Files
swift-mirror/tools/SourceKit/lib/SwiftLang/CodeCompletionOrganizer.cpp
Jordan Rose 0ba6c495ba Add @_implementationOnly
This is an attribute that gets put on an import in library FooKit to
keep it from being a requirement to import FooKit. It's not checked at
all, meaning that in this form it is up to the author of FooKit to
make sure nothing in its API or ABI depends on the implementation-only
dependency. There's also no debugging support here (debugging FooKit
/should/ import the implementation-only dependency if it's present).

The goal is to get to a point where it /can/ be checked, i.e. FooKit
developers are prevented from writing code that would rely on FooKit's
implementation-only dependency being present when compiling clients of
FooKit. But right now it's not.

rdar://problem/48985979
2019-03-28 15:57:53 -07:00

1408 lines
45 KiB
C++

//===--- CodeCompletionOrganizer.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "CodeCompletionOrganizer.h"
#include "SourceKit/Support/FuzzyStringMatcher.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Module.h"
#include "swift/Frontend/Frontend.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include <deque>
using namespace SourceKit;
using namespace CodeCompletion;
using namespace swift;
using namespace ide;
namespace {
enum class ItemKind : uint8_t {
None,
Group,
Result,
};
struct Item {
std::string name;
std::string description;
uint8_t kind : 2;
uint8_t isExactMatch : 1;
double matchScore = 0.0; ///< The quality of the filter matching.
double finalScore = -1.0; ///< The final score including match and context.
ItemKind getKind() const { return static_cast<ItemKind>(kind); }
Item(ItemKind k = ItemKind::None)
: kind(static_cast<decltype(kind)>(k)), isExactMatch(0) {}
virtual ~Item() {}
};
struct Result : public Item {
Completion *value;
Result(Completion *result = nullptr)
: Item(ItemKind::Result), value(result) {}
static bool classof(const Item *item) {
return item->getKind() == ItemKind::Result;
}
};
class ImportDepth {
llvm::StringMap<uint8_t> depths;
public:
ImportDepth() = default;
ImportDepth(ASTContext &context, CompilerInvocation &invocation);
Optional<uint8_t> lookup(StringRef module) {
auto I = depths.find(module);
if (I == depths.end())
return None;
return I->getValue();
}
};
} // end anonymous namespace
struct CodeCompletion::Group : public Item {
std::vector<std::unique_ptr<Item>> contents;
Group() : Item(ItemKind::Group) {}
static bool classof(const Item *item) {
return item->getKind() == ItemKind::Group;
}
};
//===----------------------------------------------------------------------===//
// extendCompletions
//===----------------------------------------------------------------------===//
std::vector<Completion *> SourceKit::CodeCompletion::extendCompletions(
ArrayRef<SwiftResult *> swiftResults, CompletionSink &sink,
SwiftCompletionInfo &info, const NameToPopularityMap *nameToPopularity,
const Options &options, Completion *prefix,
Optional<SemanticContextKind> overrideContext,
Optional<SemanticContextKind> overrideOperatorContext) {
ImportDepth depth;
if (info.swiftASTContext) {
// Build import depth map.
depth = ImportDepth(*info.swiftASTContext, *info.invocation);
}
if (info.completionContext)
sink.adoptSwiftSink(info.completionContext->getResultSink());
std::vector<Completion *> results;
for (auto *result : swiftResults) {
CompletionBuilder builder(sink, *result);
if (result->getSemanticContext() == SemanticContextKind::OtherModule) {
builder.setModuleImportDepth(depth.lookup(result->getModuleName()));
if (info.completionContext->HasExpectedTypeRelation &&
result->getKind() == Completion::Declaration) {
// FIXME: because other-module results are cached, they will not be
// given a type-relation of invalid. As a hack, we look at the text of
// the result type and look for 'Void'.
for (auto &chunk : result->getCompletionString()->getChunks()) {
using ChunkKind = ide::CodeCompletionString::Chunk::ChunkKind;
if (chunk.is(ChunkKind::TypeAnnotation) && chunk.hasText() &&
chunk.getText() == "Void") {
builder.setNotRecommended(Completion::TypeMismatch);
}
}
}
}
if (prefix) {
builder.setPrefix(prefix->getCompletionString());
builder.setSemanticContext(prefix->getSemanticContext());
}
if (overrideOperatorContext && result->isOperator()) {
builder.setSemanticContext(*overrideOperatorContext);
} else if (overrideContext) {
builder.setSemanticContext(*overrideContext);
}
// If this result is not from the current module, try to get a popularity
// score for it.
