Files
swift-mirror/lib/AST/Mangle.cpp
Adrian Prantl 555b18228a make assertions more verbose
Swift SVN r8714
2013-09-27 00:32:28 +00:00

839 lines
26 KiB
C++

//===--- Mangle.cpp - Swift Name Mangling --------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements declaration name mangling in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Mangle.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Punycode.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace Mangle;
/// Translate the given operator character into its mangled form.
///
/// Current operator characters: @/=-+*%<>!&|^~ and the special operator '..'
static char mangleOperatorChar(char op) {
switch (op) {
case '&': return 'a'; // 'and'
case '@': return 'c'; // 'commercial at sign'
case '/': return 'd'; // 'divide'
case '=': return 'e'; // 'equal'
case '>': return 'g'; // 'greater'
case '<': return 'l'; // 'less'
case '*': return 'm'; // 'multiply'
case '!': return 'n'; // 'negate'
case '|': return 'o'; // 'or'
case '+': return 'p'; // 'plus'
case '%': return 'r'; // 'remainder'
case '-': return 's'; // 'subtract'
case '~': return 't'; // 'tilde'
case '^': return 'x'; // 'xor'
case '.': return 'z'; // 'zperiod' (the z is silent)
default:
return op;
}
}
static bool isSwiftModule(Module *module) {
return (!module->getParent() && module->Name.str() == "swift");
}
namespace {
/// A helpful little wrapper for a value that should be mangled
/// in a particular, compressed value.
class Index {
unsigned N;
public:
explicit Index(unsigned n) : N(n) {}
friend raw_ostream &operator<<(raw_ostream &out, Index n) {
if (n.N != 0) out << (n.N - 1);
return (out << '_');
}
};
}
static bool isNonAscii(StringRef str) {
for (unsigned char c : str) {
if (c >= 0x80)
return true;
}
return false;
}
/// Mangle an identifier into the buffer.
void Mangler::mangleIdentifier(Identifier ident, OperatorFixity fixity) {
StringRef str = ident.str();
assert(!str.empty() && "mangling an empty identifier!");
// If the identifier contains non-ASCII character, we mangle with an initial
// X and Punycode the identifier string.
llvm::SmallString<32> punycodeBuf;
if (isNonAscii(str)) {
Buffer << 'X';
Punycode::encodePunycode(str, punycodeBuf);
str = punycodeBuf;
}
// Mangle normal identifiers as
// count identifier-char+
// where the count is the number of characters in the identifier,
// and where individual identifier characters represent themselves.
if (!ident.isOperator()) {
Buffer << str.size() << str;
return;
}
// Mangle operator identifiers as
// operator ::= 'o' operator-fixity count operator-char+
// operator-fixity ::= 'p' // prefix
// operator-fixity ::= 'P' // postfix
// operator-fixity ::= 'i' // infix
// where the count is the number of characters in the operator,
// and where the individual operator characters are translated.
Buffer << 'o';
switch (fixity) {
case OperatorFixity::NotOperator:
llvm_unreachable("operator mangled without fixity specified!");
case OperatorFixity::Infix:
Buffer << 'i';
break;
case OperatorFixity::Prefix:
Buffer << 'p';
break;
case OperatorFixity::Postfix:
Buffer << 'P';
break;
}
// Mangle ASCII operators directly.
Buffer << str.size();
for (char c : str) {
Buffer << mangleOperatorChar(c);
}
}
bool Mangler::tryMangleSubstitution(void *ptr) {
auto ir = Substitutions.find(ptr);
if (ir == Substitutions.end()) return false;
// substitution ::= 'S' integer? '_'
unsigned index = ir->second;
Buffer << 'S';
if (index) Buffer << (index - 1);
Buffer << '_';
return true;
}
void Mangler::addSubstitution(void *ptr) {
Substitutions.insert(std::make_pair(ptr, Substitutions.size()));
}
/// Mangle the context of the given declaration as a <context.
/// This is the top-level entrypoint for mangling <context>.
void Mangler::mangleContextOf(ValueDecl *decl) {
auto clangDecl = decl->getClangDecl();
// Classes and protocols published to Objective-C have a special context
// mangling.
// known-context ::= 'So'
if (isa<ClassDecl>(decl) && (clangDecl || decl->isObjC())) {
assert(!clangDecl || isa<clang::ObjCInterfaceDecl>(clangDecl));
Buffer << "So";
return;
}
if (isa<ProtocolDecl>(decl) && (clangDecl || decl->isObjC())) {
assert(!clangDecl || isa<clang::ObjCProtocolDecl>(clangDecl));
Buffer << "So";
return;
}
// Declarations provided by a C module have a special context mangling.
