mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
2776 lines
90 KiB
C++
2776 lines
90 KiB
C++
//===--- CSDiag.cpp - Constraint Diagnostics ------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements diagnostics for the type checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintSystem.h"
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
void Failure::dump(SourceManager *sm) const {
|
|
dump(sm, llvm::errs());
|
|
}
|
|
|
|
void Failure::dump(SourceManager *sm, raw_ostream &out) const {
|
|
out << "(";
|
|
if (locator) {
|
|
out << "@";
|
|
locator->dump(sm, out);
|
|
out << ": ";
|
|
}
|
|
|
|
switch (getKind()) {
|
|
case DoesNotConformToProtocol:
|
|
out << getFirstType().getString() << " does not conform to "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case DoesNotHaveMember:
|
|
out << getFirstType().getString() << " does not have a member named '"
|
|
<< getName() << "'";
|
|
break;
|
|
|
|
case DoesNotHaveNonMutatingMember:
|
|
out << " immutable value of type " << getFirstType().getString()
|
|
<< " only has mutating members named '"
|
|
<< getName() << "'";
|
|
break;
|
|
|
|
case DoesNotHaveInitOnInstance:
|
|
out << getFirstType().getString() << " instance does not have initializers";
|
|
break;
|
|
|
|
case FunctionTypesMismatch:
|
|
out << "function type " << getFirstType().getString() << " is not equal to "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case FunctionAutoclosureMismatch:
|
|
out << "autoclosure mismatch " << getFirstType().getString() << " vs. "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case FunctionNoReturnMismatch:
|
|
out << "noreturn attribute mismatch " << getFirstType().getString()
|
|
<< " vs. " << getSecondType().getString();
|
|
break;
|
|
|
|
case FunctionNoEscapeMismatch:
|
|
out << "noescape attribute mismatch " << getFirstType().getString()
|
|
<< " vs. " << getSecondType().getString();
|
|
break;
|
|
|
|
case FunctionThrowsMismatch:
|
|
out << "function throws mismatch " << getFirstType().getString() << " vs. "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case IsNotMetatype:
|
|
out << getFirstType().getString() << " is not a metatype";
|
|
break;
|
|
|
|
case IsNotArchetype:
|
|
out << getFirstType().getString() << " is not an archetype";
|
|
break;
|
|
|
|
case IsNotClass:
|
|
out << getFirstType().getString() << " is not a class";
|
|
break;
|
|
|
|
case IsNotBridgedToObjectiveC:
|
|
out << getFirstType().getString() << "is not bridged to Objective-C";
|
|
break;
|
|
|
|
case IsNotDynamicLookup:
|
|
out << getFirstType().getString() << " is not a dynamic lookup value";
|
|
break;
|
|
|
|
case IsNotOptional:
|
|
out << getFirstType().getString() << "is not an optional type";
|
|
break;
|
|
|
|
case TupleNameMismatch:
|
|
case TupleNamePositionMismatch:
|
|
case TupleSizeMismatch:
|
|
case TupleVariadicMismatch:
|
|
case TupleUnused:
|
|
out << "mismatched tuple types " << getFirstType().getString() << " and "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case TypesNotConstructible:
|
|
out << getFirstType().getString() << " is not a constructible argument for "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case TypesNotConvertible:
|
|
out << getFirstType().getString() << " is not convertible to "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case TypesNotSubtypes:
|
|
out << getFirstType().getString() << " is not a subtype of "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case TypesNotEqual:
|
|
out << getFirstType().getString() << " is not equal to "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case IsForbiddenLValue:
|
|
out << "disallowed l-value binding of " << getFirstType().getString()
|
|
<< " and " << getSecondType().getString();
|
|
break;
|
|
|
|
case OutOfOrderArgument:
|
|
out << "out-of-order argument " << getValue() << " should come before "
|
|
<< getSecondValue();
|
|
break;
|
|
|
|
case MissingArgument:
|
|
out << "missing argument for parameter " << getValue();
|
|
break;
|
|
|
|
case ExtraArgument:
|
|
out << "extra argument " << getValue();
|
|
break;
|
|
|
|
case NoPublicInitializers:
|
|
out << getFirstType().getString()
|
|
<< " does not have any public initializers";
|
|
break;
|
|
|
|
case UnboundGenericParameter:
|
|
out << getFirstType().getString()
|
|
<< " is an unbound generic parameter";
|
|
break;
|
|
|
|
case IsNotSelfConforming:
|
|
out << getFirstType().getString()
|
|
<< " cannot be bound to protocol " << getSecondType().getString()
|
|
<< " because the protocol is not @objc or has static methods";
|
|
break;
|
|
|
|
case ExistentialIsNotObjC:
|
|
out << getFirstType().getString()
|
|
<< " cannot be bound to existential containing non-@objc protocol "
|
|
<< getSecondType().getString();
|
|
break;
|
|
|
|
case IsNotMaterializable:
|
|
out << getFirstType().getString() << " is not materializable";
|
|
break;
|
|
}
|
|
|
|
out << ")\n";
|
|
}
|
|
|
|
/// Given a subpath of an old locator, compute its summary flags.
|
|
static unsigned recomputeSummaryFlags(ConstraintLocator *oldLocator,
|
|
ArrayRef<LocatorPathElt> path) {
|
|
if (oldLocator->getSummaryFlags() != 0)
|
|
return ConstraintLocator::getSummaryFlagsForPath(path);
|
|
return 0;
|
|
}
|
|
|
|
ConstraintLocator *
|
|
constraints::simplifyLocator(ConstraintSystem &cs,
|
|
ConstraintLocator *locator,
|
|
SourceRange &range1,
|
|
SourceRange &range2,
|
|
ConstraintLocator **targetLocator) {
|
|
// Clear out the target locator result.
|
|
if (targetLocator)
|
|
*targetLocator = nullptr;
|
|
|
|
// The path to be tacked on to the target locator to identify the specific
|
|
// target.
|
|
Expr *targetAnchor;
|
|
SmallVector<LocatorPathElt, 4> targetPath;
|
|
|
|
auto path = locator->getPath();
|
|
auto anchor = locator->getAnchor();
|
|
simplifyLocator(anchor, path, targetAnchor, targetPath, range1, range2);
|
|
|
|
|
|
// If we have a target anchor, build and simplify the target locator.
|
|
if (targetLocator && targetAnchor) {
|
|
SourceRange targetRange1, targetRange2;
|
|
unsigned targetFlags = recomputeSummaryFlags(locator, targetPath);
|
|
*targetLocator = simplifyLocator(cs,
|
|
cs.getConstraintLocator(targetAnchor,
|
|
targetPath,
|
|
targetFlags),
|
|
targetRange1, targetRange2);
|
|
}
|
|
|
|
// If we didn't simplify anything, just return the input.
|
|
if (anchor == locator->getAnchor() &&
|
|
path.size() == locator->getPath().size()) {
|
|
return locator;
|
|
}
|
|
|
|
// Recompute the summary flags if we had any to begin with. This is
|
|
// necessary because we might remove e.g. tuple elements from the path.
|
|
unsigned summaryFlags = recomputeSummaryFlags(locator, path);
|
|
return cs.getConstraintLocator(anchor, path, summaryFlags);
|
|
}
|
|
|
|
void constraints::simplifyLocator(Expr *&anchor,
|
|
ArrayRef<LocatorPathElt> &path,
|
|
Expr *&targetAnchor,
|
|
SmallVectorImpl<LocatorPathElt> &targetPath,
|
|
SourceRange &range1, SourceRange &range2) {
|
|
range1 = SourceRange();
|
|
range2 = SourceRange();
|
|
targetAnchor = nullptr;
|
|
|
|
while (!path.empty()) {
|
|
switch (path[0].getKind()) {
|
|
case ConstraintLocator::ApplyArgument:
|
|
// Extract application argument.
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
|
|
// The target anchor is the function being called.
|
|
targetAnchor = applyExpr->getFn();
|
|
targetPath.push_back(path[0]);
|
|
|
|
anchor = applyExpr->getArg();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
|
|
if (auto objectLiteralExpr = dyn_cast<ObjectLiteralExpr>(anchor)) {
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
|
|
anchor = objectLiteralExpr->getArg();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::ApplyFunction:
|
|
// Extract application function.
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
|
|
// No additional target locator information.
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
|
|
anchor = applyExpr->getFn();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
|
|
// The unresolved member itself is the function.
|
|
if (auto unresolvedMember = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
if (unresolvedMember->getArgument()) {
|
|
// No additional target locator information.
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
|
|
anchor = unresolvedMember;
|
|
path = path.slice(1);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
|
|
case ConstraintLocator::Load:
|
|
case ConstraintLocator::RvalueAdjustment:
|
|
case ConstraintLocator::ScalarToTuple:
|
|
// Loads, rvalue adjustment, and scalar-to-tuple conversions are implicit.
|
|
path = path.slice(1);
|
|
continue;
|
|
|
|
case ConstraintLocator::NamedTupleElement:
|
|
case ConstraintLocator::TupleElement:
|
|
// Extract tuple element.
|
|
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
|
|
// Append this extraction to the target locator path.
|
|
if (targetAnchor) {
|
|
targetPath.push_back(path[0]);
|
|
}
|
|
|
|
anchor = tupleExpr->getElement(path[0].getValue());
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::ApplyArgToParam:
|
|
// Extract tuple element.
|
|
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
|
|
// Append this extraction to the target locator path.
|
|
if (targetAnchor) {
|
|
targetPath.push_back(path[0]);
|
|
}
|
|
|
|
anchor = tupleExpr->getElement(path[0].getValue());
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
|
|
// Extract subexpression in parentheses.
|
|
if (auto parenExpr = dyn_cast<ParenExpr>(anchor)) {
|
|
assert(path[0].getValue() == 0);
|
|
|
|
// Append this extraction to the target locator path.
|
|
if (targetAnchor) {
|
|
targetPath.push_back(path[0]);
|
|
}
|
|
|
|
anchor = parenExpr->getSubExpr();
|
|
path = path.slice(1);
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::Member:
|
|
case ConstraintLocator::MemberRefBase:
|
|
if (auto dotExpr = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
// No additional target locator information.