if (nameToPopularity) {
builder.setPopularityFactor(
nameToPopularity->lookup(builder.getOriginalName()));
}
results.push_back(builder.finish());
}
return results;
}
static StringRef copyString(llvm::BumpPtrAllocator &allocator, StringRef str);
bool SourceKit::CodeCompletion::addCustomCompletions(
CompletionSink &sink, std::vector<Completion *> &completions,
ArrayRef<CustomCompletionInfo> customCompletions,
CompletionKind completionKind) {
auto addCompletion = [&](CustomCompletionInfo customCompletion) {
using Chunk = CodeCompletionString::Chunk;
auto nameCopy = copyString(sink.allocator, customCompletion.Name);
auto chunk = Chunk::createWithText(Chunk::ChunkKind::Text, 0, nameCopy);
auto *completionString =
CodeCompletionString::create(sink.allocator, chunk);
CodeCompletion::SwiftResult swiftResult(
CodeCompletion::SwiftResult::ResultKind::Pattern,
SemanticContextKind::ExpressionSpecific,
/*NumBytesToErase=*/0, completionString);
CompletionBuilder builder(sink, swiftResult);
builder.setCustomKind(customCompletion.Kind);
completions.push_back(builder.finish());
};
bool changed = false;
for (auto &custom : customCompletions) {
switch (completionKind) {
case CompletionKind::StmtOrExpr:
if (custom.Contexts.contains(CustomCompletionInfo::Stmt)) {
changed = true;
addCompletion(custom);
}
break;
case CompletionKind::PostfixExprBeginning:
case CompletionKind::AssignmentRHS:
case CompletionKind::CallArg:
case CompletionKind::ReturnStmtExpr:
case CompletionKind::YieldStmtExpr:
if (custom.Contexts.contains(CustomCompletionInfo::Expr)) {
changed = true;
addCompletion(custom);
}
break;
case CompletionKind::ForEachSequence:
if (custom.Contexts.contains(CustomCompletionInfo::ForEachSequence)) {
changed = true;
addCompletion(custom);
}
break;
case CompletionKind::TypeSimpleBeginning:
if (custom.Contexts.contains(CustomCompletionInfo::Type)) {
changed = true;
addCompletion(custom);
}
break;
default:
break;
}
}
return changed;
}
//===----------------------------------------------------------------------===//
// CodeCompletionOrganizer::Impl declaration
//===----------------------------------------------------------------------===//
class CodeCompletionOrganizer::Impl {
std::unique_ptr<Group> rootGroup;
CompletionKind completionKind;
bool completionHasExpectedTypes;
void groupStemsRecursive(Group *group, bool recurseIntoNewGroups,
StringRef(getStem)(StringRef));
public:
Impl(CompletionKind kind, bool hasExpectedTypes);
void addCompletionsWithFilter(ArrayRef<Completion *> completions,
StringRef filterText, Options options,
const FilterRules &rules,
Completion *&exactMatch);
void sort(Options options);
void groupOverloads() {
groupStemsRecursive(
rootGroup.get(), /*recurseIntoNewGroups*/ false, [](StringRef name) {
auto endIdx = name.find_first_of("([");
if (endIdx == 0 && !name.empty())
return name.slice(0, 1); // [ => subscript, ( => initializer
return name.slice(0, endIdx);
});
}
void groupStems() {
groupStemsRecursive(rootGroup.get(), /*recurseIntoNewGroups*/ true,
[](StringRef name) {
unsigned i = 0;
while (i < name.size()) {
char c = name[i];
// FIXME: unicode
if (i > 0 && clang::isUppercase(c) &&
!clang::isUppercase(name[i - 1]))
break;
if (!clang::isAlphanumeric(c))
break;
++i;
}
if (i == 0 && !name.empty())
return name.slice(0, 1);
return name.slice(0, i);
});
}
CodeCompletionViewRef takeView() {
assert(rootGroup);
auto view = std::make_shared<CodeCompletionView>();
view->rootGroup = rootGroup.release(); // View takes ownership.
// Reset fields manually in case the move constructors don't.
rootGroup = nullptr;
return view;
}
};
//===----------------------------------------------------------------------===//
// CodeCompletionOrganizer implementation
//===----------------------------------------------------------------------===//
CodeCompletionOrganizer::CodeCompletionOrganizer(const Options &options,
CompletionKind kind,
bool hasExpectedTypes)
: impl(*new Impl(kind, hasExpectedTypes)), options(options) {}
CodeCompletionOrganizer::~CodeCompletionOrganizer() { delete &impl; }
void CodeCompletionOrganizer::preSortCompletions(
llvm::MutableArrayRef<Completion *> completions) {
// We do a case-sensitive sort here, then do a case-insensitive sort after any
// name-based grouping.
llvm::array_pod_sort(completions.begin(), completions.end(),
[](Completion *const *a, Completion *const *b) {
// Sort first by filter name (case-sensitive).
if (int primary = (*a)->getName().compare((*b)->getName()))
return primary;
// Next, sort by full description text.
return (*a)->getDescription().compare((*b)->getDescription());
});
}
void CodeCompletionOrganizer::addCompletionsWithFilter(
ArrayRef<Completion *> completions, StringRef filterText,
const FilterRules &rules, Completion *&exactMatch) {
impl.addCompletionsWithFilter(completions, filterText, options, rules,
exactMatch);
}
void CodeCompletionOrganizer::groupAndSort(const Options &options) {
if (options.groupStems)
impl.groupStems();
else if (options.groupOverloads)
impl.groupOverloads();
impl.sort(options);
}
CodeCompletionViewRef CodeCompletionOrganizer::takeResultsView() {
return impl.takeView();
}
//===----------------------------------------------------------------------===//
// ImportDepth
//===----------------------------------------------------------------------===//
ImportDepth::ImportDepth(ASTContext &context, CompilerInvocation &invocation) {
llvm::DenseSet<ModuleDecl *> seen;
std::deque<std::pair<ModuleDecl *, uint8_t>> worklist;
StringRef mainModule = invocation.getModuleName();
auto *main = context.getLoadedModule(context.getIdentifier(mainModule));
assert(main && "missing main module");
worklist.emplace_back(main, uint8_t(0));
// Imports from -import-name such as Playground auxiliary sources are treated
// specially by applying import depth 0.
llvm::StringSet<> auxImports;
for (StringRef moduleName :
invocation.getFrontendOptions().ImplicitImportModuleNames)
auxImports.insert(moduleName);
// Private imports from this module.
// FIXME: only the private imports from the current source file.