// known-context ::= 'SC'
if (isa<ClangModule>(decl->getDeclContext())) {
Buffer << "SC";
return;
}
// Otherwise, just mangle the decl's DC.
mangleDeclContext(decl->getDeclContext());
}
void Mangler::mangleDeclContext(DeclContext *ctx) {
switch (ctx->getContextKind()) {
case DeclContextKind::Module: {
Module *module = cast<Module>(ctx);
assert(!isa<BuiltinModule>(module) && "mangling member of builtin module!");
// Try the special 'swift' substitution.
// context ::= 'Ss'
if (isSwiftModule(module)) {
Buffer << "Ss";
return;
}
// context ::= substitution identifier*
// context ::= identifier+
if (tryMangleSubstitution(module)) return;
if (DeclContext *parent = module->getParent())
mangleDeclContext(parent);
// This should work, because the language should be restricting
// the name of a module to be a valid language identifier.
mangleIdentifier(module->Name);
addSubstitution(module);
return;
}
case DeclContextKind::NominalTypeDecl:
mangleNominalType(cast<NominalTypeDecl>(ctx), ExplosionKind::Minimal);
return;
case DeclContextKind::ExtensionDecl: {
auto ExtD = cast<ExtensionDecl>(ctx);
auto ExtTy = ExtD->getExtendedType();
// Recover from erroneous extension.
if (ExtTy->is<ErrorType>())
return mangleDeclContext(ExtD->getDeclContext());
auto decl = ExtTy->getAnyNominal();
assert(decl && "extension of non-nominal type?");
mangleNominalType(decl, ExplosionKind::Minimal);
return;
}
case DeclContextKind::AbstractClosureExpr:
llvm_unreachable("unnamed closure mangling not yet implemented");
case DeclContextKind::AbstractFunctionDecl: {
auto *AFD = cast<AbstractFunctionDecl>(ctx);
if (auto *FD = dyn_cast<FuncDecl>(AFD)) {
// FIXME: We need a real solution here for local types.
if (FD->isGetterOrSetter()) {
mangleGetterOrSetterContext(FD);
return;
}
mangleDeclName(FD, IncludeType::Yes);
return;
}
if (auto *CD = dyn_cast<ConstructorDecl>(AFD)) {
mangleDeclName(CD, IncludeType::Yes);
return;
}
mangleDeclName(cast<DestructorDecl>(AFD), IncludeType::No);
return;
}
case DeclContextKind::TopLevelCodeDecl:
// Mangle the containing module context.
return mangleDeclContext(ctx->getParent());
}
llvm_unreachable("bad decl context");
}
void Mangler::mangleGetterOrSetterContext(FuncDecl *func) {
assert(func->isGetterOrSetter());
Decl *D = func->getGetterDecl();
if (!D) D = func->getSetterDecl();
assert(D && "no value type for getter/setter!");
assert(isa<VarDecl>(D) || isa<SubscriptDecl>(D));
mangleDeclName(cast<ValueDecl>(D), IncludeType::No);
// We mangle the type with a canonical set of parameters because
// objects nested within functions are shared across all expansions
// of the function.
mangleDeclType(cast<ValueDecl>(D), ExplosionKind::Minimal, /*uncurry*/ 0);
if (func->getGetterDecl()) {
Buffer << 'g';
} else {
Buffer << 's';
}
}
/// Bind the generic parameters from the given list and its parents.
///
/// \param mangle if true, also emit the mangling for a 'generics'
void Mangler::bindGenericParameters(const GenericParamList *genericParams,
bool mangle = false) {
assert(genericParams);
SmallVector<const GenericParamList *, 2> paramLists;
// Determine the depth our parameter list is at. We don't actually need to
// emit the outer parameters because they should have been emitted as part of
// the outer context.
ArchetypesDepth = genericParams->getDepth() + 1;
unsigned index = 0;
for (auto archetype : genericParams->getPrimaryArchetypes()) {
// Remember the current depth and level.
ArchetypeInfo info;
info.Depth = ArchetypesDepth;
info.Index = index++;
assert(!Archetypes.count(archetype));
Archetypes.insert(std::make_pair(archetype, info));
if (!mangle) continue;
// Mangle this type parameter.