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
|
|
range1 = dotExpr->getNameLoc();
|
|
anchor = dotExpr->getBase();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::InterpolationArgument:
|
|
if (auto interp = dyn_cast<InterpolatedStringLiteralExpr>(anchor)) {
|
|
// No additional target locator information.
|
|
// FIXME: Dig out the constructor we're trying to call?
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
|
|
anchor = interp->getSegments()[path[0].getValue()];
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::AssignSource:
|
|
if (auto assign = dyn_cast<AssignExpr>(anchor)) {
|
|
targetAnchor = assign->getDest();
|
|
targetPath.clear();
|
|
|
|
anchor = assign->getSrc();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::SubscriptIndex:
|
|
if (auto subscript = dyn_cast<SubscriptExpr>(anchor)) {
|
|
targetAnchor = subscript->getBase();
|
|
targetPath.clear();
|
|
|
|
anchor = subscript->getIndex();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::CheckedCastOperand:
|
|
if (auto castExpr = dyn_cast<ExplicitCastExpr>(anchor)) {
|
|
targetAnchor = nullptr;
|
|
targetPath.clear();
|
|
anchor = castExpr->getSubExpr();
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// FIXME: Lots of other cases to handle.
|
|
break;
|
|
}
|
|
|
|
// If we get here, we couldn't simplify the path further.
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Simplify the given locator down to a specific anchor expression,
|
|
/// if possible.
|
|
///
|
|
/// \returns the anchor expression if it fully describes the locator, or
|
|
/// null otherwise.
|
|
static Expr *simplifyLocatorToAnchor(ConstraintSystem &cs,
|
|
ConstraintLocator *locator) {
|
|
if (!locator || !locator->getAnchor())
|
|
return nullptr;
|
|
|
|
SourceRange range1, range2;
|
|
locator = simplifyLocator(cs, locator, range1, range2);
|
|
if (!locator->getAnchor() || !locator->getPath().empty())
|
|
return nullptr;
|
|
|
|
return locator->getAnchor();
|
|
}
|
|
|
|
/// Retrieve the argument pattern for the given declaration.
|
|
///
|
|
static Pattern *getParameterPattern(ValueDecl *decl) {
|
|
if (auto func = dyn_cast<FuncDecl>(decl))
|
|
return func->getBodyParamPatterns()[0];
|
|
if (auto constructor = dyn_cast<ConstructorDecl>(decl))
|
|
return constructor->getBodyParamPatterns()[1];
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(decl))
|
|
return subscript->getIndices();
|
|
|
|
// FIXME: Variables of function type?
|
|
return nullptr;
|
|
}
|
|
|
|
ResolvedLocator constraints::resolveLocatorToDecl(
|
|
ConstraintSystem &cs,
|
|
ConstraintLocator *locator,
|
|
std::function<Optional<SelectedOverload>(ConstraintLocator *)> findOvlChoice,
|
|
std::function<ConcreteDeclRef (ValueDecl *decl,
|
|
Type openedType)> getConcreteDeclRef)
|
|
{
|
|
assert(locator && "Null locator");
|
|
if (!locator->getAnchor())
|
|
return ResolvedLocator();
|
|
|
|
ConcreteDeclRef declRef;
|
|
auto anchor = locator->getAnchor();
|
|
// Unwrap any specializations, constructor calls, implicit conversions, and
|
|
// '.'s.
|
|
// FIXME: This is brittle.
|
|
do {
|
|
if (auto specialize = dyn_cast<UnresolvedSpecializeExpr>(anchor)) {
|
|
anchor = specialize->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto implicit = dyn_cast<ImplicitConversionExpr>(anchor)) {
|
|
anchor = implicit->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto identity = dyn_cast<IdentityExpr>(anchor)) {
|
|
anchor = identity->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto constructor = dyn_cast<ConstructorRefCallExpr>(anchor)) {
|
|
anchor = constructor->getFn();
|
|
continue;
|
|
}
|
|
|
|
if (auto dotSyntax = dyn_cast<DotSyntaxBaseIgnoredExpr>(anchor)) {
|
|
anchor = dotSyntax->getRHS();
|
|
continue;
|
|
}
|
|
|
|
if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(anchor)) {
|
|
anchor = dotSyntax->getFn();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
} while (true);
|
|
|
|
auto getConcreteDeclRefFromOverload
|
|
= [&](const SelectedOverload &selected) -> ConcreteDeclRef {
|
|
return getConcreteDeclRef(selected.choice.getDecl(),
|
|
selected.openedType);
|
|
};
|
|
|
|
if (auto dre = dyn_cast<DeclRefExpr>(anchor)) {
|
|
// Simple case: direct reference to a declaration.
|
|
declRef = dre->getDeclRef();
|
|
} else if (auto mre = dyn_cast<MemberRefExpr>(anchor)) {
|
|
// Simple case: direct reference to a declaration.
|
|
declRef = mre->getMember();
|
|
} else if (isa<OverloadedDeclRefExpr>(anchor) ||
|
|
isa<OverloadedMemberRefExpr>(anchor) ||
|
|
isa<UnresolvedDeclRefExpr>(anchor)) {
|
|
// Overloaded and unresolved cases: find the resolved overload.
|
|
auto anchorLocator = cs.getConstraintLocator(anchor);
|
|
if (auto selected = findOvlChoice(anchorLocator)) {
|
|
if (selected->choice.isDecl())
|
|
declRef = getConcreteDeclRefFromOverload(*selected);
|
|
}
|
|
} else if (isa<UnresolvedMemberExpr>(anchor)) {
|
|
// Unresolved member: find the resolved overload.
|
|
auto anchorLocator = cs.getConstraintLocator(
|
|
anchor,
|
|
ConstraintLocator::UnresolvedMember);
|
|
if (auto selected = findOvlChoice(anchorLocator)) {
|
|
if (selected->choice.isDecl())
|
|
declRef = getConcreteDeclRefFromOverload(*selected);
|
|
}
|
|
} else if (auto ctorRef = dyn_cast<OtherConstructorDeclRefExpr>(anchor)) {
|
|
declRef = ctorRef->getDeclRef();
|
|
}
|
|
|
|
// If we didn't find the declaration, we're out of luck.
|
|
if (!declRef)
|
|
return ResolvedLocator();
|
|
|
|
// Use the declaration and the path to produce a more specific result.
|
|
// FIXME: This is an egregious hack. We'd be far better off
|
|
// FIXME: Perform deeper path resolution?
|
|
auto path = locator->getPath();
|
|
Pattern *parameterPattern = nullptr;
|
|
bool impliesFullPattern = false;
|
|
while (!path.empty()) {
|
|
switch (path[0].getKind()) {
|
|
case ConstraintLocator::ApplyArgument:
|
|
// If we're calling into something that has parameters, dig into the
|
|
// actual parameter pattern.
|
|
parameterPattern = getParameterPattern(declRef.getDecl());
|
|
if (!parameterPattern)
|
|
break;
|
|
|
|
impliesFullPattern = true;
|
|
path = path.slice(1);
|
|
continue;
|
|
|
|
case ConstraintLocator::TupleElement:
|
|
case ConstraintLocator::NamedTupleElement:
|
|
if (parameterPattern) {
|
|
unsigned index = path[0].getValue();
|
|
if (auto tuple = dyn_cast<TuplePattern>(
|
|
parameterPattern->getSemanticsProvidingPattern())) {
|
|
parameterPattern = tuple->getElement(index).getPattern();
|
|
impliesFullPattern = false;
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
parameterPattern = nullptr;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::ApplyArgToParam:
|
|
if (parameterPattern) {
|
|
unsigned index = path[0].getValue2();
|
|
if (auto tuple = dyn_cast<TuplePattern>(
|
|
parameterPattern->getSemanticsProvidingPattern())) {
|
|
parameterPattern = tuple->getElement(index).getPattern();
|
|
impliesFullPattern = false;
|
|
path = path.slice(1);
|
|
continue;
|
|
}
|
|
parameterPattern = nullptr;
|
|
}
|
|
break;
|
|
|
|
case ConstraintLocator::ScalarToTuple:
|
|
continue;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// If we have a parameter pattern that refers to a parameter, grab it.
|
|
if (parameterPattern) {
|
|
parameterPattern = parameterPattern->getSemanticsProvidingPattern();
|
|
if (impliesFullPattern) {
|
|
if (auto tuple = dyn_cast<TuplePattern>(parameterPattern)) {
|
|
if (tuple->getNumElements() == 1) {
|
|
parameterPattern = tuple->getElement(0).getPattern();
|
|
parameterPattern = parameterPattern->getSemanticsProvidingPattern();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto named = dyn_cast<NamedPattern>(parameterPattern)) {
|
|
return ResolvedLocator(ResolvedLocator::ForVar, named->getDecl());
|
|
}
|
|
}
|
|
|
|
// Otherwise, do the best we can with the declaration we found.
|
|
if (isa<FuncDecl>(declRef.getDecl()))
|
|
return ResolvedLocator(ResolvedLocator::ForFunction, declRef);
|
|
if (isa<ConstructorDecl>(declRef.getDecl()))
|
|
return ResolvedLocator(ResolvedLocator::ForConstructor, declRef);
|
|
|
|
// FIXME: Deal with the other interesting cases here, e.g.,
|
|
// subscript declarations.
|
|
return ResolvedLocator();
|
|
}
|
|
|
|
/// Emit a note referring to the target of a diagnostic, e.g., the function
|
|
/// or parameter being used.