ModuleDecl::ImportFilter importFilter;
importFilter |= ModuleDecl::ImportFilterKind::Private;
importFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
SmallVector<ModuleDecl::ImportedModule, 16> mainImports;
main->getImportedModules(mainImports, importFilter);
for (auto &import : mainImports) {
uint8_t depth = 1;
if (auxImports.count(import.second->getName().str()))
depth = 0;
worklist.emplace_back(import.second, depth);
}
// Fill depths with BFS over module imports.
while (!worklist.empty()) {
ModuleDecl *module;
uint8_t depth;
std::tie(module, depth) = worklist.front();
worklist.pop_front();
if (!seen.insert(module).second)
continue;
// Insert new module:depth mapping.
const clang::Module *CM = module->findUnderlyingClangModule();
if (CM) {
depths[CM->getFullModuleName()] = depth;
} else {
depths[module->getName().str()] = depth;
}
// Add imports to the worklist.
SmallVector<ModuleDecl::ImportedModule, 16> imports;
module->getImportedModules(imports);
for (auto &import : imports) {
uint8_t next = std::max(depth, uint8_t(depth + 1)); // unsigned wrap
// Implicitly imported sub-modules get the same depth as their parent.
if (const clang::Module *CMI = import.second->findUnderlyingClangModule())
if (CM && CMI->isSubModuleOf(CM))
next = depth;
worklist.emplace_back(import.second, next);
}
}
}
//===----------------------------------------------------------------------===//
// CodeCompletionOrganizer::Impl utilities
//===----------------------------------------------------------------------===//
static StringRef copyString(llvm::BumpPtrAllocator &allocator, StringRef str) {
char *newStr = allocator.Allocate<char>(str.size());
std::copy(str.begin(), str.end(), newStr);
return StringRef(newStr, str.size());
}
static std::unique_ptr<Group> make_group(StringRef name) {
auto g = llvm::make_unique<Group>();
g->name = name;
g->description = name;
return g;
}
static std::unique_ptr<Result> make_result(Completion *result) {
auto r = llvm::make_unique<Result>(result);
r->name = result->getName();
r->description = result->getDescription();
return r;
}
//===----------------------------------------------------------------------===//
// CodeCompletionOrganizer::Impl implementation
//===----------------------------------------------------------------------===//
CodeCompletionOrganizer::Impl::Impl(CompletionKind kind, bool hasExpectedTypes)
: completionKind(kind), completionHasExpectedTypes(hasExpectedTypes) {
assert(!rootGroup && "initialized twice");
rootGroup = make_group("");
}
static bool matchesExpectedStyle(Completion *completion, NameStyle style) {
switch (completion->getAssociatedDeclKind()) {
case CodeCompletionDeclKind::Class:
case CodeCompletionDeclKind::Struct:
case CodeCompletionDeclKind::Enum:
case CodeCompletionDeclKind::Protocol:
case CodeCompletionDeclKind::TypeAlias:
case CodeCompletionDeclKind::AssociatedType:
return style.possiblyUpperCamelCase();
case CodeCompletionDeclKind::StaticMethod:
case CodeCompletionDeclKind::InstanceMethod:
case CodeCompletionDeclKind::FreeFunction:
case CodeCompletionDeclKind::StaticVar:
case CodeCompletionDeclKind::InstanceVar:
case CodeCompletionDeclKind::LocalVar:
case CodeCompletionDeclKind::GlobalVar:
return style.possiblyLowerCamelCase();
default:
return true; // Conservatively say yes.
}
}
static bool isHighPriorityKeyword(CodeCompletionKeywordKind kind) {
switch (kind) {
case CodeCompletionKeywordKind::kw_let:
case CodeCompletionKeywordKind::kw_var:
case CodeCompletionKeywordKind::kw_if:
case CodeCompletionKeywordKind::kw_for:
case CodeCompletionKeywordKind::kw_while:
case CodeCompletionKeywordKind::kw_return:
case CodeCompletionKeywordKind::kw_func:
return true;
default:
return false;
}
}
bool FilterRules::hideFilterName(StringRef name) const {
auto I = hideByFilterName.find(name);
if (I != hideByFilterName.end())
return I->getValue();
return hideAll;
}
bool FilterRules::hideCompletion(Completion *completion) const {
return hideCompletion(completion, completion->getName(),
completion->getDescription(),
completion->getCustomKind());
}
bool FilterRules::hideCompletion(SwiftResult *completion, StringRef filterName,
StringRef description,
void *customKind) const {
if (!description.empty()) {
auto I = hideByDescription.find(description);
if (I != hideByDescription.end())
return I->getValue();
}
if (!filterName.empty()) {
auto I = hideByFilterName.find(filterName);
if (I != hideByFilterName.end())
return I->getValue();
}
switch (completion->getKind()) {
case Completion::BuiltinOperator:
case Completion::Declaration:
break;
case Completion::Keyword: {
auto I = hideKeyword.find(completion->getKeywordKind());
if (I != hideKeyword.end())
return I->second;
if (hideAllKeywords)
return true;
break;
}
case Completion::Pattern: {
if (customKind) {
// FIXME: individual custom completions
if (hideCustomCompletions)
return true;
}
break;
}
case Completion::Literal: {
auto I = hideValueLiteral.find(completion->getLiteralKind());
if (I != hideValueLiteral.end())
return I->second;
if (hideAllValueLiterals)
return true;
break;
}
}
if (!completion->getModuleName().empty()) {
// FIXME: try each submodule chain starting from the most specific.