// <generic-parameter> ::= <protocol-list> _
// FIXME: Only mangle the archetypes and protocol requirements
// that matter, rather than everything.
mangleProtocolList(archetype->getConformsTo());
Buffer << '_';
}
if (mangle) Buffer << '_';
}
void Mangler::manglePolymorphicType(const GenericParamList *genericParams,
CanType T, ExplosionKind explosion,
unsigned uncurryLevel,
bool mangleAsFunction) {
// FIXME: Prefix?
llvm::SaveAndRestore<unsigned> oldArchetypesDepth(ArchetypesDepth);
bindGenericParameters(genericParams, /*mangle*/ true);
if (mangleAsFunction)
mangleFunctionType(cast<AnyFunctionType>(T), explosion, uncurryLevel);
else
mangleType(T, explosion, uncurryLevel);
}
static OperatorFixity getDeclFixity(ValueDecl *decl) {
if (!decl->getName().isOperator())
return OperatorFixity::NotOperator;
if (decl->getAttrs().isPostfix())
return OperatorFixity::Postfix;
if (decl->getAttrs().isPrefix())
return OperatorFixity::Prefix;
return OperatorFixity::Infix;
}
void Mangler::mangleDeclName(ValueDecl *decl, IncludeType includeType) {
// decl ::= context identifier
mangleContextOf(decl);
mangleIdentifier(decl->getName(), getDeclFixity(decl));
if (includeType == IncludeType::No) return;
// We mangle the type with a canonical set of parameters because
// objects nested within functions are shared across all expansions
// of the function.
mangleDeclType(decl, ExplosionKind::Minimal, /*uncurry*/ 0);
}
void Mangler::mangleDeclType(ValueDecl *decl, ExplosionKind explosion,
unsigned uncurryLevel) {
// The return value here is a pair of (1) whether we need to mangle
// the type and (2) whether we need to specifically bind parameters
// from the context.
typedef std::pair<bool, bool> result_t;
struct ClassifyDecl : swift::DeclVisitor<ClassifyDecl, result_t> {
/// TypeDecls don't need their types mangled in.
result_t visitTypeDecl(TypeDecl *D) {
return { false, false };
}
/// Function-like declarations do, but they should have
/// polymorphic type and therefore don't need specific binding.
result_t visitFuncDecl(FuncDecl *D) {
return { true, false };
}
result_t visitConstructorDecl(ConstructorDecl *D) {
return { true, false };
}
result_t visitDestructorDecl(DestructorDecl *D) {
return { true, false };
}
result_t visitEnumElementDecl(EnumElementDecl *D) {
return { true, false };
}
/// All other values need to have contextual archetypes bound.
result_t visitVarDecl(VarDecl *D) {
return { true, true };
}
result_t visitSubscriptDecl(SubscriptDecl *D) {
return { true, true };
}
/// Make sure we have a case for every ValueDecl.
result_t visitValueDecl(ValueDecl *D) = delete;
/// Everything else should be unreachable here.
result_t visitDecl(Decl *D) {
llvm_unreachable("not a ValueDecl");
}
};
auto result = ClassifyDecl().visit(decl);
assert(result.first || !result.second);
DeclCtx = decl->getDeclContext();
// Bind the contextual archetypes if requested.
llvm::SaveAndRestore<unsigned> oldArchetypesDepth(ArchetypesDepth);
if (result.second) {
auto genericParams = decl->getDeclContext()->getGenericParamsOfContext();
if (genericParams) {
bindGenericParameters(genericParams);
}
}
// Mangle the type if requested.
if (result.first) {
mangleType(decl->getType()->getCanonicalType(), explosion, uncurryLevel);
}
}
/// Mangle a type into the buffer.
///
/// Type manglings should never start with [0-9_] or end with [0-9].
