIXME: Recursion guard is needed here
return getCanonicalTypeInContext(substType, genericParams);
});
}
/// Replace 'Self' in the given dependent type (\c depTy) with the given
/// dependent type, producing a type that refers to
/// the nested type. This limited operation makes sure that it does not
/// create any new potential archetypes along the way, so it should only be
/// used in cases where we're reconstructing something that we know exists.
static Type replaceSelfWithType(Type selfType, Type depTy) {
if (auto depMemTy = depTy->getAs<DependentMemberType>()) {
Type baseType = replaceSelfWithType(selfType, depMemTy->getBase());
assert(depMemTy->getAssocType() && "Missing associated type");
return DependentMemberType::get(baseType, depMemTy->getAssocType());
}
assert(depTy->is<GenericTypeParamType>() && "missing Self?");
return selfType;
}
/// Retrieve the conformance access path used to extract the conformance of
/// interface \c type to the given \c protocol.
///
/// \param type The interface type whose conformance access path is to be
/// queried.
/// \param protocol A protocol to which \c type conforms.
///
/// \returns the conformance access path that starts at a requirement of
/// this generic signature and ends at the conformance that makes \c type
/// conform to \c protocol.
///
/// \seealso ConformanceAccessPath
ConformanceAccessPath
RequirementMachine::getConformanceAccessPath(Type type,
ProtocolDecl *protocol) {
auto canType = getCanonicalTypeInContext(type, { })->getCanonicalType();
assert(canType->isTypeParameter());
// Check if we've already cached the result before doing anything else.
auto found = Impl->ConformanceAccessPaths.find(
std::make_pair(canType, protocol));
if (found != Impl->ConformanceAccessPaths.end()) {
return found->second;
}
auto *Stats = Context.Stats;
FrontendStatsTracer tracer(Stats, "get-conformance-access-path");
auto recordPath = [&](CanType type, ProtocolDecl *proto,
ConformanceAccessPath path) {
// Add the path to the buffer.
Impl->CurrentConformanceAccessPaths.emplace_back(type, path);
// Add the path to the map.
auto key = std::make_pair(type, proto);
auto inserted = Impl->ConformanceAccessPaths.insert(
std::make_pair(key, path));
assert(inserted.second);
(void) inserted;
if (Stats)
++Stats->getFrontendCounters().NumConformanceAccessPathsRecorded;
};
// If this is the first time we're asked to look up a conformance access path,
// visit all of the root conformance requirements in our generic signature and
// add them to the buffer.
if (Impl->ConformanceAccessPaths.empty()) {
for (const auto &req : Impl->Sig->getRequirements()) {
// We only care about conformance requirements.
if (req.getKind() != RequirementKind::Conformance)
continue;
auto rootType = CanType(req.getFirstType());
auto *rootProto = req.getProtocolDecl();
ConformanceAccessPath::Entry root(rootType, rootProto);
ArrayRef<ConformanceAccessPath::Entry> path(root);
ConformanceAccessPath result(Context.AllocateCopy(path));
recordPath(rootType, rootProto, result);
}
}
// We enumerate conformance access paths in lexshort order until we find the
// path whose corresponding type canonicalizes to the one we are looking for.
while (true) {
auto found = Impl->ConformanceAccessPaths.find(
std::make_pair(canType, protocol));
if (found != Impl->ConformanceAccessPaths.end()) {
return found->second;
}
assert(Impl->CurrentConformanceAccessPaths.size() > 0);
// The buffer consists of all conformance access paths of length N.
// Swap it out with an empty buffer, and fill it with all paths of
// length N+1.
std::vector<std::pair<CanType, ConformanceAccessPath>> oldPaths;
std::swap(Impl->CurrentConformanceAccessPaths, oldPaths);
for (const auto &pair : oldPaths) {
const auto &lastElt = pair.second.back();
auto *lastProto = lastElt.second;
// A copy of the current path, populated as needed.