|
|
static void noteTargetOfDiagnostic(ConstraintSystem &cs,
|
|
const Failure &failure,
|
|
ConstraintLocator *targetLocator) {
|
|
// If there's no anchor, there's nothing we can do.
|
|
if (!targetLocator->getAnchor())
|
|
return;
|
|
|
|
// Try to resolve the locator to a particular declaration.
|
|
auto resolved
|
|
= resolveLocatorToDecl(cs, targetLocator,
|
|
[&](ConstraintLocator *locator) -> Optional<SelectedOverload> {
|
|
for (auto resolved = failure.getResolvedOverloadSets();
|
|
resolved; resolved = resolved->Previous) {
|
|
if (resolved->Locator == locator)
|
|
return SelectedOverload{resolved->Choice,
|
|
resolved->OpenedFullType,
|
|
// FIXME: opened type?
|
|
Type()};
|
|
}
|
|
|
|
return None;
|
|
},
|
|
[&](ValueDecl *decl,
|
|
Type openedType) -> ConcreteDeclRef {
|
|
return decl;
|
|
});
|
|
|
|
// We couldn't resolve the locator to a declaration, so we're done.
|
|
if (!resolved)
|
|
return;
|
|
|
|
switch (resolved.getKind()) {
|
|
case ResolvedLocatorKind::Unresolved:
|
|
// Can't emit any diagnostic here.
|
|
return;
|
|
|
|
case ResolvedLocatorKind::Function: {
|
|
auto name = resolved.getDecl().getDecl()->getName();
|
|
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
|
|
name.isOperator()? diag::note_call_to_operator
|
|
: diag::note_call_to_func,
|
|
resolved.getDecl().getDecl()->getName());
|
|
return;
|
|
}
|
|
|
|
case ResolvedLocatorKind::Constructor:
|
|
// FIXME: Specialize for implicitly-generated constructors.
|
|
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
|
|
diag::note_call_to_initializer);
|
|
return;
|
|
|
|
case ResolvedLocatorKind::Parameter:
|
|
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
|
|
diag::note_init_parameter,
|
|
resolved.getDecl().getDecl()->getName());
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// \brief Emit a diagnostic for the given failure.
|
|
///
|
|
/// \param cs The constraint system in which the diagnostic was generated.
|
|
/// \param failure The failure to emit.
|
|
/// \param expr The expression associated with the failure.
|
|
/// \param useExprLoc If the failure lacks a location, use the one associated
|
|
/// with expr.
|
|
///
|
|
/// \returns true if the diagnostic was emitted successfully.
|
|
static bool diagnoseFailure(ConstraintSystem &cs,
|
|
Failure &failure,
|
|
Expr *expr,
|
|
bool useExprLoc) {
|
|
ConstraintLocator *cloc;
|
|
if (!failure.getLocator() || !failure.getLocator()->getAnchor()) {
|
|
if (useExprLoc)
|
|
cloc = cs.getConstraintLocator(expr);
|
|
else
|
|
return false;
|
|
} else {
|
|
cloc = failure.getLocator();
|
|
}
|
|
|
|
SourceRange range1, range2;
|
|
|
|
ConstraintLocator *targetLocator;
|
|
auto locator = simplifyLocator(cs, cloc, range1, range2,
|
|
&targetLocator);
|
|
auto &tc = cs.getTypeChecker();
|
|
|
|
auto anchor = locator->getAnchor();
|
|
auto loc = anchor->getLoc();
|
|
switch (failure.getKind()) {
|
|
case Failure::TupleSizeMismatch: {
|
|
auto tuple1 = failure.getFirstType()->castTo<TupleType>();
|
|
auto tuple2 = failure.getSecondType()->castTo<TupleType>();
|
|
tc.diagnose(loc, diag::invalid_tuple_size, tuple1, tuple2,
|
|
tuple1->getNumElements(), tuple2->getNumElements())
|
|
.highlight(range1).highlight(range2);
|
|
break;
|
|
}
|
|
|
|
case Failure::TupleUnused:
|
|
tc.diagnose(loc, diag::invalid_tuple_element_unused,
|
|
failure.getFirstType(),
|
|
failure.getSecondType())
|
|
.highlight(range1).highlight(range2);
|
|
break;
|
|
|
|
case Failure::TypesNotConvertible:
|
|
case Failure::TypesNotEqual:
|
|
case Failure::TypesNotSubtypes:
|
|
case Failure::TypesNotConstructible:
|
|
case Failure::FunctionTypesMismatch: {
|
|
|
|
// We can do a better job of diagnosing application argument conversion
|
|
// failures elsewhere.
|
|
if (isa<ApplyExpr>(expr) ||
|
|
isa<InOutExpr>(expr) ||
|
|
isa<AssignExpr>(expr))
|
|
return false;
|
|
|
|
tc.diagnose(loc, diag::invalid_relation,
|
|
failure.getKind() - Failure::TypesNotEqual,
|
|
failure.getFirstType(),
|
|
failure.getSecondType())
|
|
.highlight(range1).highlight(range2);
|
|
if (targetLocator && !useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, targetLocator);
|
|
}
|
|
break;
|
|
|
|
case Failure::DoesNotHaveMember:
|
|
case Failure::DoesNotHaveNonMutatingMember:
|
|
if (auto moduleTy = failure.getFirstType()->getAs<ModuleType>()) {
|
|
tc.diagnose(loc, diag::no_member_of_module,
|
|
moduleTy->getModule()->getName(),
|
|
failure.getName())
|
|
.highlight(range1).highlight(range2);
|
|
} else {
|
|
bool IsNoMember = failure.getKind() == Failure::DoesNotHaveMember;
|
|
|
|
tc.diagnose(loc, IsNoMember ? diag::does_not_have_member :
|
|
diag::does_not_have_non_mutating_member,
|
|
failure.getFirstType(),
|
|
failure.getName())
|
|
.highlight(range1).highlight(range2);
|
|
}
|
|
break;
|
|
|
|
case Failure::DoesNotHaveInitOnInstance: {
|
|
// Diagnose 'super.init', which can only appear inside another initializer,
|
|
// specially.
|
|
auto ctorRef = dyn_cast<UnresolvedConstructorExpr>(locator->getAnchor());
|
|
if (isa<SuperRefExpr>(ctorRef->getSubExpr())) {
|
|
tc.diagnose(loc, diag::super_initializer_not_in_initializer);
|
|
break;
|
|
}
|
|
|
|
// Suggest inserting '.dynamicType' to construct another object of the same
|
|
// dynamic type.
|
|
SourceLoc fixItLoc;
|
|
if (ctorRef) {
|
|
// Place the '.dynamicType' right before the init.
|
|
fixItLoc = ctorRef->getConstructorLoc().getAdvancedLoc(-1);
|
|
}
|
|
|
|
auto diag = tc.diagnose(loc, diag::init_not_instance_member);
|
|
if (fixItLoc.isValid())
|
|
diag.fixItInsert(fixItLoc, ".dynamicType");
|
|
diag.flush();
|
|
|
|
break;
|
|
}
|
|
|
|
case Failure::DoesNotConformToProtocol:
|
|
// FIXME: Probably want to do this within the actual solver, because at
|
|
// this point it's too late to actually recover fully.
|
|
|
|
// We can do a better job of diagnosing application argument conversion
|
|
// failures elsewhere.
|
|
if (isa<ApplyExpr>(expr) ||
|
|
isa<InOutExpr>(expr) ||
|
|
isa<AssignExpr>(expr))
|
|
return false;
|
|
|
|
tc.conformsToProtocol(failure.getFirstType(),
|
|
failure.getSecondType()->castTo<ProtocolType>()
|
|
->getDecl(),
|
|
cs.DC,
|
|
ConformanceCheckFlags::InExpression,
|
|
nullptr,
|
|
loc);
|
|
if (targetLocator)
|
|
noteTargetOfDiagnostic(cs, failure, targetLocator);
|
|
break;
|
|
|
|
case Failure::IsNotBridgedToObjectiveC:
|
|
tc.diagnose(loc, diag::type_not_bridged, failure.getFirstType());
|
|
if (targetLocator)
|
|
noteTargetOfDiagnostic(cs, failure, targetLocator);
|
|
break;
|
|
|
|
case Failure::IsForbiddenLValue:
|
|
if (auto iotTy = failure.getSecondType()->getAs<InOutType>()) {
|
|
tc.diagnose(loc, diag::reference_non_inout, iotTy->getObjectType())
|
|
.highlight(range1).highlight(range2);
|
|
return true;
|
|
}
|
|
// FIXME: diagnose other cases
|
|
return false;
|
|
|
|
case Failure::OutOfOrderArgument:
|
|
if (auto tuple = dyn_cast_or_null<TupleExpr>(anchor)) {
|
|
unsigned firstIdx = failure.getValue();
|
|
Identifier first = tuple->getElementName(firstIdx);
|
|
unsigned secondIdx = failure.getSecondValue();
|
|
Identifier second = tuple->getElementName(secondIdx);
|
|
if (!first.empty() && !second.empty()) {
|
|
tc.diagnose(tuple->getElementNameLoc(firstIdx),
|
|
diag::argument_out_of_order, first, second)
|
|
.highlight(tuple->getElement(firstIdx)->getSourceRange())
|
|
.highlight(SourceRange(tuple->getElementNameLoc(secondIdx),
|
|
tuple->getElement(secondIdx)->getEndLoc()));
|
|
return true;
|
|
}
|
|
}
|
|
// FIXME: Can this even happen?
|
|
return false;
|
|
|
|
case Failure::MissingArgument: {
|
|
Identifier name;
|
|
unsigned idx = failure.getValue();
|
|
if (auto tupleTy = failure.getFirstType()->getAs<TupleType>()) {
|
|
name = tupleTy->getElement(idx).getName();
|
|
} else {
|
|
// Scalar.