///
/// <type> ::= A <natural> <type> # fixed-sized arrays
/// <type> ::= Bf <natural> _ # Builtin.Float
/// <type> ::= Bi <natural> _ # Builtin.Integer
/// <type> ::= BO # Builtin.ObjCPointer
/// <type> ::= Bo # Builtin.ObjectPointer
/// <type> ::= Bp # Builtin.RawPointer
/// <type> ::= Bv <natural> <type> # Builtin.Vector
/// <type> ::= C <decl> # class (substitutable)
/// <type> ::= ERR # Error type
/// <type> ::= F <type> <type> # function type
/// <type> ::= f <type> <type> # uncurried function type
/// <type> ::= G <type> <type>+ _ # bound generic type
/// <type> ::= O <decl> # enum (substitutable)
/// <type> ::= P <protocol-list> _ # protocol composition
/// <type> ::= Q <index> # archetype with depth=0, index=N
/// <type> ::= Qd <index> <index> # archetype with depth=M+1, index=N
/// <
/// <type> ::= R <type> # lvalue
/// <type> ::= T <tuple-element>* _ # tuple
/// <type> ::= U <generic-parameter>+ _ <type>
/// <type> ::= V <decl> # struct (substitutable)
/// <type> ::= Xo <type> # unowned reference type
/// <type> ::= Xw <type> # weak reference type
///
/// <index> ::= _ # 0
/// <index> ::= <natural> _ # N+1
///
/// <tuple-element> ::= <identifier>? <type>
void Mangler::mangleType(CanType type, ExplosionKind explosion,
unsigned uncurryLevel) {
switch (type->getKind()) {
case TypeKind::TypeVariable:
llvm_unreachable("mangling type variable");
case TypeKind::Module:
llvm_unreachable("Cannot mangle module type yet");
case TypeKind::Error:
Buffer << "ERR";
return;
// We don't care about these types being a bit verbose because we
// don't expect them to come up that often in API names.
case TypeKind::BuiltinFloat:
switch (cast<BuiltinFloatType>(type)->getFPKind()) {
case BuiltinFloatType::IEEE16: Buffer << "Bf16_"; return;
case BuiltinFloatType::IEEE32: Buffer << "Bf32_"; return;
case BuiltinFloatType::IEEE64: Buffer << "Bf64_"; return;
case BuiltinFloatType::IEEE80: Buffer << "Bf80_"; return;
case BuiltinFloatType::IEEE128: Buffer << "Bf128_"; return;
case BuiltinFloatType::PPC128: llvm_unreachable("ppc128 not supported");
}
llvm_unreachable("bad floating-point kind");
case TypeKind::BuiltinInteger:
Buffer << "Bi" << cast<BuiltinIntegerType>(type)->getBitWidth() << '_';
return;
case TypeKind::BuiltinRawPointer:
Buffer << "Bp";
return;
case TypeKind::BuiltinObjectPointer:
Buffer << "Bo";
return;
case TypeKind::BuiltinObjCPointer:
Buffer << "BO";
return;
case TypeKind::BuiltinVector:
Buffer << "Bv" << cast<BuiltinVectorType>(type)->getNumElements();
mangleType(cast<BuiltinVectorType>(type).getElementType(), explosion,
uncurryLevel);
return;
#define SUGARED_TYPE(id, parent) \
case TypeKind::id: \
llvm_unreachable("expect canonical type");
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
case TypeKind::MetaType:
Buffer << 'M';
return mangleType(cast<MetaTypeType>(type).getInstanceType(),
ExplosionKind::Minimal, 0);
case TypeKind::LValue:
Buffer << 'R';
return mangleType(cast<LValueType>(type).getObjectType(),
ExplosionKind::Minimal, 0);
case TypeKind::UnownedStorage:
Buffer << "Xo";
return mangleType(cast<UnownedStorageType>(type).getReferentType(),
ExplosionKind::Minimal, 0);
case TypeKind::WeakStorage:
Buffer << "Xw";
return mangleType(cast<WeakStorageType>(type).getReferentType(),
ExplosionKind::Minimal, 0);
case TypeKind::Tuple: {
auto tuple = cast<TupleType>(type);
// type ::= 'T' tuple-field+ '_' // tuple
// type ::= 't' tuple-field+ '_' // variadic tuple
// tuple-field ::= identifier? type
if (tuple->getFields().size() > 0
&& tuple->getFields().back().isVararg())
Buffer << 't';
else
Buffer << 'T';
for (auto &field : tuple->getFields()) {
if (field.hasName())
mangleIdentifier(field.getName());
mangleType(CanType(field.getType()), explosion, 0);
}
Buffer << '_';
return;
}
case TypeKind::Enum:
return mangleNominalType(cast<EnumType>(type)->getDecl(), explosion);
case TypeKind::Protocol:
// Protocol type manglings have a variable number of protocol names
// follow the 'P' sigil, so a trailing underscore is needed after the
// type name, unlike protocols as contexts.