auto M = hideModule.find(completion->getModuleName());
if (M != hideModule.end())
return M->getValue();
}
return hideAll;
}
void CodeCompletionOrganizer::Impl::addCompletionsWithFilter(
ArrayRef<Completion *> completions, StringRef filterText, Options options,
const FilterRules &rules, Completion *&exactMatch) {
assert(rootGroup);
auto &contents = rootGroup->contents;
// If we have no filter text, add all non-hidden results.
if (filterText.empty()) {
bool hideLowPriority =
options.hideLowPriority &&
completionKind != CompletionKind::TypeSimpleBeginning &&
completionKind != CompletionKind::PostfixExpr;
for (Completion *completion : completions) {
if (rules.hideCompletion(completion))
continue;
if (options.hideLowPriority && completion->isNotRecommended())
continue;
NameStyle style(completion->getName());
bool hideUnderscore = options.hideUnderscores && style.leadingUnderscores;
if (hideUnderscore && options.reallyHideAllUnderscores)
continue;
bool hideByNameStyle = options.hideByNameStyle &&
completion->getKind() == Completion::Declaration &&
!matchesExpectedStyle(completion, style);
hideByNameStyle |= hideUnderscore;
switch (completion->getSemanticContext()) {
case SemanticContextKind::Super:
case SemanticContextKind::OutsideNominal:
if (hideUnderscore)
continue;
break;
case SemanticContextKind::OtherModule:
case SemanticContextKind::None:
if (auto depth = completion->getModuleImportDepth()) {
if (*depth == 0) // Treat as if it's "thismodule"
break;
}
if (completion->getExpectedTypeRelation() >= Completion::Convertible ||
(completion->getKind() == Completion::Literal &&
completionKind != CompletionKind::StmtOrExpr &&
!completionHasExpectedTypes))
break;
if (completion->getKind() == Completion::Keyword &&
completionKind == CompletionKind::StmtOrExpr &&
isHighPriorityKeyword(completion->getKeywordKind()))
break;
if (hideByNameStyle || hideLowPriority)
continue;
break;
default:
break;
}
// Build wrapper and add to results.
contents.push_back(make_result(completion));
}
return;
}
FuzzyStringMatcher pattern(filterText);
pattern.normalize = true;
for (Completion *completion : completions) {
if (rules.hideCompletion(completion))
continue;
// Hide literals other than the ones that are also keywords if they don't
// match the expected types.
if (completion->getKind() == Completion::Literal &&
completionHasExpectedTypes &&
completion->getExpectedTypeRelation() < Completion::Convertible &&
completion->getLiteralKind() !=
CodeCompletionLiteralKind::BooleanLiteral &&
completion->getLiteralKind() != CodeCompletionLiteralKind::NilLiteral)
continue;
bool match = false;
if (options.fuzzyMatching && filterText.size() >= options.minFuzzyLength) {
match = pattern.matchesCandidate(completion->getName());
} else {
match = completion->getName().startswith_lower(filterText);
}
bool isExactMatch = match && completion->getName().equals_lower(filterText);
if (isExactMatch) {
if (!exactMatch) { // first match
exactMatch = completion;
} else if (completion->getName() != exactMatch->getName()) {
if (completion->getName() == filterText && // first case-sensitive match
exactMatch->getName() != filterText)
exactMatch = completion;
else if (pattern.scoreCandidate(completion->getName()) > // better match
pattern.scoreCandidate(exactMatch->getName()))
exactMatch = completion;
}
match = (options.addInnerResults || options.addInnerOperators)
? options.includeExactMatch
: true;
}
// Build wrapper and add to results.
if (match) {
auto wrapper = make_result(completion);
if (options.fuzzyMatching) {
wrapper->matchScore = pattern.scoreCandidate(completion->getName());
}
wrapper->isExactMatch = isExactMatch;
contents.push_back(std::move(wrapper));
}
}
}
static double getSemanticContextScore(bool useImportDepth,
Completion *completion) {
double order = -1.0;
switch (completion->getSemanticContext()) {
case SemanticContextKind::ExpressionSpecific: order = 0; break;
case SemanticContextKind::Local: order = 1; break;
case SemanticContextKind::CurrentNominal: order = 2; break;
case SemanticContextKind::Super: order = 3; break;
case SemanticContextKind::OutsideNominal: order = 4; break;
case SemanticContextKind::CurrentModule: order = 5; break;
case SemanticContextKind::OtherModule: {
unsigned depth = Completion::maxModuleImportDepth + 1; // unknown > known
if (useImportDepth && completion->getModuleImportDepth())
depth = *completion->getModuleImportDepth();
// We treat depth == 0 the same as CurrentModule.
// Note: there is a gap in between that we use for keywords.
order = (depth == 0) ? 5.0 : 6.0; // Base value.
order += double(depth) / (Completion::maxModuleImportDepth + 1);
assert((depth == 0 && order == 5.0) ||
(depth && 6.0 <= order && order <= 7.0));
break;
}
case SemanticContextKind::None: {
order = completion->getKind() == Completion::Keyword ? 5.5 : 8.0;
break;
}
}
assert(0.0 <= order && order <= 8.0);
return (8.0 - order) / 8.0;
}
static double combinedScore(const Options &options, double matchScore,
Completion *completion) {
double score = matchScore * options.fuzzyMatchWeight;
score += getSemanticContextScore(options.useImportDepth, completion) *
options.semanticContextWeight;
PopularityFactor popularity = completion->getPopularityFactor();
if (popularity.isPopular())
score += popularity.rawValue + options.popularityBonus;
else if (popularity.isUnpopular())
score += popularity.rawValue - options.popularityBonus;
return score;
}
static int compareResultName(Item &a, Item &b) {
// Sort first by filter name (case-insensitive).