|
|
assert(idx == 0);
|
|
}
|
|
|
|
if (name.empty())
|
|
tc.diagnose(loc, diag::missing_argument_positional, idx+1);
|
|
else
|
|
tc.diagnose(loc, diag::missing_argument_named, name);
|
|
return true;
|
|
}
|
|
|
|
case Failure::ExtraArgument: {
|
|
if (auto tuple = dyn_cast_or_null<TupleExpr>(anchor)) {
|
|
unsigned firstIdx = failure.getValue();
|
|
auto name = tuple->getElementName(firstIdx);
|
|
if (name.empty())
|
|
tc.diagnose(loc, diag::extra_argument_positional)
|
|
.highlight(tuple->getElement(firstIdx)->getSourceRange());
|
|
else
|
|
tc.diagnose(loc, diag::extra_argument_named, name)
|
|
.highlight(tuple->getElement(firstIdx)->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case Failure::IsNotOptional: {
|
|
if (auto force = dyn_cast_or_null<ForceValueExpr>(anchor)) {
|
|
// If there was an 'as' cast in the subexpression, note it.
|
|
if (auto *cast = findForcedDowncast(tc.Context, force->getSubExpr())) {
|
|
tc.diagnose(force->getLoc(), diag::forcing_explicit_downcast,
|
|
failure.getFirstType())
|
|
.highlight(cast->getLoc())
|
|
.fixItRemove(force->getLoc());
|
|
return true;
|
|
}
|
|
|
|
tc.diagnose(loc, diag::forcing_injected_optional,
|
|
failure.getFirstType())
|
|
.highlight(force->getSourceRange())
|
|
.fixItRemove(force->getExclaimLoc());
|
|
|
|
return true;
|
|
}
|
|
|
|
if (auto bind = dyn_cast_or_null<BindOptionalExpr>(anchor)) {
|
|
tc.diagnose(loc, diag::binding_injected_optional,
|
|
failure.getFirstType())
|
|
.highlight(bind->getSourceRange())
|
|
.fixItRemove(bind->getQuestionLoc());
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case Failure::NoPublicInitializers: {
|
|
tc.diagnose(loc, diag::no_accessible_initializers, failure.getFirstType())
|
|
.highlight(range1);
|
|
if (targetLocator && !useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, targetLocator);
|
|
break;
|
|
}
|
|
|
|
case Failure::UnboundGenericParameter: {
|
|
tc.diagnose(loc, diag::unbound_generic_parameter, failure.getFirstType())
|
|
.highlight(range1);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::IsNotSelfConforming: {
|
|
tc.diagnose(loc, diag::protocol_not_self_conforming,
|
|
failure.getFirstType(), failure.getSecondType(),
|
|
failure.getValue())
|
|
.highlight(range1);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::ExistentialIsNotObjC: {
|
|
tc.diagnose(loc, diag::existential_non_objc,
|
|
failure.getFirstType(), failure.getSecondType())
|
|
.highlight(range1);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::IsNotMaterializable: {
|
|
tc.diagnose(loc, diag::cannot_bind_generic_parameter_to_type,
|
|
failure.getFirstType())
|
|
.highlight(range1);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::FunctionNoEscapeMismatch: {
|
|
tc.diagnose(loc, diag::noescape_functiontype_mismatch,
|
|
failure.getSecondType()).highlight(range2);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::FunctionThrowsMismatch: {
|
|
tc.diagnose(loc, diag::throws_functiontype_mismatch,
|
|
failure.getFirstType()->getAs<AnyFunctionType>()->throws(),
|
|
failure.getFirstType(),
|
|
failure.getSecondType()->getAs<AnyFunctionType>()->throws(),
|
|
failure.getSecondType())
|
|
.highlight(range2);
|
|
if (!useExprLoc)
|
|
noteTargetOfDiagnostic(cs, failure, locator);
|
|
break;
|
|
}
|
|
|
|
case Failure::FunctionAutoclosureMismatch:
|
|
case Failure::FunctionNoReturnMismatch:
|
|
case Failure::IsNotArchetype:
|
|
case Failure::IsNotClass:
|
|
case Failure::IsNotDynamicLookup:
|
|
case Failure::IsNotMetatype:
|
|
case Failure::TupleNameMismatch:
|
|
case Failure::TupleNamePositionMismatch:
|
|
case Failure::TupleVariadicMismatch:
|
|
// FIXME: Handle all failure kinds
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Determine the number of distinct overload choices in the
|
|
/// provided set.
|
|
static unsigned countDistinctOverloads(ArrayRef<OverloadChoice> choices) {
|
|
llvm::SmallPtrSet<void *, 4> uniqueChoices;
|
|
unsigned result = 0;
|
|
for (auto choice : choices) {
|
|
if (uniqueChoices.insert(choice.getOpaqueChoiceSimple()).second)
|
|
++result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// \brief Determine the name of the overload in a set of overload choices.
|
|
static Identifier getOverloadChoiceName(ArrayRef<OverloadChoice> choices) {
|
|
for (auto choice : choices) {
|
|
if (choice.isDecl())
|
|
return choice.getDecl()->getName();
|
|
}
|
|
|
|
return Identifier();
|
|
}
|
|
|
|
bool diagnoseAmbiguity(ConstraintSystem &cs, ArrayRef<Solution> solutions) {
|
|
// Produce a diff of the solutions.
|
|
SolutionDiff diff(solutions);
|
|
|
|
// Find the locators which have the largest numbers of distinct overloads.
|
|
SmallVector<unsigned, 2> mostDistinctOverloads;
|
|
unsigned maxDistinctOverloads = 0;
|
|
for (unsigned i = 0, n = diff.overloads.size(); i != n; ++i) {
|
|
auto &overload = diff.overloads[i];
|
|
|
|
// If we can't resolve the locator to an anchor expression with no path,
|
|
// we can't diagnose this well.
|
|
if (!simplifyLocatorToAnchor(cs, overload.locator))
|
|
continue;
|
|
|
|
// If we don't have a name to hang on to, it'll be hard to diagnose this
|
|
// overload.
|
|
if (getOverloadChoiceName(overload.choices).empty())
|
|
continue;
|
|
|
|
unsigned distinctOverloads = countDistinctOverloads(overload.choices);
|
|
|
|
// We need at least two overloads to make this interesting.
|
|
if (distinctOverloads < 2)
|
|
continue;
|
|
|
|
// If we have more distinct overload choices for this locator than for
|
|
// prior locators, just keep this locator.
|
|
if (distinctOverloads > maxDistinctOverloads) {
|
|
maxDistinctOverloads = distinctOverloads;
|
|
mostDistinctOverloads.clear();
|
|
mostDistinctOverloads.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
// If we have as many distinct overload choices for this locator as
|
|
// the best so far, add this locator to the set.
|
|
if (distinctOverloads == maxDistinctOverloads) {
|
|
mostDistinctOverloads.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
// We have better results. Ignore this one.
|
|
}
|
|
|
|
// FIXME: Should be able to pick the best locator, e.g., based on some
|
|
// depth-first numbering of expressions.
|
|
if (mostDistinctOverloads.size() == 1) {
|
|
auto &overload = diff.overloads[mostDistinctOverloads[0]];
|
|
auto name = getOverloadChoiceName(overload.choices);
|
|
auto anchor = simplifyLocatorToAnchor(cs, overload.locator);
|
|
|
|
// Emit the ambiguity diagnostic.
|
|
auto &tc = cs.getTypeChecker();
|
|
tc.diagnose(anchor->getLoc(),
|
|
name.isOperator() ? diag::ambiguous_operator_ref
|
|
: diag::ambiguous_decl_ref,
|
|
name);
|
|
|
|
// Emit candidates. Use a SmallPtrSet to make sure only emit a particular
|
|
// candidate once. FIXME: Why is one candidate getting into the overload
|
|
// set multiple times?
|
|
SmallPtrSet<Decl*, 8> EmittedDecls;
|
|
for (auto choice : overload.choices) {
|
|
switch (choice.getKind()) {
|
|
case OverloadChoiceKind::Decl:
|
|
case OverloadChoiceKind::DeclViaDynamic:
|
|
case OverloadChoiceKind::TypeDecl:
|
|
case OverloadChoiceKind::DeclViaBridge:
|
|
case OverloadChoiceKind::DeclViaUnwrappedOptional:
|
|
// FIXME: show deduced types, etc, etc.
|
|
if (EmittedDecls.insert(choice.getDecl()).second)
|
|
tc.diagnose(choice.getDecl(), diag::found_candidate);
|
|
break;
|
|
|
|
case OverloadChoiceKind::BaseType:
|
|
case OverloadChoiceKind::TupleIndex:
|
|
// FIXME: Actually diagnose something here.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: If we inferred different types for literals (for example),
|
|
// could diagnose ambiguity that way as well.
|
|
|
|
return false;
|
|
}
|
|
|
|
Constraint *getConstraintChoice(Constraint *constraint,
|
|
ConstraintKind kind,
|
|
bool takeAny = false) {
|
|
if ((constraint->getKind() != ConstraintKind::Disjunction) &&
|
|
(constraint->getKind() != ConstraintKind::Conjunction)) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto nestedConstraints = constraint->getNestedConstraints();
|
|
|
|
for (auto nestedConstraint : nestedConstraints) {
|
|
if (takeAny ||
|
|
(nestedConstraint->getKind() == kind)) {
|
|
|
|
// If this is a last-chance search, and we have a conjunction or
|
|
// disjunction, look within.
|
|
if (takeAny &&
|
|
((nestedConstraint->getKind() == ConstraintKind::Disjunction) ||
|
|
(nestedConstraint->getKind() == ConstraintKind::Conjunction))) {
|
|
return getConstraintChoice(nestedConstraint,
|
|
kind,
|
|
takeAny);
|
|
}
|
|
|
|
return nestedConstraint;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Constraint *getComponentConstraint(Constraint *constraint) {
|
|
if (constraint->getKind() != ConstraintKind::Disjunction) {
|
|
return constraint;
|
|
}
|
|
|
|
return constraint->getNestedConstraints().front();
|
|
}
|
|
|
|
/// For a given expression type, extract the appropriate type for a constraint-
|
|
/// based diagnostic.
|
|
static Type getDiagnosticTypeFromExpr(Expr *expr) {
|
|
|
|
// For a forced checked cast expression or coerce expression, use the type of
|
|
// the sub-expression.
|
|
if (auto fcc = dyn_cast<ForcedCheckedCastExpr>(expr)) {
|
|
auto subExpr = fcc->getSubExpr();
|
|
return subExpr->getType();
|
|
}
|
|
if (auto coerceExpr = dyn_cast<CoerceExpr>(expr)) {
|
|
auto subExpr = coerceExpr->getSubExpr();
|
|
return subExpr->getType();
|
|
}
|
|
|
|
// For an application expression, use the argument type.
