Files
swift-mirror/stdlib/core/Index.swift

370 lines
12 KiB
Swift

//===--- Index.swift - A position in a CollectionType ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// ForwardIndexType, BidirectionalIndexType, and RandomAccessIndexType
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//===--- Dispatching advance and distance functions -----------------------===//
// These generic functions are for user consumption; they dispatch to the
// appropriate implementation for T.
/// Measure the distance between `start` and `end`.
///
/// If `T` models `RandomAccessIndexType`, requires that `start` and `end` are
/// part of the same sequence, and executes in O(1).
///
/// Otherwise, requires that `end` is reachable from `start` by
/// incrementation, and executes in O(N), where N is the function's
/// result.
public func distance<T: ForwardIndexType>(start: T, end: T) -> T.Distance {
return start~>_distanceTo(end)
}
/// Return the result of advancing `start` by `n` positions. If `T`
/// models `RandomAccessIndexType`, executes in O(1). Otherwise,
/// executes in O(`abs(n)`). If `T` does not model
/// `BidirectionalIndexType`, requires that `n` is non-negative.
///
/// `advance(i, n)` is a synonym for `i++n'
public func advance<T: ForwardIndexType>(start: T, n: T.Distance) -> T {
return start~>_advance(n)
}
/// Return the result of advancing start by `n` positions, or until it
/// equals `end`. If `T` models `RandomAccessIndexType`, executes in
/// O(1). Otherwise, executes in O(`abs(n)`). If `T` does not model
/// `BidirectionalIndexType`, requires that `n` is non-negative.
public func advance<T: ForwardIndexType>(start: T, n: T.Distance, end: T) -> T {
return start~>_advance(n, end)
}
/// Operation tags for distance and advance
///
/// Operation tags allow us to use a single operator (~>) for
/// dispatching every generic function with a default implementation.
/// Only authors of specialized distance implementations need to touch
/// this tag.
public struct _Distance {}
public func _distanceTo<I>(end: I) -> (_Distance, (I)) {
return (_Distance(), (end))
}
public struct _Advance {}
public func _advance<D>(n: D) -> (_Advance, (D)) {
return (_Advance(), (n: n))
}
public func _advance<D, I>(n: D, end: I) -> (_Advance, (D, I)) {
return (_Advance(), (n, end))
}
//===----------------------------------------------------------------------===//
//===--- ForwardIndexType -------------------------------------------------===//
// Protocols with default implementations are broken into two parts, a
// base and a more-refined part. From the user's point-of-view,
// however, _ForwardIndexType and ForwardIndexType should look like a single
// protocol. This technique gets used throughout the standard library
// to break otherwise-cyclic protocol dependencies, which the compiler
// isn't yet smart enough to handle.
/// This protocol is an implementation detail of `ForwardIndexType`; do
/// not use it directly.
///
/// Its requirements are inherited by `ForwardIndexType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _Incrementable : Equatable {
/// Return the next consecutive value in a discrete sequence of
/// `Self` values
///
/// Requires: `self` has a well-defined successor.
func successor() -> Self
}
//===----------------------------------------------------------------------===//
// A dummy type that we can use when we /don't/ want to create an
// ambiguity indexing Range<T> outside a generic context. See the
// implementation of Range for details.
public struct _DisabledRangeIndex_ {
init() {
_sanityCheckFailure("Nobody should ever create one.")
}
}
//===----------------------------------------------------------------------===//
/// This protocol is an implementation detail of `ForwardIndexType`; do
/// not use it directly.
///
/// Its requirements are inherited by `ForwardIndexType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _ForwardIndexType : _Incrementable {
/// A type that can represent the number of steps between pairs of
/// `Self` values where one value is reachable from the other.
///
/// Reachability is defined by the ability to produce one value from
/// the other via zero or more applications of `successor`.
typealias Distance : _SignedIntegerType = Int
// See the implementation of Range for an explanation of this
// associated type
typealias _DisabledRangeIndex = _DisabledRangeIndex_
}
@transparent
public prefix func ++ <T : _Incrementable> (inout x: T) -> T {
x = x.successor()
return x
}
@transparent
public postfix func ++ <T : _Incrementable> (inout x: T) -> T {
var ret = x
x = x.successor()
return ret
}
/// Represents a discrete value in a series, where a value's
/// successor, if any, is reachable by applying the value's
/// `successor()` method.
