Files
swift-mirror/lib/AST/AutoDiff.cpp
Saleem Abdulrasool 09975d1253 sprinkle llvm_unreachable for covered switches (NFC)
Annotate the covered switches with `llvm_unreachable` to avoid the MSVC
warning which does not recognise the covered switches.  This allows us
to avoid a spew of warnings.
2020-05-07 11:05:35 -07:00

391 lines
14 KiB
C++

//===--- AutoDiff.cpp - Swift automatic differentiation utilities ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/AutoDiff.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Module.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
using namespace swift;
AutoDiffDerivativeFunctionKind::AutoDiffDerivativeFunctionKind(
StringRef string) {
Optional<innerty> result = llvm::StringSwitch<Optional<innerty>>(string)
.Case("jvp", JVP)
.Case("vjp", VJP);
assert(result && "Invalid string");
rawValue = *result;
}
NormalDifferentiableFunctionTypeComponent::
NormalDifferentiableFunctionTypeComponent(
AutoDiffDerivativeFunctionKind kind) {
switch (kind) {
case AutoDiffDerivativeFunctionKind::JVP:
rawValue = JVP;
return;
case AutoDiffDerivativeFunctionKind::VJP:
rawValue = VJP;
return;
}
}
NormalDifferentiableFunctionTypeComponent::
NormalDifferentiableFunctionTypeComponent(StringRef string) {
Optional<innerty> result = llvm::StringSwitch<Optional<innerty>>(string)
.Case("original", Original)
.Case("jvp", JVP)
.Case("vjp", VJP);
assert(result && "Invalid string");
rawValue = *result;
}
Optional<AutoDiffDerivativeFunctionKind>
NormalDifferentiableFunctionTypeComponent::getAsDerivativeFunctionKind() const {
switch (rawValue) {
case Original:
return None;
case JVP:
return {AutoDiffDerivativeFunctionKind::JVP};
case VJP:
return {AutoDiffDerivativeFunctionKind::VJP};
}
llvm_unreachable("invalid derivative kind");
}
LinearDifferentiableFunctionTypeComponent::
LinearDifferentiableFunctionTypeComponent(StringRef string) {
Optional<innerty> result = llvm::StringSwitch<Optional<innerty>>(string)
.Case("original", Original)
.Case("transpose", Transpose);
assert(result && "Invalid string");
rawValue = *result;
}
DifferentiabilityWitnessFunctionKind::DifferentiabilityWitnessFunctionKind(
StringRef string) {
Optional<innerty> result = llvm::StringSwitch<Optional<innerty>>(string)
.Case("jvp", JVP)
.Case("vjp", VJP)
.Case("transpose", Transpose);
assert(result && "Invalid string");
rawValue = *result;
}
Optional<AutoDiffDerivativeFunctionKind>
DifferentiabilityWitnessFunctionKind::getAsDerivativeFunctionKind() const {
switch (rawValue) {
case JVP:
return {AutoDiffDerivativeFunctionKind::JVP};
case VJP:
return {AutoDiffDerivativeFunctionKind::VJP};
case Transpose:
return None;
}
llvm_unreachable("invalid derivative kind");
}
void SILAutoDiffIndices::print(llvm::raw_ostream &s) const {
s << "(source=" << source << " parameters=(";
interleave(
parameters->getIndices(), [&s](unsigned p) { s << p; },
[&s] { s << ' '; });
s << "))";
}
void SILAutoDiffIndices::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
SILAutoDiffIndices AutoDiffConfig::getSILAutoDiffIndices() const {
assert(resultIndices->getNumIndices() == 1);
return SILAutoDiffIndices(*resultIndices->begin(), parameterIndices);
}
void AutoDiffConfig::print(llvm::raw_ostream &s) const {
s << "(parameters=";
parameterIndices->print(s);
s << " results=";
resultIndices->print(s);
if (derivativeGenericSignature) {
s << " where=";
derivativeGenericSignature->print(s);
}
s << ')';
}
bool swift::isDifferentiableProgrammingEnabled(SourceFile &SF) {
auto &ctx = SF.getASTContext();
// Return true if differentiable programming is explicitly enabled.
if (ctx.LangOpts.EnableExperimentalDifferentiableProgramming)
return true;
// Otherwise, return true iff the `_Differentiation` module is imported in
// the given source file.
bool importsDifferentiationModule = false;
for (auto import : namelookup::getAllImports(&SF)) {
if (import.importedModule->getName() == ctx.Id_Differentiation) {
importsDifferentiationModule = true;
break;
}
}
return importsDifferentiationModule;
}
// TODO(TF-874): This helper is inefficient and should be removed. Unwrapping at
// most once (for curried method types) is sufficient.