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
|
|
return applyExpr->getArg()->getType();
|
|
}
|
|
|
|
// For a subscript expression, use the index type.
|
|
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(expr)) {
|
|
return subscriptExpr->getIndex()->getType();
|
|
}
|
|
|
|
return expr->getType();
|
|
}
|
|
|
|
/// If a type variable was created for an opened literal expression, substitute
|
|
/// in the default literal for the type variable's literal conformance.
|
|
static Type substituteLiteralForTypeVariable(ConstraintSystem *CS,
|
|
TypeVariableType *tv) {
|
|
if (auto proto = tv->getImpl().literalConformanceProto) {
|
|
|
|
auto kind = proto->getKnownProtocolKind();
|
|
|
|
if (kind.hasValue()) {
|
|
auto altLits = CS->getAlternativeLiteralTypes(kind.getValue());
|
|
if (!altLits.empty()) {
|
|
if (auto altType = altLits[0]) {
|
|
return altType;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return tv;
|
|
}
|
|
|
|
static std::pair<Type, Type> getBoundTypesFromConstraint(ConstraintSystem *CS,
|
|
Expr *expr,
|
|
Constraint *constraint) {
|
|
auto type1 = getDiagnosticTypeFromExpr(expr);
|
|
auto type2 = constraint->getSecondType();
|
|
|
|
if (type1->isEqual(type2))
|
|
if (auto firstType = constraint->getFirstType())
|
|
type1 = firstType;
|
|
|
|
if (auto typeVariableType =
|
|
dyn_cast<TypeVariableType>(type2.getPointer())) {
|
|
|
|
if (typeVariableType->getImpl().
|
|
getRepresentative(nullptr) == typeVariableType) {
|
|
SmallVector<Type, 4> bindings;
|
|
CS->getComputedBindings(typeVariableType, bindings);
|
|
auto binding = bindings.size() ? bindings.front() : Type();
|
|
|
|
if (!binding.isNull()) {
|
|
if (binding.getPointer() != type1.getPointer())
|
|
type2 = binding;
|
|
} else {
|
|
auto impl = typeVariableType->getImpl();
|
|
if (auto archetypeType = impl.getArchetype()) {
|
|
type2 = archetypeType;
|
|
} else {
|
|
auto implAnchor = impl.getLocator()->getAnchor();
|
|
auto anchorType = implAnchor->getType();
|
|
|
|
// Don't re-substitute an opened type variable for itself.
|
|
if (anchorType.getPointer() != type1.getPointer())
|
|
type2 = anchorType;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto typeVariableType =
|
|
dyn_cast<TypeVariableType>(type1.getPointer())) {
|
|
SmallVector<Type, 4> bindings;
|
|
|
|
CS->getComputedBindings(typeVariableType, bindings);
|
|
|
|
for (auto binding : bindings) {
|
|
if (type2.getPointer() != binding.getPointer()) {
|
|
type1 = binding;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we still have a literal type variable, substitute in the default type.
|
|
if (auto tv1 = type1->getAs<TypeVariableType>()) {
|
|
type1 = substituteLiteralForTypeVariable(CS, tv1);
|
|
}
|
|
if (auto tv2 = type2->getAs<TypeVariableType>()) {
|
|
type2 = substituteLiteralForTypeVariable(CS, tv2);
|
|
}
|
|
|
|
return std::pair<Type, Type>(type1->getLValueOrInOutObjectType(),
|
|
type2->getLValueOrInOutObjectType());
|
|
}
|
|
|
|
/// Determine if a type resulting from a failed typecheck operation is fully-
|
|
/// specialized, or if it still has type variable type arguments.
|
|
/// (This diverges slightly from hasTypeVariable, in that certain tyvars,
|
|
/// such as for nil literals, will be treated as specialized.)
|
|
bool typeIsNotSpecialized(Type type) {
|
|
if (type.isNull())
|
|
return true;
|
|
|
|
if (auto tv = type->getAs<TypeVariableType>()) {
|
|
|
|
// If it's a nil-literal conformance, there's no reason to re-specialize.
|
|
if (tv->getImpl().literalConformanceProto) {
|
|
|
|
auto knownProtoKind =
|
|
tv->getImpl().literalConformanceProto->getKnownProtocolKind();
|
|
|
|
if (knownProtoKind.hasValue() &&
|
|
(knownProtoKind.getValue() ==
|
|
KnownProtocolKind::NilLiteralConvertible)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Desugar, if necessary.
|
|
if (auto sugaredTy = type->getAs<SyntaxSugarType>())
|
|
type = sugaredTy->getBaseType();
|
|
|
|
// If it's generic, check the type arguments.
|
|
if (auto bgt = type->getAs<BoundGenericType>()) {
|
|
for (auto tyarg : bgt->getGenericArgs()) {
|
|
if (typeIsNotSpecialized(tyarg))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// If it's a tuple, check the members.
|
|
if (auto tupleTy = type->getAs<TupleType>()) {
|
|
for (auto elementTy : tupleTy->getElementTypes()) {
|
|
if (typeIsNotSpecialized((elementTy)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// If it's an inout type, check the inner type.
|
|
if (auto inoutTy = type->getAs<InOutType>()) {
|
|
return typeIsNotSpecialized(inoutTy->getObjectType());
|
|
}
|
|
|
|
// If it's a function, check the parameter and return types.
|
|
if (auto functionTy = type->getAs<AnyFunctionType>()) {
|
|
if (typeIsNotSpecialized(functionTy->getResult()) ||
|
|
typeIsNotSpecialized(functionTy->getInput()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, broadly check for type variables.
|
|
return type->hasTypeVariable();
|
|
}
|
|
|
|
/// Obtain the colloquial description for a known protocol kind.
|
|
std::string getDescriptionForKnownProtocolKind(KnownProtocolKind kind) {
|
|
switch (kind) {
|
|
#define PROTOCOL(Id) \
|
|
case KnownProtocolKind::Id: \
|
|
return #Id;
|
|
|
|
#define LITERAL_CONVERTIBLE_PROTOCOL(Id, Description) \
|
|
case KnownProtocolKind::Id: \
|
|
return #Description;
|
|
|
|
#define BUILTIN_LITERAL_CONVERTIBLE_PROTOCOL(Id) \
|
|
case KnownProtocolKind::Id: \
|
|
return #Id;
|
|
|
|
#include "swift/AST/KnownProtocols.def"
|
|
}
|
|
|
|
llvm_unreachable("unrecognized known protocol kind");
|
|
}
|
|
|
|
/// Determine if the type is an error type, or its metatype.
|
|
bool isErrorTypeKind(Type t) {
|
|
|
|
if (auto mt = t->getAs<MetatypeType>())
|
|
t = mt->getInstanceType();
|
|
|
|
return t->is<ErrorType>();
|
|
}
|
|
|
|
/// Obtain a "user friendly" type name. E.g., one that uses colloquial names
|
|
/// for literal convertible protocols if necessary, and is devoid of type
|
|
/// variables.
|
|
std::string getUserFriendlyTypeName(Type t, bool unwrap = true) {
|
|
|
|
assert(!t.isNull());
|
|
|
|
// Unwrap any l-value types.
|
|
if (unwrap) {
|
|
if (auto lv = t->getAs<LValueType>()) {
|
|
t = lv->getObjectType();
|
|
}
|
|
}
|
|
|
|
if (auto tv = t->getAs<TypeVariableType>()) {
|
|
if (tv->getImpl().literalConformanceProto) {
|
|
Optional<KnownProtocolKind> kind =
|
|
tv->getImpl().literalConformanceProto->getKnownProtocolKind();
|
|
|
|
if (kind.hasValue()) {
|
|
return getDescriptionForKnownProtocolKind(kind.getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
return t.getString();
|
|
}
|
|
|
|
/// Conveniently unwrap a paren expression, if necessary.
|
|
Expr* unwrapParenExpr(Expr *e) {
|
|
if (auto parenExpr = dyn_cast<ParenExpr>(e))
|
|
return unwrapParenExpr(parenExpr->getSubExpr());
|
|
|
|
return e;
|
|
}
|
|
|
|
/// Given a vector of names and types, obtain a stringified comma-separated
|
|
/// list of the names (if present) and their associated "user friendly" type
|
|
/// names.