if (int primary = StringRef(a.name).compare_lower(b.name))
return primary;
// Next, sort by full description text.
return a.description.compare(b.description);
};
namespace {
enum class ResultBucket {
NotRecommended,
Normal,
Literal,
NormalTypeMatch,
LiteralTypeMatch,
HighPriorityKeyword,
Operator,
ExpressionSpecific,
ExactMatch,
};
} // end anonymous namespace
static ResultBucket getResultBucket(Item &item, bool hasExpectedTypes,
bool skipMetaGroups = false) {
if (item.isExactMatch && !skipMetaGroups)
return ResultBucket::ExactMatch;
if (isa<Group>(item))
return ResultBucket::Normal; // FIXME: take best contained result.
auto *completion = cast<Result>(item).value;
if (completion->isNotRecommended() && !skipMetaGroups)
return ResultBucket::NotRecommended;
if (completion->getSemanticContext() ==
SemanticContextKind::ExpressionSpecific &&
!skipMetaGroups)
return ResultBucket::ExpressionSpecific;
if (completion->isOperator())
return ResultBucket::Operator;
bool matchesType =
completion->getExpectedTypeRelation() >= Completion::Convertible;
switch (completion->getKind()) {
case Completion::Literal:
if (matchesType) {
return ResultBucket::LiteralTypeMatch;
} else if (!hasExpectedTypes) {
return ResultBucket::Literal;
} else {
// When we have type context, we still show literals that are keywords,
// but we treat them as keywords instead of literals for prioritization.
return ResultBucket::Normal;
}
case Completion::Keyword:
return isHighPriorityKeyword(completion->getKeywordKind())
? ResultBucket::HighPriorityKeyword
: ResultBucket::Normal;
case Completion::Pattern:
case Completion::Declaration:
return matchesType ? ResultBucket::NormalTypeMatch : ResultBucket::Normal;
case Completion::BuiltinOperator:
llvm_unreachable("operators should be handled above");
}
}
static int compareHighPriorityKeywords(Item &a_, Item &b_) {
static CodeCompletionKeywordKind order[] = {
CodeCompletionKeywordKind::kw_let,
CodeCompletionKeywordKind::kw_var,
CodeCompletionKeywordKind::kw_if,
CodeCompletionKeywordKind::kw_for,
CodeCompletionKeywordKind::kw_while,
CodeCompletionKeywordKind::kw_return,
CodeCompletionKeywordKind::kw_func,
};
auto size = sizeof(order) / sizeof(order[0]);
auto getIndex = [=](Item &item) {
auto I = std::find(order, &order[size], cast<Result>(item).value->getKeywordKind());
assert(I != &order[size]);
return std::distance(order, I);
};
auto a = getIndex(a_);
auto b = getIndex(b_);
return a < b ? -1 : (b < a ? 1 : 0);
}
static int compareLiterals(Item &a_, Item &b_) {
static CodeCompletionLiteralKind order[] = {
CodeCompletionLiteralKind::IntegerLiteral,
CodeCompletionLiteralKind::StringLiteral,
CodeCompletionLiteralKind::BooleanLiteral,
CodeCompletionLiteralKind::ColorLiteral,
CodeCompletionLiteralKind::ImageLiteral,
CodeCompletionLiteralKind::ArrayLiteral,
CodeCompletionLiteralKind::DictionaryLiteral,
CodeCompletionLiteralKind::Tuple,
CodeCompletionLiteralKind::NilLiteral,
};
auto size = sizeof(order) / sizeof(order[0]);
auto getIndex = [=](Item &item) {
auto I = std::find(order, &order[size], cast<Result>(item).value->getLiteralKind());
assert(I != &order[size]);
return std::distance(order, I);
};
auto a = getIndex(a_);
auto b = getIndex(b_);
if (a != b)
return a < b ? -1 : 1;
// Sort true before false instead of alphabetically.
if (cast<Result>(a_).value->getLiteralKind() == CodeCompletionLiteralKind::BooleanLiteral)
return a_.name > b_.name;
return 0;
}
static int compareOperators(Item &a_, Item &b_) {
using CCOK = CodeCompletionOperatorKind;
static CCOK order[] = {
CCOK::Dot, // .
CCOK::QuestionDot, // ?.
CCOK::Bang, // !
CCOK::LParen, // ( -- not really an operator, but treated as one in some
// cases.
CCOK::Eq, // =
CCOK::EqEq, // ==
CCOK::NotEq, // !=
CCOK::Less, // <
CCOK::Greater, // >
CCOK::LessEq, // <=
CCOK::GreaterEq, // >=
CCOK::Plus, // +
CCOK::Minus, // -
CCOK::Star, // *
CCOK::Slash, // /
CCOK::Modulo, // %
CCOK::PlusEq, // +=
CCOK::MinusEq, // -=
CCOK::StarEq, // *=
CCOK::SlashEq, // /=
CCOK::ModuloEq, // %=
CCOK::AmpAmp, // &&
CCOK::PipePipe, // ||
CCOK::Unknown,
CCOK::Amp, // &
CCOK::Pipe, // |
CCOK::Caret, // ^
CCOK::LessLess, // <<
CCOK::GreaterGreater, // >>
CCOK::AmpEq, // &=
CCOK::PipeEq, // |=
CCOK::CaretEq, // ^=
CCOK::LessLessEq, // <<=
CCOK::GreaterGreaterEq, // >>=
// Range
CCOK::DotDotDot, // ...