static void unwrapCurryLevels(AnyFunctionType *fnTy,
SmallVectorImpl<AnyFunctionType *> &results) {
while (fnTy != nullptr) {
results.push_back(fnTy);
fnTy = fnTy->getResult()->getAs<AnyFunctionType>();
}
}
static unsigned countNumFlattenedElementTypes(Type type) {
if (auto *tupleTy = type->getCanonicalType()->getAs<TupleType>())
return accumulate(tupleTy->getElementTypes(), 0,
[&](unsigned num, Type type) {
return num + countNumFlattenedElementTypes(type);
});
return 1;
}
// TODO(TF-874): Simplify this helper and remove the `reverseCurryLevels` flag.
void AnyFunctionType::getSubsetParameters(
IndexSubset *parameterIndices,
SmallVectorImpl<AnyFunctionType::Param> &results, bool reverseCurryLevels) {
SmallVector<AnyFunctionType *, 2> curryLevels;
unwrapCurryLevels(this, curryLevels);
SmallVector<unsigned, 2> curryLevelParameterIndexOffsets(curryLevels.size());
unsigned currentOffset = 0;
for (unsigned curryLevelIndex : llvm::reverse(indices(curryLevels))) {
curryLevelParameterIndexOffsets[curryLevelIndex] = currentOffset;
currentOffset += curryLevels[curryLevelIndex]->getNumParams();
}
// If `reverseCurryLevels` is true, reverse the curry levels and offsets.
if (reverseCurryLevels) {
std::reverse(curryLevels.begin(), curryLevels.end());
std::reverse(curryLevelParameterIndexOffsets.begin(),
curryLevelParameterIndexOffsets.end());
}
for (unsigned curryLevelIndex : indices(curryLevels)) {
auto *curryLevel = curryLevels[curryLevelIndex];
unsigned parameterIndexOffset =
curryLevelParameterIndexOffsets[curryLevelIndex];
for (unsigned paramIndex : range(curryLevel->getNumParams()))
if (parameterIndices->contains(parameterIndexOffset + paramIndex))
results.push_back(curryLevel->getParams()[paramIndex]);
}
}
void autodiff::getFunctionSemanticResultTypes(
AnyFunctionType *functionType,
SmallVectorImpl<AutoDiffSemanticFunctionResultType> &result,
GenericEnvironment *genericEnv) {
auto &ctx = functionType->getASTContext();
// Remap type in `genericEnv`, if specified.
auto remap = [&](Type type) {
if (!genericEnv)
return type;
return genericEnv->mapTypeIntoContext(type);
};
// Collect formal result type as a semantic result, unless it is
// `Void`.
auto formalResultType = functionType->getResult();
if (auto *resultFunctionType =
functionType->getResult()->getAs<AnyFunctionType>()) {
formalResultType = resultFunctionType->getResult();
}
if (!formalResultType->isEqual(ctx.TheEmptyTupleType))
result.push_back({remap(formalResultType), /*isInout*/ false});
// Collect `inout` parameters as semantic results.
for (auto param : functionType->getParams())
if (param.isInOut())
result.push_back({remap(param.getPlainType()), /*isInout*/ true});
if (auto *resultFunctionType =
functionType->getResult()->getAs<AnyFunctionType>()) {
for (auto param : resultFunctionType->getParams())
if (param.isInOut())
result.push_back({remap(param.getPlainType()), /*isInout*/ true});
}
}
// TODO(TF-874): Simplify this helper. See TF-874 for WIP.
IndexSubset *
autodiff::getLoweredParameterIndices(IndexSubset *parameterIndices,
AnyFunctionType *functionType) {
SmallVector<AnyFunctionType *, 2> curryLevels;
unwrapCurryLevels(functionType, curryLevels);
// Compute the lowered sizes of all AST parameter types.
SmallVector<unsigned, 8> paramLoweredSizes;
unsigned totalLoweredSize = 0;
auto addLoweredParamInfo = [&](Type type) {
unsigned paramLoweredSize = countNumFlattenedElementTypes(type);
paramLoweredSizes.push_back(paramLoweredSize);
totalLoweredSize += paramLoweredSize;
};
for (auto *curryLevel : llvm::reverse(curryLevels))
for (auto &param : curryLevel->getParams())
addLoweredParamInfo(param.getPlainType());
// Build lowered SIL parameter indices by setting the range of bits that
// corresponds to each "set" AST parameter.