public protocol ForwardIndexType : _ForwardIndexType {
// This requirement allows generic distance() to find default
// implementations. Only the author of F and the author of a
// refinement of F having a non-default distance implementation need
// to know about it. These refinements are expected to be rare
// (which is why defaulted requirements are a win)
// Do not use these operators directly; call distance(start, end)
// and advance(start, n) instead
func ~> (start:Self, _ : (_Distance, Self)) -> Distance
func ~> (start:Self, _ : (_Advance, Distance)) -> Self
func ~> (start:Self, _ : (_Advance, (Distance, Self))) -> Self
}
// advance and distance implementations
/// Do not use this operator directly; call distance(start, end) instead
public
func ~> <T: _ForwardIndexType>(start:T, rest: (_Distance, T)) -> T.Distance {
var p = start
var count: T.Distance = 0
let end = rest.1
while p != end {
++count
++p
}
return count
}
/// Do not use this operator directly; call advance(start, n) instead
@transparent
public func ~> <T: _ForwardIndexType>(
start: T, rest: (_Advance, T.Distance)
) -> T {
let n = rest.1
return _advanceForward(start, n)
}
internal
func _advanceForward<T: _ForwardIndexType>(start: T, n: T.Distance) -> T {
_precondition(n >= 0,
"Only BidirectionalIndexType can be advanced by a negative amount")
var p = start
for var i: T.Distance = 0; i != n; ++i {
++p
}
return p
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
public func ~> <T: _ForwardIndexType>(
start:T, rest: ( _Advance, (T.Distance, T))
) -> T {
return _advanceForward(start, rest.1.0, rest.1.1)
}
internal
func _advanceForward<T: _ForwardIndexType>(
start: T, n: T.Distance, end: T
) -> T {
_precondition(n >= 0,
"Only BidirectionalIndexType can be advanced by a negative amount")
var p = start
for var i: T.Distance = 0; i != n && p != end; ++i {
++p
}
return p
}
//===----------------------------------------------------------------------===//
//===--- BidirectionalIndexType -------------------------------------------===//
/// This protocol is an implementation detail of `BidirectionalIndexType`; do
/// not use it directly.
///
/// Its requirements are inherited by `BidirectionalIndexType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _BidirectionalIndexType : _ForwardIndexType {
/// Return the previous consecutive value in a discrete sequence.
///
/// If `self` has a well-defined successor,
/// `self.successor().predecessor() == self`. If `self` has a
/// well-defined predecessor, `self.predecessor().successor() ==
/// self`.
///
/// Requires: `self` has a well-defined predecessor.
func predecessor() -> Self
}
/// An *index* that can step backwards via application of its
/// `predecessor()` method.
public protocol BidirectionalIndexType
: ForwardIndexType, _BidirectionalIndexType {}
@transparent
public prefix func -- <T: _BidirectionalIndexType> (inout x: T) -> T {
x = x.predecessor()
return x
}
@transparent
public postfix func -- <T: _BidirectionalIndexType> (inout x: T) -> T {
var ret = x
x = x.predecessor()
return ret
}
// advance implementation
/// Do not use this operator directly; call advance(start, n) instead
@transparent
public func ~> <T: _BidirectionalIndexType>(
start:T , rest: (_Advance, T.Distance)
) -> T {
let n = rest.1
if n >= 0 {
return _advanceForward(start, n)
}
var p = start
for var i: T.Distance = n; i != 0; ++i {
--p
}
return p
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
public func ~> <T: _BidirectionalIndexType>(
start:T, rest: (_Advance, (T.Distance, T))
) -> T {
let n = rest.1.0
let end = rest.1.1
if n >= 0 {
return _advanceForward(start, n, end)
}
var p = start
for var i: T.Distance = n; i != 0 && p != end; ++i {
--p
}
return p
}
//===----------------------------------------------------------------------===//
//===--- RandomAccessIndexType --------------------------------------------===//
/// This protocol is an implementation detail of `RandomAccessIndexType`; do
/// not use it directly.
///
/// Its requirements are inherited by `RandomAccessIndexType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _RandomAccessIndexType : _BidirectionalIndexType, Strideable {
/// Return the minimum number of applications of `successor` or
/// `predecessor` required to reach `other` from `self`.
///
/// Complexity: O(1).
///
/// Axioms::
///
/// x.distanceTo(x.successor())) == 1
/// x.distanceTo(x.predecessor())) == -1
/// x.advancedBy(x.distanceTo(y)) == y
func distanceTo(other: Self) -> Distance
/// Return `self` offset by `n` steps.
///
/// :returns: If `n > 0`, the result of applying `successor` to
/// `self` `n` times. If `n < 0`, the result of applying
/// `predecessor` to `self` `-n` times. Otherwise, `self`.
///
/// Complexity: O(1)
///
/// Axioms::
///
/// x.advancedBy(0) == x
/// x.advancedBy(1) == x.successor()
/// x.advancedBy(-1) == x.predecessor()
/// x.distanceTo(x.advancedBy(m)) == m
func advancedBy(n: Distance) -> Self
}
/// An *index* that can be offset by an arbitrary number of positions,
/// and can measure the distance to any reachable value, in O(1).
public protocol RandomAccessIndexType
: BidirectionalIndexType, _RandomAccessIndexType {
/* typealias Distance : IntegerArithmeticType*/
}
// advance and distance implementations
/// Do not use this operator directly; call distance(start, end) instead
@transparent
public func ~> <T: _RandomAccessIndexType>(start:T, rest:(_Distance, (T)))
-> T.Distance {
let end = rest.1
return start.distanceTo(end)
}
/// Do not use this operator directly; call advance(start, n) instead
@transparent
public func ~> <T: _RandomAccessIndexType>(
start:T, rest:(_Advance, (T.Distance))
) -> T {
let n = rest.1
return start.advancedBy(n)
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
public func ~> <T: _RandomAccessIndexType>(
start:T, rest:(_Advance, (T.Distance, T))
) -> T {
let n = rest.1.0
let end = rest.1.1
let d = start.distanceTo(end)
var amount = n
if n < 0 {
if d < 0 && d > n {
return end
}
}
else {
if d > 0 && d < n {
return end
}
}
return start.advancedBy(amount)
}