CCOK::DotDotLess, // ..<
CCOK::AmpStar, // &*
CCOK::AmpPlus, // &+
CCOK::AmpMinus, // &-
// Misc.
CCOK::EqEqEq, // ===
CCOK::NotEqEq, // !==
CCOK::TildeEq, // ~=
};
auto size = sizeof(order) / sizeof(order[0]);
auto getIndex = [=](Item &item) {
auto I = std::find(order, &order[size],
cast<Result>(item).value->getOperatorKind());
assert(I != &order[size]);
return std::distance(order, I);
};
auto a = getIndex(a_);
auto b = getIndex(b_);
return a < b ? -1 : (b < a ? 1 : 0);
}
static bool isTopNonLiteralResult(Item &item, ResultBucket literalBucket) {
if (isa<Group>(item))
return true; // FIXME: should have a semantic context for groups.
auto *completion = cast<Result>(item).value;
switch (literalBucket) {
case ResultBucket::Literal:
return completion->getSemanticContext() <=
SemanticContextKind::CurrentNominal;
case ResultBucket::LiteralTypeMatch:
return completion->getExpectedTypeRelation() >= Completion::Convertible;
default:
llvm_unreachable("invalid literal bucket");
}
}
static void sortTopN(const Options &options, Group *group,
bool hasExpectedTypes) {
auto &contents = group->contents;
if (contents.empty() || options.showTopNonLiteralResults == 0)
return;
auto best = getResultBucket(*contents[0], hasExpectedTypes);
if (best == ResultBucket::LiteralTypeMatch || best == ResultBucket::Literal) {
unsigned beginNewIndex = 0;
unsigned endNewIndex = 0;
for (unsigned i = 1; i < contents.size(); ++i) {
auto bucket = getResultBucket(*contents[i], hasExpectedTypes);
if (bucket < best) {
// This algorithm assumes we don't have both literal and
// literal-type-match at the start of the list.
assert(bucket != ResultBucket::Literal);
if (isTopNonLiteralResult(*contents[i], best)) {
beginNewIndex = i;
endNewIndex = beginNewIndex + 1;
for (; endNewIndex < contents.size() &&
endNewIndex < beginNewIndex + options.showTopNonLiteralResults;
++endNewIndex) {
if (!isTopNonLiteralResult(*contents[endNewIndex], best))
break;
}
}
break;
}
}
if (!beginNewIndex)
return;
assert(endNewIndex > beginNewIndex && endNewIndex <= contents.size());
// Temporarily copy the first result to temporary storage.
SmallVector<Item *, 16> firstResults;
for (unsigned i = 0; i < endNewIndex; ++i) {
firstResults.push_back(contents[i].release());
}
// Swap the literals with the next few results.
for (unsigned ci = 0, i = beginNewIndex; i < endNewIndex; ++i, ++ci) {
assert(ci < contents.size() && !contents[ci]);
contents[ci] = std::unique_ptr<Item>(firstResults[i]);
}
unsigned topN = endNewIndex - beginNewIndex;
assert(topN <= options.showTopNonLiteralResults);
for (unsigned ci = topN, i = 0; i < beginNewIndex; ++i, ++ci) {
assert(ci < contents.size() && !contents[ci]);
contents[ci] = std::unique_ptr<Item>(firstResults[i]);
}
}
}
static void sortRecursive(const Options &options, Group *group,
bool hasExpectedTypes) {
// Sort all of the subgroups first, and fill in the bucket for each result.
auto &contents = group->contents;
double best = -1.0;
for (auto &item : contents) {
if (auto *g = dyn_cast<Group>(item.get())) {
sortRecursive(options, g, hasExpectedTypes);
} else {
Result *r = cast<Result>(item.get());
item->finalScore = combinedScore(options, item->matchScore, r->value);
}
if (item->finalScore > best)
best = item->finalScore;
}
group->finalScore = best;
// Now sort the group itself.
if (options.sortByName) {
llvm::array_pod_sort(contents.begin(), contents.end(),
[](const std::unique_ptr<Item> *a, const std::unique_ptr<Item> *b) {
return compareResultName(**a, **b);
});
return;
}
std::sort(contents.begin(), contents.end(), [=](const std::unique_ptr<Item> &a_, const std::unique_ptr<Item> &b_) {
Item &a = *a_;
Item &b = *b_;
auto bucketA = getResultBucket(a, hasExpectedTypes);
auto bucketB = getResultBucket(b, hasExpectedTypes);
if (bucketA < bucketB)
return false;
else if (bucketB < bucketA)
return true;
// Try again, skipping any meta groups like "expr-specific" in case that
// lets us order
if (bucketA == ResultBucket::ExactMatch ||
bucketA == ResultBucket::ExpressionSpecific ||
bucketA == ResultBucket::NotRecommended) {
bucketA = getResultBucket(a, hasExpectedTypes, /*skipMetaGroups*/ true);
bucketB = getResultBucket(b, hasExpectedTypes, /*skipMetaGroups*/ true);
if (bucketA < bucketB)
return false;
else if (bucketB < bucketA)
return true;
}
// Special internal orderings.
switch (bucketA) {
case ResultBucket::HighPriorityKeyword:
return compareHighPriorityKeywords(a, b) < 0;
case ResultBucket::Literal:
case ResultBucket::LiteralTypeMatch:
return compareLiterals(a, b) < 0;
case ResultBucket::Operator: {
int cmp = compareOperators(a, b);
if (cmp != 0)
return cmp < 0;
break;
}
default:
break;
}
// "Normal" order.