llvm::SmallVector<unsigned, 8> loweredSILIndices;
unsigned currentBitIndex = 0;
for (unsigned i : range(parameterIndices->getCapacity())) {
auto paramLoweredSize = paramLoweredSizes[i];
if (parameterIndices->contains(i)) {
auto indices = range(currentBitIndex, currentBitIndex + paramLoweredSize);
loweredSILIndices.append(indices.begin(), indices.end());
}
currentBitIndex += paramLoweredSize;
}
return IndexSubset::get(functionType->getASTContext(), totalLoweredSize,
loweredSILIndices);
}
GenericSignature autodiff::getConstrainedDerivativeGenericSignature(
SILFunctionType *originalFnTy, IndexSubset *diffParamIndices,
GenericSignature derivativeGenSig, LookupConformanceFn lookupConformance,
bool isTranspose) {
if (!derivativeGenSig)
derivativeGenSig = originalFnTy->getInvocationGenericSignature();
if (!derivativeGenSig)
return nullptr;
auto &ctx = originalFnTy->getASTContext();
auto *diffableProto = ctx.getProtocol(KnownProtocolKind::Differentiable);
SmallVector<Requirement, 4> requirements;
for (unsigned paramIdx : diffParamIndices->getIndices()) {
// Require differentiability parameters to conform to `Differentiable`.
auto paramType = originalFnTy->getParameters()[paramIdx].getInterfaceType();
Requirement req(RequirementKind::Conformance, paramType,
diffableProto->getDeclaredType());
requirements.push_back(req);
if (isTranspose) {
// Require linearity parameters to additionally satisfy
// `Self == Self.TangentVector`.
auto tanSpace = paramType->getAutoDiffTangentSpace(lookupConformance);
auto paramTanType = tanSpace->getCanonicalType();
Requirement req(RequirementKind::SameType, paramType, paramTanType);
requirements.push_back(req);
}
}
return evaluateOrDefault(
ctx.evaluator,
AbstractGenericSignatureRequest{derivativeGenSig.getPointer(),
/*addedGenericParams*/ {},
std::move(requirements)},
nullptr);
}
// Given the rest of a `Builtin.applyDerivative_{jvp|vjp}` or
// `Builtin.applyTranspose` operation name, attempts to parse the arity and
// throwing-ness from the operation name. Modifies the operation name argument
// in place as substrings get dropped.
static void parseAutoDiffBuiltinCommonConfig(
StringRef &operationName, unsigned &arity, bool &throws) {
// Parse '_arity'.
constexpr char arityPrefix[] = "_arity";
if (operationName.startswith(arityPrefix)) {
operationName = operationName.drop_front(sizeof(arityPrefix) - 1);
auto arityStr = operationName.take_while(llvm::isDigit);
operationName = operationName.drop_front(arityStr.size());
auto converted = llvm::to_integer(arityStr, arity);
assert(converted); (void)converted;
assert(arity > 0);
} else {
arity = 1;
}
// Parse '_throws'.
constexpr char throwsPrefix[] = "_throws";
if (operationName.startswith(throwsPrefix)) {
operationName = operationName.drop_front(sizeof(throwsPrefix) - 1);
throws = true;
} else {
throws = false;
}
}
bool autodiff::getBuiltinApplyDerivativeConfig(
StringRef operationName, AutoDiffDerivativeFunctionKind &kind,
unsigned &arity, bool &throws) {
constexpr char prefix[] = "applyDerivative";
if (!operationName.startswith(prefix))
return false;
operationName = operationName.drop_front(sizeof(prefix) - 1);
// Parse 'jvp' or 'vjp'.
constexpr char jvpPrefix[] = "_jvp";
constexpr char vjpPrefix[] = "_vjp";
if (operationName.startswith(jvpPrefix))
kind = AutoDiffDerivativeFunctionKind::JVP;
else if (operationName.startswith(vjpPrefix))
kind = AutoDiffDerivativeFunctionKind::VJP;
operationName = operationName.drop_front(sizeof(jvpPrefix) - 1);
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
bool autodiff::getBuiltinApplyTransposeConfig(
StringRef operationName, unsigned &arity, bool &throws) {
constexpr char prefix[] = "applyTranspose";
if (!operationName.startswith(prefix))
return false;
operationName = operationName.drop_front(sizeof(prefix) - 1);
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
bool autodiff::getBuiltinDifferentiableOrLinearFunctionConfig(
StringRef operationName, unsigned &arity, bool &throws) {
constexpr char differentiablePrefix[] = "differentiableFunction";
constexpr char linearPrefix[] = "linearFunction";
if (operationName.startswith(differentiablePrefix))
operationName = operationName.drop_front(sizeof(differentiablePrefix) - 1);
else if (operationName.startswith(linearPrefix))
operationName = operationName.drop_front(sizeof(linearPrefix) - 1);
else
return false;
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
Type TangentSpace::getType() const {
switch (kind) {
case Kind::TangentVector:
return value.tangentVectorType;
case Kind::Tuple:
return value.tupleType;
}
llvm_unreachable("invalid tangent space kind");
}
CanType TangentSpace::getCanonicalType() const {
return getType()->getCanonicalType();
}
NominalTypeDecl *TangentSpace::getNominal() const {
assert(isTangentVector());
return getTangentVector()->getNominalOrBoundGenericNominal();
}