Buffer << 'P';
mangleProtocolList(type);
Buffer << '_';
return;
case TypeKind::Struct:
return mangleNominalType(cast<StructType>(type)->getDecl(), explosion);
case TypeKind::Class:
return mangleNominalType(cast<ClassType>(type)->getDecl(), explosion);
case TypeKind::UnboundGeneric:
// We normally reject unbound types in IR-generation, but there
// are several occasions in which we'd like to mangle them in the
// abstract.
mangleNominalType(cast<UnboundGenericType>(type)->getDecl(), explosion);
return;
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct: {
// type ::= 'G' <type> <type>+ '_'
auto boundType = cast<BoundGenericType>(type);
Buffer << 'G';
mangleNominalType(boundType->getDecl(), explosion);
for (auto arg : boundType.getGenericArgs()) {
mangleType(arg, ExplosionKind::Minimal, /*uncurry*/ 0);
}
Buffer << '_';
return;
}
case TypeKind::PolymorphicFunction: {
// <type> ::= U <generic-parameter>+ _ <type>
// 'U' is for "universal qualification".
// The nested type is always a function type.
auto fn = cast<PolymorphicFunctionType>(type);
Buffer << 'U';
manglePolymorphicType(&fn->getGenericParams(), fn, explosion, uncurryLevel,
/*mangleAsFunction=*/true);
return;
}
// type ::= archetype
case TypeKind::Archetype: {
auto archetype = cast<ArchetypeType>(type);
// archetype ::= associated-type
// associated-type ::= substitution
if (tryMangleSubstitution(archetype.getPointer()))
return;
Buffer << 'Q';
// associated-type ::= 'Q' archetype identifier
// Mangle the associated type of a parent archetype.
if (auto parent = archetype->getParent()) {
assert(archetype->getAssocType()
&& "child archetype has no associated type?!");
mangleType(CanType(parent), explosion, 0);
mangleIdentifier(archetype->getName());
addSubstitution(archetype.getPointer());
return;
}
// associated-type ::= 'Q' protocol-context
// Mangle the Self archetype of a protocol.
if (archetype->getAssocType() && archetype->getAssocType()->isSelf()) {
Buffer << 'P';
mangleProtocolName(archetype->getAssocType()->getProtocol());
addSubstitution(archetype.getPointer());
return;
}
// archetype ::= 'Q' <index> # archetype with depth=0, index=N
// archetype ::= 'Qd' <index> <index> # archetype with depth=M+1, index=N
// Mangle generic parameter archetypes.
// Find the archetype information.
auto it = Archetypes.find(archetype);
while (it == Archetypes.end()) {
// This should be treated like an error, but we don't want
// clients like lldb to crash because of corrupted input.
assert(DeclCtx && "empty decl context");
if (!DeclCtx) return;
// This Archetype comes from an enclosing context -- proceed to
// bind the generic params form all parent contexts.
GenericParamList *GenericParams = nullptr;
do { // Skip over empty parent contexts.
DeclCtx = DeclCtx->getParent();
assert(DeclCtx && "no decl context for archetype found");
if (!DeclCtx) return;
GenericParams = DeclCtx->getGenericParamsOfContext();
} while (!GenericParams);
bindGenericParameters(GenericParams);
it = Archetypes.find(archetype);
}
auto &info = it->second;
assert(ArchetypesDepth >= info.Depth);
unsigned relativeDepth = ArchetypesDepth - info.Depth;
if (relativeDepth != 0) {
Buffer << 'd' << Index(relativeDepth - 1);
}
Buffer << Index(info.Index);
return;
}
case TypeKind::GenericTypeParam: {
llvm_unreachable("cannot mangle generic type parameters yet");
}
case TypeKind::DependentMember: {
llvm_unreachable("cannot mangle dependent member types yet");
}
case TypeKind::Function:
mangleFunctionType(cast<FunctionType>(type), explosion, uncurryLevel);
return;
case TypeKind::Array: {
// type ::= 'A' integer type
auto array = cast<ArrayType>(type);
Buffer << 'A';
Buffer << array->getSize();
mangleType(array.getBaseType(), ExplosionKind::Minimal, 0);
return;
};
case TypeKind::ProtocolComposition: {
// We mangle ProtocolType and ProtocolCompositionType using the
// same production:
// <type> ::= P <protocol-list> _
auto protocols = cast<ProtocolCompositionType>(type)->getProtocols();
Buffer << 'P';
mangleProtocolList(protocols);
Buffer << '_';
return;
}
}
llvm_unreachable("bad type kind");
}
/// Mangle a list of protocols. Each protocol is a substitution
/// candidate.