if (a.finalScore < b.finalScore)
return false;
else if (b.finalScore < a.finalScore)
return true;
return compareResultName(a, b) < 0;
});
}
void CodeCompletionOrganizer::Impl::sort(Options options) {
sortRecursive(options, rootGroup.get(), completionHasExpectedTypes);
if (options.showTopNonLiteralResults != 0)
sortTopN(options, rootGroup.get(), completionHasExpectedTypes);
}
void CodeCompletionOrganizer::Impl::groupStemsRecursive(
Group *group, bool recurseIntoNewGroups, StringRef(getStem)(StringRef)) {
std::vector<std::unique_ptr<Item>> newContents;
std::vector<std::unique_ptr<Item>> &worklist = group->contents;
auto getSubStem = [getStem](StringRef name, StringRef groupName) {
StringRef subName = name.slice(groupName.size(), StringRef::npos);
return getStem(subName);
};
if (worklist.empty())
return;
auto start = worklist.begin();
while (start != worklist.end()) {
if (auto *g = dyn_cast<Group>(start->get())) {
groupStemsRecursive(g, recurseIntoNewGroups, getStem);
newContents.push_back(std::move(*start));
++start;
continue;
}
StringRef stem = getSubStem((*start)->name, group->name);
auto end = start;
auto next = ++end;
while (end != worklist.end() && !stem.empty() &&
stem == getSubStem((*end)->name, group->name))
++end;
if (end == next) {
// Only one element; don't group.
newContents.push_back(std::move(*start));
start = end; // == next == ++start
} else if (end == worklist.end() && newContents.empty()) {
// Only one group; inline it.
// FIXME: this is wrong, we should try to sub-group.
assert(start == worklist.begin());
std::swap(newContents, worklist);
break;
} else {
std::string name = (Twine(group->name) + stem).str();
if (recurseIntoNewGroups) {
while (true) {
StringRef next = getSubStem((*start)->name, name);
if (next.empty())
break;
auto I = start; ++I;
for ( ; I != end; ++I)
if (next != getSubStem((*I)->name, name))
goto done;
name += next;
}
done:
; // exit label
}
auto newGroup = make_group(name);
for (; start != end; ++start)
newGroup->contents.push_back(std::move(*start));
if (recurseIntoNewGroups)
groupStemsRecursive(newGroup.get(), recurseIntoNewGroups, getStem);
newContents.push_back(std::move(newGroup));
}
}
group->contents = std::move(newContents);
}
//===----------------------------------------------------------------------===//
// CodeCompletionView
//===----------------------------------------------------------------------===//
static bool walkRecursive(CodeCompletionView::Walker &walker, const Item *item) {
if (auto *result = dyn_cast<Result>(item))
return walker.handleResult(result->value);
walker.startGroup(item->name);
for (auto &child : cast<Group>(item)->contents) {
if (!walkRecursive(walker, child.get()))
return false;
}
walker.endGroup();
return true;
}
bool CodeCompletionView::walk(CodeCompletionView::Walker &walker) const {
assert(rootGroup);
return walkRecursive(walker, rootGroup);
}
CodeCompletionView::~CodeCompletionView() { delete rootGroup; }
unsigned LimitedResultView::getNextOffset() const { return start; }
bool LimitedResultView::walk(CodeCompletionView::Walker &walker) const {
const Group *root = baseView.rootGroup;
walker.startGroup(root->name);
auto begin = root->contents.begin();
auto end = root->contents.end();
unsigned count = 0;
while (count < start && begin != end) {
++count;
++begin;
}
while (begin != end && (maxResults == 0 || count < start + maxResults)) {
if (!walkRecursive(walker, begin->get()))
return false;
++count;
++begin;
}
if (begin == end) {
assert(maxResults == 0 || count <= start + maxResults);
start = 0;
} else {
start = count;
}
walker.endGroup();
return true;
}
//===----------------------------------------------------------------------===//
// CompletionBuilder
//===----------------------------------------------------------------------===//
void CompletionBuilder::getFilterName(CodeCompletionString *str,
raw_ostream &OS) {
using ChunkKind = CodeCompletionString::Chunk::ChunkKind;
// FIXME: we need a more uniform way to handle operator completions.
if (str->getChunks().size() == 1 && str->getChunks()[0].is(ChunkKind::Dot)) {
OS << ".";
return;
} else if (str->getChunks().size() == 2 &&
str->getChunks()[0].is(ChunkKind::QuestionMark) &&
str->getChunks()[1].is(ChunkKind::Dot)) {
OS << "?.";
return;
}
auto FirstTextChunk = str->getFirstTextChunkIndex();
if (FirstTextChunk.hasValue()) {
for (auto C : str->getChunks().slice(*FirstTextChunk)) {
if (C.is(ChunkKind::BraceStmtWithCursor))
break; // Don't include brace-stmt in filter name.
if (C.is(ChunkKind::Equal)) {
OS << C.getText();
break;
}
bool shouldPrint = !C.isAnnotation();
switch (C.getKind()) {
case ChunkKind::TypeAnnotation:
case ChunkKind::CallParameterInternalName:
case ChunkKind::CallParameterClosureType:
case ChunkKind::CallParameterType:
case ChunkKind::DeclAttrParamColon:
case ChunkKind::Comma:
case ChunkKind::Whitespace:
case ChunkKind::Ellipsis:
case ChunkKind::Ampersand:
case ChunkKind::OptionalMethodCallTail:
continue;
case ChunkKind::CallParameterColon:
// Since we don't add the type, also don't add the space after ':'.