|
|
std::string getTypeListString(SmallVectorImpl<Identifier> &names,
|
|
SmallVectorImpl<Type> &types) {
|
|
|
|
std::string typeList = "";
|
|
|
|
if (types.size()) {
|
|
if (!names[0].empty()) {
|
|
typeList += names[0].get();
|
|
typeList += ": ";
|
|
}
|
|
typeList += getUserFriendlyTypeName(types[0]);
|
|
|
|
for (size_t i = 1; i < types.size(); i++) {
|
|
typeList += ", ";
|
|
if (!names[i].empty()) {
|
|
typeList += names[i].get();
|
|
typeList += ": ";
|
|
}
|
|
typeList += getUserFriendlyTypeName(types[i]);
|
|
}
|
|
}
|
|
|
|
return typeList;
|
|
|
|
}
|
|
|
|
GeneralFailureDiagnosis::GeneralFailureDiagnosis(Expr *expr,
|
|
ConstraintSystem *cs) :
|
|
expr(expr), CS(cs) {
|
|
|
|
assert(expr && CS);
|
|
|
|
// Collect and categorize constraint information from the failed system.
|
|
|
|
if(!CS->ActiveConstraints.empty()) {
|
|
// If any active conformance constraints are in the system, we know that
|
|
// any inactive constraints are in its service. Capture the constraint and
|
|
// present this information to the user.
|
|
auto *constraint = &CS->ActiveConstraints.front();
|
|
|
|
activeConformanceConstraint = getComponentConstraint(constraint);
|
|
}
|
|
|
|
for (auto & constraintRef : CS->InactiveConstraints) {
|
|
auto constraint = &constraintRef;
|
|
|
|
// Capture the first non-disjunction constraint we find. We'll use this
|
|
// if we can't find a clearer reason for the failure.
|
|
if ((!fallbackConstraint || constraint->isFavored()) &&
|
|
(constraint->getKind() != ConstraintKind::Disjunction) &&
|
|
(constraint->getKind() != ConstraintKind::Conjunction)) {
|
|
fallbackConstraint = constraint;
|
|
}
|
|
|
|
// Store off conversion constraints, favoring existing conversion
|
|
// constraints.
|
|
if ((!(activeConformanceConstraint ||
|
|
conformanceConstraint) || constraint->isFavored()) &&
|
|
constraint->getKind() == ConstraintKind::ConformsTo) {
|
|
conformanceConstraint = constraint;
|
|
}
|
|
|
|
// Failed binding constraints point to a missing member.
|
|
if ((!valueMemberConstraint || constraint->isFavored()) &&
|
|
((constraint->getKind() == ConstraintKind::ValueMember) ||
|
|
(constraint->getKind() == ConstraintKind::UnresolvedValueMember))) {
|
|
valueMemberConstraint = constraint;
|
|
}
|
|
|
|
// A missed argument conversion can result in better error messages when
|
|
// a user passes the wrong arguments to a function application.
|
|
if ((!argumentConstraint || constraint->isFavored())) {
|
|
argumentConstraint = getConstraintChoice(constraint,
|
|
ConstraintKind::
|
|
ArgumentTupleConversion);
|
|
}
|
|
|
|
// Overload resolution failures are often nicely descriptive, so store
|
|
// off the first one we find.
|
|
if ((!overloadConstraint || constraint->isFavored())) {
|
|
overloadConstraint = getConstraintChoice(constraint,
|
|
ConstraintKind::BindOverload);
|
|
}
|
|
|
|
// Conversion constraints are also nicely descriptive, so we'll grab the
|
|
// first one of those as well.
|
|
if ((!conversionConstraint || constraint->isFavored()) &&
|
|
(constraint->getKind() == ConstraintKind::Conversion ||
|
|
constraint->getKind() == ConstraintKind::ExplicitConversion ||
|
|
constraint->getKind() == ConstraintKind::ArgumentTupleConversion)) {
|
|
conversionConstraint = constraint;
|
|
}
|
|
|
|
// Also check for bridging failures.
|
|
if ((!bridgeToObjCConstraint || constraint->isFavored()) &&
|
|
constraint->getKind() == ConstraintKind::BridgedToObjectiveC) {
|
|
bridgeToObjCConstraint = constraint;
|
|
}
|
|
|
|
// When all else fails, inspect a potential conjunction or disjunction for a
|
|
// consituent conversion.
|
|
if (!disjunctionConversionConstraint || constraint->isFavored()) {
|
|
disjunctionConversionConstraint =
|
|
getConstraintChoice(constraint, ConstraintKind::Conversion, true);
|
|
}
|
|
}
|
|
|
|
// If no more descriptive constraint was found, use the fallback constraint.
|
|
if (fallbackConstraint &&
|
|
!(conversionConstraint ||
|
|
overloadConstraint ||
|
|
argumentConstraint)) {
|
|
|
|
if (fallbackConstraint->getKind() == ConstraintKind::ArgumentConversion)
|
|
argumentConstraint = fallbackConstraint;
|
|
else
|
|
conversionConstraint = fallbackConstraint;
|
|
}
|
|
|
|
// If there's still no conversion to diagnose, use the disjunction conversion.
|
|
if (!conversionConstraint) {
|
|
conversionConstraint = disjunctionConversionConstraint;
|
|
}
|
|
|
|
// If there was already a conversion failure, use it.
|
|
if (!conversionConstraint &&
|
|
CS->failedConstraint &&
|
|
CS->failedConstraint->getKind() != ConstraintKind::Disjunction) {
|
|
conversionConstraint = CS->failedConstraint;
|
|
}
|
|
}
|
|
|
|
bool GeneralFailureDiagnosis::diagnoseGeneralValueMemberFailure() {
|
|
|
|
if (valueMemberConstraint) {
|
|
auto memberName = valueMemberConstraint->getMember().getBaseName();
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::could_not_find_member,
|
|
memberName)
|
|
.highlight(expr->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GeneralFailureDiagnosis::diagnoseGeneralOverloadFailure() {
|
|
|
|
// If this is a return expression with available conversion constraints,
|
|
// we can produce a better diagnostic by pointing out the return expression
|
|
// conversion failure.
|
|
if (expr->isReturnExpr() &&
|
|
(conversionConstraint || argumentConstraint))
|
|
return diagnoseGeneralConversionFailure();
|
|
|
|
// In the absense of a better conversion constraint failure, point out the
|
|
// inability to find an appropriate overload.
|
|
if (overloadConstraint) {
|
|
auto overloadChoice = overloadConstraint->getOverloadChoice();
|
|
auto overloadName = overloadChoice.getDecl()->getName();
|
|
Type argType = getDiagnosticTypeFromExpr(expr);
|
|
|
|
if (!argType.isNull() &&
|
|
!argType->getAs<TypeVariableType>() &&
|
|
isa<ApplyExpr>(expr)) {
|
|
if (argType->getAs<TupleType>()) {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_find_appropriate_overload_with_type_list,
|
|
overloadName.str(), argType)
|
|
.highlight(expr->getSourceRange());
|
|
} else {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_find_appropriate_overload_with_type,
|
|
overloadName.str(),
|
|
argType)
|
|
.highlight(expr->getSourceRange());
|
|
}
|
|
} else {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_find_appropriate_overload,
|
|
overloadName.str())
|
|
.highlight(expr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GeneralFailureDiagnosis::diagnoseGeneralConversionFailure() {
|
|
|
|
// Otherwise, if we have a conversion constraint, use that as the basis for
|
|
// the diagnostic.
|
|
if (conversionConstraint || argumentConstraint) {
|
|
auto constraint = argumentConstraint ?
|
|
argumentConstraint :
|
|
conversionConstraint;
|
|
|
|
if (conformanceConstraint) {
|
|
if (conformanceConstraint->getTypeVariables().size() <
|
|
constraint->getTypeVariables().size()) {
|
|
constraint = conformanceConstraint;
|
|
}
|
|
}
|
|
|
|
auto locator = constraint->getLocator();
|
|
auto anchor = locator ? locator->getAnchor() : expr;
|
|
std::pair<Type, Type> types = getBoundTypesFromConstraint(CS,
|
|
expr,
|
|
constraint);
|
|
|
|
if (argumentConstraint) {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::could_not_convert_argument,
|
|
types.first).
|
|
highlight(anchor->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
// If it's a type variable failing a conformance, avoid printing the type
|
|
// variable and just print the conformance.
|
|
if ((constraint->getKind() == ConstraintKind::ConformsTo) &&
|
|
types.first->getAs<TypeVariableType>()) {
|
|
CS->TC.diagnose(anchor->getLoc(),
|
|
diag::single_expression_conformance_failure,
|
|
types.first)
|
|
.highlight(anchor->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
auto fromType = getTypeOfIndependentSubExpression(expr);
|
|
|
|
if (fromType->getAs<ErrorType>())
|
|
fromType = types.first.getPointer();
|
|
|
|
fromType = fromType->getRValueType();
|
|
|
|
auto toType = CS->getConversionType(expr);
|
|
|
|
if (!toType)
|
|
toType = CS->getContextualType(expr);
|
|
|
|
if (!toType)
|
|
toType = types.second.getPointer();
|
|
|
|
// If the second type is a type variable, the expression itself is
|
|
// ambiguous.
|
|
if (fromType->getAs<UnboundGenericType>() ||
|
|
toType->getAs<TypeVariableType>()) {
|
|
if (isa<ClosureExpr>(expr)) {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_infer_closure_type);
|
|
|
|
return true;
|
|
} else {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::type_of_expression_is_ambiguous);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Special case the diagnostic for a function result-type mismatch.
|
|
if (expr->isReturnExpr()) {
|
|
if (toType->isVoid()) {
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_return_value_from_void_func);
|
|
|
|
return true;
|
|
}
|
|
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::cannot_convert_to_return_type,
|
|
fromType,
|
|
toType).highlight(anchor->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
auto failureKind =
|
|
Failure::TypesNotConvertible - Failure::TypesNotEqual;
|
|
|
|
CS->TC.diagnose(anchor->getLoc(),
|
|
diag::invalid_relation,
|
|
failureKind,
|
|
fromType, toType)
|
|
.highlight(anchor->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GeneralFailureDiagnosis::diagnoseGeneralFailure() {
|
|
|
|
return diagnoseGeneralValueMemberFailure() ||
|
|
diagnoseGeneralOverloadFailure() ||
|
|
diagnoseGeneralConversionFailure();
|
|
}
|
|
|
|
Type GeneralFailureDiagnosis::getTypeOfIndependentSubExpression(Expr *subExpr) {
|
|
|
|
// Track if this sub-expression is currently being diagnosed.