/// <protocol-list> ::= <protocol-name>+
void Mangler::mangleProtocolList(ArrayRef<Type> protocols) {
for (auto protoTy : protocols) {
mangleProtocolName(protoTy->castTo<ProtocolType>()->getDecl());
}
}
void Mangler::mangleProtocolList(ArrayRef<ProtocolDecl*> protocols) {
for (auto protocol : protocols) {
mangleProtocolName(protocol);
}
}
/// Mangle the name of a protocol as a substitution candidate.
void Mangler::mangleProtocolName(ProtocolDecl *protocol) {
// <protocol-name> ::= <decl> # substitutable
// The <decl> in a protocol-name is the same substitution
// candidate as a protocol <type>, but it is mangled without
// the surrounding 'P'...'_'.
ProtocolType *type = cast<ProtocolType>(protocol->getDeclaredType());
if (tryMangleSubstitution(type))
return;
mangleDeclName(protocol, IncludeType::No);
addSubstitution(type);
}
static char getSpecifierForNominalType(NominalTypeDecl *decl) {
switch (decl->getKind()) {
#define NOMINAL_TYPE_DECL(id, parent)
#define DECL(id, parent) \
case DeclKind::id:
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type");
case DeclKind::Protocol: return 'P';
case DeclKind::Class: return 'C';
case DeclKind::Enum: return 'O';
case DeclKind::Struct: return 'V';
}
llvm_unreachable("bad decl kind");
}
void Mangler::mangleNominalType(NominalTypeDecl *decl,
ExplosionKind explosion) {
// Check for certain standard types.
if (tryMangleStandardSubstitution(decl))
return;
// For generic types, this uses the unbound type.
TypeBase *key = decl->getDeclaredType().getPointer();
// Try to mangle the entire name as a substitution.
// type ::= substitution
if (tryMangleSubstitution(key))
return;
Buffer << getSpecifierForNominalType(decl);
mangleDeclName(decl, IncludeType::No);
addSubstitution(key);
}
bool Mangler::tryMangleStandardSubstitution(NominalTypeDecl *decl) {
// Bail out if our parent isn't the swift standard library.
Module *parent = dyn_cast<Module>(decl->getDeclContext());
if (!parent || !isSwiftModule(parent)) return false;
// Standard substitutions shouldn't start with 's' (because that's
// reserved for the swift module itself) or a digit or '_'.
StringRef name = decl->getName().str();
if (name == "Int64") {
Buffer << "Si";
return true;
} else if (name == "UInt64") {
Buffer << "Su";
return true;
} else if (name == "Bool") {
Buffer << "Sb";
return true;
} else if (name == "Char") {
Buffer << "Sc";
return true;
} else if (name == "Float64") {
Buffer << "Sd";
return true;
} else if (name == "Float32") {
Buffer << "Sf";
return true;
} else if (name == "Optional") {
Buffer << "Sq";
return true;
} else if (name == "Slice") {
Buffer << "Sa";
return true;
} else if (name == "String") {
Buffer << "SS";
return true;
} else {
return false;
}
}
void Mangler::mangleFunctionType(CanAnyFunctionType fn,
ExplosionKind explosion,
unsigned uncurryLevel) {
// type ::= 'F' type type (curried)
// type ::= 'f' type type (uncurried)
// type ::= 'b' type type (objc block)
if (fn->isBlock())
Buffer << 'b';
else
Buffer << (uncurryLevel > 0 ? 'f' : 'F');
mangleType(fn.getInput(), explosion, 0);
mangleType(fn.getResult(), explosion,
(uncurryLevel > 0 ? uncurryLevel - 1 : 0));
}
void Mangler::mangleEntity(ValueDecl *decl, ExplosionKind explosion,
unsigned uncurryLevel) {
mangleDeclName(decl, IncludeType::No);
// Mangle in a type as well. Note that we have to mangle the type
// on all kinds of declarations, even variables, because at the
// moment they can *all* be overloaded.
mangleDeclType(decl, explosion, uncurryLevel);
}
void Mangler::mangleDirectness(bool isIndirect) {
Buffer << (isIndirect ? 'i': 'd');
}
void Mangler::mangleProtocolConformance(ProtocolConformance *conformance) {
// protocol-conformance ::= type protocol module
// FIXME: explosion level?
mangleType(conformance->getType()->getCanonicalType(),
ExplosionKind::Minimal, 0);
mangleProtocolName(conformance->getProtocol());
mangleDeclContext(conformance->getContainingModule());
}