if (shouldPrint)
OS << ":";
continue;
default:
break;
}
if (C.hasText() && shouldPrint)
OS << C.getText();
}
}
}
void CompletionBuilder::getDescription(SwiftResult *result, raw_ostream &OS,
bool leadingPunctuation) {
auto str = result->getCompletionString();
bool isOperator = result->isOperator();
auto FirstTextChunk = str->getFirstTextChunkIndex(leadingPunctuation);
int TextSize = 0;
if (FirstTextChunk.hasValue()) {
for (auto C : str->getChunks().slice(*FirstTextChunk)) {
using ChunkKind = CodeCompletionString::Chunk::ChunkKind;
// FIXME: we need a more uniform way to handle operator completions.
if (C.is(ChunkKind::Equal))
isOperator = true;
if (C.is(ChunkKind::TypeAnnotation) ||
C.is(ChunkKind::CallParameterClosureType) ||
C.is(ChunkKind::Whitespace))
continue;
if (isOperator && C.is(ChunkKind::CallParameterType))
continue;
if (C.hasText()) {
TextSize += C.getText().size();
OS << C.getText();
}
}
}
assert((TextSize > 0) &&
"code completion result should have non-empty description!");
}
CompletionBuilder::CompletionBuilder(CompletionSink &sink, SwiftResult &base)
: sink(sink), current(base) {
isNotRecommended = current.isNotRecommended();
notRecommendedReason = current.getNotRecommendedReason();
semanticContext = current.getSemanticContext();
completionString =
const_cast<CodeCompletionString *>(current.getCompletionString());
// FIXME: this works around the fact we're producing invalid completion
// strings for our inner "." result.
if (current.getCompletionString()->getFirstTextChunkIndex().hasValue()) {
llvm::raw_svector_ostream OSS(originalName);
getFilterName(current.getCompletionString(), OSS);
}
}
void CompletionBuilder::setPrefix(CodeCompletionString *prefix) {
if (!prefix)
return;
modified = true;
// The underlying text is kept alive by an CompletionSink. The chunks
// themselves get copied into the CodeCompletionString.
std::vector<CodeCompletionString::Chunk> chunks;
chunks.reserve(prefix->getChunks().size());
for (auto chunk : prefix->getChunks()) {
if (chunk.is(CodeCompletionString::Chunk::ChunkKind::TypeAnnotation))
continue; // The type is the type of the actual result, not the prefix.
chunks.push_back(chunk);
}
auto existing = current.getCompletionString()->getChunks();
chunks.insert(chunks.end(), existing.begin(), existing.end());
completionString = CodeCompletionString::create(sink.allocator, chunks);
}
Completion *CompletionBuilder::finish() {
SwiftResult base = current;
llvm::SmallString<64> nameStorage;
StringRef name = getOriginalName();
if (modified) {
// We've modified the original result, so build a new one.
auto opKind = CodeCompletionOperatorKind::None;
if (current.isOperator())
opKind = current.getOperatorKind();
if (current.getKind() == SwiftResult::Declaration) {
base = SwiftResult(
semanticContext, current.getNumBytesToErase(), completionString,
current.getAssociatedDeclKind(), current.getModuleName(),
isNotRecommended, notRecommendedReason, current.getBriefDocComment(),
current.getAssociatedUSRs(), current.getDeclKeywords(), opKind);
} else {
base = SwiftResult(current.getKind(), semanticContext,
current.getNumBytesToErase(), completionString,
current.getExpectedTypeRelation(), opKind);
}
llvm::raw_svector_ostream OSS(nameStorage);
getFilterName(base.getCompletionString(), OSS);
name = OSS.str();
}
llvm::SmallString<64> description;
{
llvm::raw_svector_ostream OSS(description);
getDescription(&base, OSS, /*leadingPunctuation*/ true);
}
auto *result = new (sink.allocator)
Completion(std::move(base), copyString(sink.allocator, name),
copyString(sink.allocator, description));
result->moduleImportDepth = moduleImportDepth;
result->popularityFactor = popularityFactor;
result->opaqueCustomKind = customKind;
return result;
}
//===----------------------------------------------------------------------===//
// NameStyle
//===----------------------------------------------------------------------===//
NameStyle::NameStyle(StringRef name)
: leadingUnderscores(0), trailingUnderscores(0) {
// Trim leading and trailing underscores.
StringRef center = name.ltrim("_");
if (center == "")
return;
leadingUnderscores = name.size() - center.size();
center = center.rtrim("_");
assert(!center.empty());
trailingUnderscores = name.size() - center.size() - leadingUnderscores;
unsigned pos = 0;
enum Case {
None = 0,
Lower,
Upper,
};
auto caseOf = [](char c) {
if (clang::isLowercase(c))
return Lower;
if (clang::isUppercase(c))
return Upper;
return None;
};
unsigned underscores = 0;
unsigned caseCount[3] = {0, 0, 0};
Case leadingCase = None;
for (; pos < center.size(); ++pos) {
char c = center[pos];
Case curCase = caseOf(c);
if (!leadingCase)
leadingCase = curCase;
underscores += (c == '_');
caseCount[curCase] += 1;
}
assert(caseCount[leadingCase] > 0);
if (caseCount[Lower] && !caseCount[Upper]) {
wordDelimiter = underscores ? LowercaseWithUnderscores : Lowercase;
return;
}
if (caseCount[Upper] && !caseCount[Lower]) {
wordDelimiter = underscores ? UppercaseWithUnderscores : Uppercase;
return;
}
if (leadingCase && !underscores) {
wordDelimiter = leadingCase == Lower ? LowerCamelCase : UpperCamelCase;
return;
}
// FIXME: should we try to choose a delimiter if there is more than one?
wordDelimiter = Unknown;
}