|
|
if (CS->TC.exprIsBeingDiagnosed(subExpr))
|
|
return subExpr->getType();
|
|
|
|
CS->TC.addExprForDiagnosis(subExpr);
|
|
|
|
if (!isa<ClosureExpr>(subExpr) &&
|
|
(dyn_cast<CallExpr>(subExpr) ||
|
|
dyn_cast<ArrayExpr>(subExpr) ||
|
|
typeIsNotSpecialized(subExpr->getType()))) {
|
|
|
|
// Store off the sub-expression, in case a new one is provided via the
|
|
// type check operation.
|
|
Expr *preCheckedExpr = subExpr;
|
|
|
|
CS->TC.eraseTypeData(subExpr);
|
|
|
|
CS->TC.typeCheckExpression(subExpr, CS->DC, Type(), Type(), false);
|
|
|
|
// Reset the type of the previous expression. This prevents stale type
|
|
// variable data from being leaked out of the temporary constraint system.
|
|
if (preCheckedExpr != subExpr)
|
|
preCheckedExpr->setType(subExpr->getType());
|
|
}
|
|
|
|
assert(subExpr->getType());
|
|
|
|
return subExpr->getType();
|
|
}
|
|
|
|
bool GeneralFailureDiagnosis::diagnoseContextualConversionError() {
|
|
|
|
TypeBase *contextualType = CS->getConversionType(expr);
|
|
|
|
if (!contextualType) {
|
|
contextualType = CS->getContextualType(expr);
|
|
if (!contextualType) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto subExprTy = getTypeOfIndependentSubExpression(expr);
|
|
|
|
if (subExprTy->isEqual(contextualType))
|
|
return false;
|
|
|
|
// We've already caught the error.
|
|
if (subExprTy->getAs<ErrorType>())
|
|
return true;
|
|
|
|
if (subExprTy->getAs<TypeVariableType>())
|
|
return false;
|
|
|
|
CS->TC.diagnose(expr->getLoc(),
|
|
diag::invalid_relation,
|
|
Failure::FailureKind::TypesNotConvertible -
|
|
Failure::FailureKind::TypesNotEqual,
|
|
subExprTy, contextualType)
|
|
.highlight(expr->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// FIXME: Right now, a "matching" overload is one with a parameter whose type
|
|
/// is identical to one of the argument types. We can obviously do something
|
|
/// more sophisticated with this.
|
|
void FailureDiagnosis::suggestPotentialOverloads(
|
|
const StringRef functionName,
|
|
const SourceLoc &loc,
|
|
const SmallVectorImpl<Type> ¶mLists,
|
|
const SmallVectorImpl<Type> &argTypes) {
|
|
if (!argTypes.size()) {
|
|
return;
|
|
}
|
|
|
|
std::string suggestionText = "";
|
|
std::map<std::string, bool> dupes;
|
|
|
|
for (auto paramList : paramLists) {
|
|
SmallVector<Identifier, 16> paramNames;
|
|
SmallVector<Type, 16> paramTypes;
|
|
|
|
// Assemble the parameter type list.
|
|
if (auto parenType = dyn_cast<ParenType>(paramList.getPointer())) {
|
|
paramNames.push_back(Identifier());
|
|
paramTypes.push_back(parenType->getUnderlyingType());
|
|
} else if (auto tupleType = paramList->getAs<TupleType>()) {
|
|
for (auto field : tupleType->getElements()) {
|
|
paramNames.push_back(field.getName());
|
|
paramTypes.push_back(field.getType());
|
|
}
|
|
}
|
|
|
|
if (paramTypes.size() != argTypes.size())
|
|
continue;
|
|
|
|
for (size_t i = 0; i < paramTypes.size(); i++) {
|
|
auto pt = paramTypes[i];
|
|
auto at = argTypes[i];
|
|
|
|
if (pt->isEqual(at)) {
|
|
auto typeListString = getTypeListString(paramNames, paramTypes);
|
|
if (!dupes[typeListString]) {
|
|
dupes[typeListString] = true;
|
|
if (suggestionText.length())
|
|
suggestionText += ", ";
|
|
suggestionText += "(" + typeListString + ")";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!suggestionText.length())
|
|
return;
|
|
|
|
CS->TC.diagnose(loc,
|
|
diag::suggest_partial_overloads,
|
|
functionName,
|
|
suggestionText);
|
|
}
|
|
|
|
|
|
/// If an UnresolvedDotExpr has been resolved by the constraint system, return
|
|
/// the decl that it references.
|
|
static ValueDecl *findResolvedMemberRef(ConstraintLocator *locator,
|
|
ConstraintSystem &CS) {
|
|
auto *resolvedOverloadSets = CS.getResolvedOverloadSets();
|
|
if (!resolvedOverloadSets) return nullptr;
|
|
|
|
// Search through the resolvedOverloadSets to see if we have a resolution for
|
|
// this member. This is an O(n) search, but only happens when producing an
|
|
// error diagnostic.
|
|
for (auto resolved = resolvedOverloadSets;
|
|
resolved; resolved = resolved->Previous) {
|
|
if (resolved->Locator != locator) continue;
|
|
|
|
// We only handle the simplest decl binding.
|
|
if (resolved->Choice.getKind() != OverloadChoiceKind::Decl)
|
|
return nullptr;
|
|
return resolved->Choice.getDecl();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
/// Given an expression that has a non-lvalue type, dig into it until we find
|
|
/// the part of the expression that prevents the entire subexpression from being
|
|
/// mutable. For example, in a sequence like "x.v.v = 42" we want to complain
|
|
/// about "x" being a let property if "v.v" are both mutable.
|
|
///
|
|
/// This returns the base subexpression that looks immutable (or that can't be
|
|
/// analyzed any further) along with a decl extracted from it if we could.
|
|
///
|
|
static std::pair<Expr*, ValueDecl*>
|
|
resolveImmutableBase(Expr *expr, ConstraintSystem &CS) {
|
|
expr = expr->getSemanticsProvidingExpr();
|
|
|
|
// Provide specific diagnostics for assignment to subscripts whose base expr
|
|
// is known to be an rvalue.
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(expr)) {
|
|
// If we found a decl for the subscript, check to see if it is a set-only
|
|
// subscript decl.
|
|
auto loc = CS.getConstraintLocator(SE, ConstraintLocator::SubscriptMember);
|
|
auto *member =
|
|
dyn_cast_or_null<SubscriptDecl>(findResolvedMemberRef(loc, CS));
|
|
|
|
// If it isn't settable, return it.
|
|
if (member) {
|
|
if (!member->isSettable() ||
|
|
!member->isSetterAccessibleFrom(CS.DC))
|
|
return { expr, member };
|
|
}
|
|
|
|
// If it is settable, then the base must be the problem, recurse.
|
|
return resolveImmutableBase(SE->getBase(), CS);
|
|
}
|
|
|
|
// Look through property references.
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
|
|
// If we found a decl for the UDE, check it.
|
|
auto loc = CS.getConstraintLocator(UDE, ConstraintLocator::Member);
|
|
auto *member = dyn_cast_or_null<VarDecl>(findResolvedMemberRef(loc, CS));
|
|
|
|
// If the member isn't settable, then it is the problem: return it.
|
|
if (member) {
|
|
if (!member->isSettable(nullptr) ||
|
|
!member->isSetterAccessibleFrom(CS.DC))
|
|
return { expr, member };
|
|
}
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(UDE->getBase(), CS);
|
|
}
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(expr)) {
|
|
// If the member isn't settable, then it is the problem: return it.
|
|
if (auto member = dyn_cast<AbstractStorageDecl>(MRE->getMember().getDecl()))
|
|
if (!member->isSettable(nullptr) ||
|
|
!member->isSetterAccessibleFrom(CS.DC))
|
|
return { expr, member };
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(MRE->getBase(), CS);
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(expr))
|
|
return { expr, DRE->getDecl() };
|
|
|
|
// Look through x!
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(expr))
|
|
return resolveImmutableBase(FVE->getSubExpr(), CS);
|
|
|
|
return { expr, nullptr };
|
|
}
|
|
|
|
static void diagnoseSubElementFailure(Expr *destExpr,
|
|
SourceLoc loc,
|
|
ConstraintSystem &CS,
|
|
Diag<StringRef> diagID,
|
|
Diag<Type> unknownDiagID) {
|
|
auto &TC = CS.getTypeChecker();
|
|
|
|
// Walk through the destination expression, resolving what the problem is. If
|
|
// we find a node in the lvalue path that is problematic, this returns it.
|
|
auto immInfo = resolveImmutableBase(destExpr, CS);
|
|
|
|
// Otherwise, we cannot resolve this because the available setter candidates
|
|
// are all mutating and the base must be mutating. If we dug out a
|
|
// problematic decl, we can produce a nice tailored diagnostic.
|
|
if (auto *VD = dyn_cast_or_null<VarDecl>(immInfo.second)) {
|
|
std::string message = "'";
|
|
message += VD->getName().str().str();
|
|
message += "'";
|
|
|
|
if (VD->isImplicit())
|
|
message += " is immutable";
|
|
else if (VD->isLet())
|
|
message += " is a 'let' constant";
|
|
else if (VD->hasAccessorFunctions() && !VD->getSetter())
|
|
message += " is a get-only property";
|
|
else if (!VD->isSetterAccessibleFrom(CS.DC))
|
|
message += " setter is inaccessible";
|
|
else {
|
|
message += " is immutable";
|
|
}
|
|
TC.diagnose(loc, diagID, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
|
|
// If this is a simple variable marked with a 'let', emit a note to fixit
|
|
// hint it to 'var'.