SmallVector<ConformanceAccessPath::Entry, 4> entries;
for (const auto &req : lastProto->getRequirementSignature()) {
// We only care about conformance requirements.
if (req.getKind() != RequirementKind::Conformance)
continue;
auto nextSubjectType = req.getFirstType()->getCanonicalType();
auto *nextProto = req.getProtocolDecl();
// Compute the canonical anchor for this conformance requirement.
auto nextType = replaceSelfWithType(pair.first, nextSubjectType);
auto nextCanType = getCanonicalTypeInContext(nextType, { })
->getCanonicalType();
// Skip "derived via concrete" sources.
if (!nextCanType->isTypeParameter())
continue;
// If we've already seen a path for this conformance, skip it and
// don't add it to the buffer. Note that because we iterate over
// conformance access paths in lexshort order, the existing
// conformance access path is shorter than the one we found just now.
if (Impl->ConformanceAccessPaths.count(
std::make_pair(nextCanType, nextProto)))
continue;
if (entries.empty()) {
// Fill our temporary vector.
entries.insert(entries.begin(),
pair.second.begin(),
pair.second.end());
}
// Add the next entry.
entries.emplace_back(nextSubjectType, nextProto);
ConformanceAccessPath result = Context.AllocateCopy(entries);
entries.pop_back();
recordPath(nextCanType, nextProto, result);
}
}
}
}
/// Compare two associated types.
static int compareAssociatedTypes(AssociatedTypeDecl *assocType1,
AssociatedTypeDecl *assocType2) {
// - by name.
if (int result = assocType1->getName().str().compare(
assocType2->getName().str()))
return result;
// Prefer an associated type with no overrides (i.e., an anchor) to one
// that has overrides.
bool hasOverridden1 = !assocType1->getOverriddenDecls().empty();
bool hasOverridden2 = !assocType2->getOverriddenDecls().empty();
if (hasOverridden1 != hasOverridden2)
return hasOverridden1 ? +1 : -1;
// - by protocol, so t_n_m.`P.T` < t_n_m.`Q.T` (given P < Q)
auto proto1 = assocType1->getProtocol();
auto proto2 = assocType2->getProtocol();
if (int compareProtocols = TypeDecl::compare(proto1, proto2))
return compareProtocols;
// Error case: if we have two associated types with the same name in the
// same protocol, just tie-break based on address.
if (assocType1 != assocType2)
return assocType1 < assocType2 ? -1 : +1;
return 0;
}
static void lookupConcreteNestedType(NominalTypeDecl *decl,
Identifier name,
SmallVectorImpl<TypeDecl *> &concreteDecls) {
SmallVector<ValueDecl *, 2> foundMembers;
decl->getParentModule()->lookupQualified(
decl, DeclNameRef(name),
NL_QualifiedDefault | NL_OnlyTypes | NL_ProtocolMembers,
foundMembers);
for (auto member : foundMembers)
concreteDecls.push_back(cast<TypeDecl>(member));
}
static TypeDecl *
findBestConcreteNestedType(SmallVectorImpl<TypeDecl *> &concreteDecls) {
return *std::min_element(concreteDecls.begin(), concreteDecls.end(),
[](TypeDecl *type1, TypeDecl *type2) {
return TypeDecl::compare(type1, type2) < 0;
});
}
TypeDecl *
RequirementMachine::lookupNestedType(Type depType, Identifier name) const {
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
Impl->System.simplify(term);
Impl->verify(term);
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
if (!equivClass)
return nullptr;
// Look for types with the given name in protocols that we know about.
AssociatedTypeDecl *bestAssocType = nullptr;
SmallVector<TypeDecl *, 4> concreteDecls;
for (const auto *proto : equivClass->getConformsTo()) {
// Look for an associated type and/or concrete type with this name.
for (auto member : const_cast<ProtocolDecl *>(proto)->lookupDirect(name)) {
// If this is an associated type, record whether it is the best
// associated type we've seen thus far.
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
// Retrieve the associated type anchor.
assocType = assocType->getAssociatedTypeAnchor();
if (!bestAssocType ||
compareAssociatedTypes(assocType, bestAssocType) < 0)
bestAssocType = assocType;
continue;
}
// If this is another type declaration, record it.
if (auto type = dyn_cast<TypeDecl>(member)) {
concreteDecls.push_back(type);
continue;
}
}
}
// If we haven't found anything yet but have a concrete type or a superclass,
// look for a type in that.
// FIXME: Shouldn't we always look here?
if (!bestAssocType && concreteDecls.empty()) {
Type typeToSearch;
if (equivClass->isConcreteType())
typeToSearch = equivClass->getConcreteType();
else if (equivClass->hasSuperclassBound())
typeToSearch = equivClass->getSuperclassBound();
if (typeToSearch)
if (auto *decl = typeToSearch->getAnyNominal())
lookupConcreteNestedType(decl, name, concreteDecls);
}
if (bestAssocType) {
assert(bestAssocType->getOverriddenDecls().empty() &&
"Lookup should never keep a non-anchor associated type");
return bestAssocType;
} else if (!concreteDecls.empty()) {
// Find the best concrete type.
return findBestConcreteNestedType(concreteDecls);
}
return nullptr;
}