|
|
VD->emitLetToVarNoteIfSimple(CS.DC);
|
|
return;
|
|
}
|
|
|
|
// If the underlying expression was a read-only subscript, diagnose that.
|
|
if (auto *SD = dyn_cast_or_null<SubscriptDecl>(immInfo.second)) {
|
|
StringRef message;
|
|
if (!SD->getSetter())
|
|
message = "subscript is get-only";
|
|
else if (!SD->isSetterAccessibleFrom(CS.DC))
|
|
message = "subscript setter is inaccessible";
|
|
else
|
|
message = "subscript is immutable";
|
|
|
|
TC.diagnose(loc, diagID, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// If the expression is the result of a call, it is an rvalue, not a mutable
|
|
// lvalue.
|
|
if (auto *AE = dyn_cast<ApplyExpr>(immInfo.first)) {
|
|
std::string name = "call";
|
|
if (isa<PrefixUnaryExpr>(AE) || isa<PostfixUnaryExpr>(AE))
|
|
name = "unary operator";
|
|
else if (isa<BinaryExpr>(AE))
|
|
name = "binary operator";
|
|
else if (isa<CallExpr>(AE))
|
|
name = "function call";
|
|
else if (isa<DotSyntaxCallExpr>(AE) || isa<DotSyntaxBaseIgnoredExpr>(AE))
|
|
name = "method call";
|
|
|
|
if (auto *DRE =
|
|
dyn_cast<DeclRefExpr>(AE->getFn()->getSemanticsProvidingExpr()))
|
|
name = std::string("'") + DRE->getDecl()->getName().str().str() + "'";
|
|
|
|
TC.diagnose(loc, diagID, name + " returns immutable value")
|
|
.highlight(AE->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
TC.diagnose(loc, unknownDiagID, destExpr->getType())
|
|
.highlight(immInfo.first->getSourceRange());
|
|
}
|
|
|
|
|
|
void FailureDiagnosis::diagnoseAssignmentFailure(Expr *dest, Type destTy,
|
|
SourceLoc equalLoc,
|
|
ConstraintSystem &CS) {
|
|
auto &TC = CS.getTypeChecker();
|
|
|
|
// Diagnose obvious assignments to literals.
|
|
if (isa<LiteralExpr>(dest->getSemanticsProvidingExpr())) {
|
|
TC.diagnose(equalLoc, diag::cannot_assign_to_literal);
|
|
return;
|
|
}
|
|
|
|
Diag<StringRef> diagID;
|
|
if (isa<DeclRefExpr>(dest))
|
|
diagID = diag::assignment_lhs_is_immutable_variable;
|
|
else if (isa<ForceValueExpr>(dest))
|
|
diagID = diag::assignment_bang_has_immutable_subcomponent;
|
|
else if (isa<UnresolvedDotExpr>(dest) || isa<MemberRefExpr>(dest))
|
|
diagID = diag::assignment_lhs_is_immutable_property;
|
|
else if (isa<SubscriptExpr>(dest))
|
|
diagID = diag::assignment_subscript_has_immutable_base;
|
|
else {
|
|
diagID = diag::assignment_lhs_is_immutable_variable;
|
|
}
|
|
|
|
diagnoseSubElementFailure(dest, equalLoc, CS, diagID,
|
|
diag::assignment_lhs_not_lvalue);
|
|
}
|
|
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForBinaryExpr() {
|
|
assert(expr->getKind() == ExprKind::Binary);
|
|
|
|
if (diagnoseContextualConversionError())
|
|
return true;
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto binop = cast<BinaryExpr>(expr);
|
|
|
|
auto argExpr = cast<TupleExpr>(binop->getArg());
|
|
auto argTuple = getTypeOfIndependentSubExpression(argExpr)->
|
|
getAs<TupleType>();
|
|
|
|
// If the argument type is not a tuple, we've posted the diagnostic
|
|
// recursively.
|
|
if (!argTuple)
|
|
return true;
|
|
|
|
ValueDecl *CandidatePtr = nullptr; // temporary for the ArrayRef to reference.
|
|
ArrayRef<ValueDecl *> Candidates;
|
|
if (auto declRefExpr = dyn_cast<DeclRefExpr>(binop->getFn())) {
|
|
CandidatePtr = declRefExpr->getDecl();
|
|
Candidates = CandidatePtr;
|
|
} else if (auto overloadedDRE =
|
|
dyn_cast<OverloadedDeclRefExpr>(binop->getFn())) {
|
|
Candidates = overloadedDRE->getDecls();
|
|
} else if (overloadConstraint) {
|
|
CandidatePtr = overloadConstraint->getOverloadChoice().getDecl();
|
|
Candidates = CandidatePtr;
|
|
} else {
|
|
llvm_unreachable("unrecognized unop function kind");
|
|
}
|
|
std::string overloadName = Candidates[0]->getNameStr();
|
|
assert(!overloadName.empty());
|
|
|
|
SmallVector<Type, 2> argTypes;
|
|
argTypes.push_back(argTuple->getElementType(0));
|
|
argTypes.push_back(argTuple->getElementType(1));
|
|
|
|
auto argTyName1 = getUserFriendlyTypeName(argTypes[0]);
|
|
auto argTyName2 = getUserFriendlyTypeName(argTypes[1]);
|
|
expr->setType(ErrorType::get(CS->getASTContext()));
|
|
|
|
|
|
// A common error is to apply an operator that only has an inout LHS (e.g. +=)
|
|
// to non-lvalues (e.g. a local let). Produce a nice diagnostic for this
|
|
// case.
|
|
if (!argTypes[0]->isLValueType()) {
|
|
bool allAreLValues = true;
|
|
for (auto decl : Candidates) {
|
|
auto fnType = decl->getType()->getAs<AnyFunctionType>();
|
|
if (!fnType) continue;
|
|
|
|
auto tupleType = fnType->getInput()->getAs<TupleType>();
|
|
if (!tupleType || tupleType->getNumElements() < 1) continue;
|
|
|
|
if (!tupleType->getElement(0).getType()->is<InOutType>()) {
|
|
allAreLValues = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (allAreLValues) {
|
|
// Ok, that's the problem. Special case it further based on what the
|
|
// actual expression is.
|
|
diagnoseSubElementFailure(argExpr->getElement(0), binop->getLoc(), *CS,
|
|
diag::cannot_apply_lvalue_binop_to_subelement,
|
|
diag::cannot_apply_lvalue_binop_to_rvalue);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
if (argTyName1.compare(argTyName2)) {
|
|
CS->TC.diagnose(argExpr->getElement(0)->getLoc(),
|
|
diag::cannot_apply_binop_to_args,
|
|
overloadName,
|
|
argTyName1,
|
|
argTyName2);
|
|
} else {
|
|
CS->TC.diagnose(argExpr->getElement(0)->getLoc(),
|
|
diag::cannot_apply_binop_to_same_args,
|
|
overloadName,
|
|
argTyName1);
|
|
}
|
|
|
|
if (auto ODRE = dyn_cast<OverloadedDeclRefExpr>(binop->getFn())) {
|
|
SmallVector<Type, 16> paramLists;
|
|
for (auto DRE : ODRE->getDecls())
|
|
if (auto fnType = DRE->getType()->getAs<AnyFunctionType>())
|
|
paramLists.push_back(fnType->getInput());
|
|
|
|
suggestPotentialOverloads(overloadName, argExpr->getElement(0)->getLoc(),
|
|
paramLists, argTypes);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForUnaryExpr() {
|
|
assert(expr->getKind() == ExprKind::PostfixUnary ||
|
|
expr->getKind() == ExprKind::PrefixUnary);
|
|
|
|
if (diagnoseContextualConversionError())
|
|
return true;
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto applyExpr = cast<ApplyExpr>(expr);
|
|
auto argExpr = applyExpr->getArg();
|
|
auto argType = getTypeOfIndependentSubExpression(argExpr);
|
|
|
|
// If the argument type is an error, we've posted the diagnostic
|
|
// recursively.
|
|
if (isErrorTypeKind(argType))
|
|
return true;
|
|
|
|
ValueDecl *CandidatePtr = nullptr; // temporary for the ArrayRef to reference.
|
|
ArrayRef<ValueDecl *> Candidates;
|
|
|
|
if (auto declRefExpr = dyn_cast<DeclRefExpr>(applyExpr->getFn())) {
|
|
CandidatePtr = declRefExpr->getDecl();
|
|
Candidates = CandidatePtr;
|
|
} else if (auto overloadedDRE =
|
|
dyn_cast<OverloadedDeclRefExpr>(applyExpr->getFn())) {
|
|
Candidates = overloadedDRE->getDecls();
|
|
} else if (overloadConstraint) {
|
|
CandidatePtr = overloadConstraint->getOverloadChoice().getDecl();
|
|
Candidates = CandidatePtr;
|
|
} else {
|
|
llvm_unreachable("unrecognized unop function kind");
|
|
}
|
|
|
|
std::string overloadName = Candidates[0]->getNameStr();
|
|
assert(!overloadName.empty() && !Candidates.empty());
|
|
auto argTyName = getUserFriendlyTypeName(argType);
|
|
|
|
|
|
expr->setType(ErrorType::get(CS->getASTContext()));
|
|
|
|
// A common error is to apply an operator that only has inout forms (e.g. ++)
|
|
// to non-lvalues (e.g. a local let). Produce a nice diagnostic for this
|
|
// case.
|
|
if (!argType->isLValueType()) {
|
|
bool allAreLValues = true;
|
|
for (auto decl : Candidates) {
|
|
auto fnType = decl->getType()->getAs<AnyFunctionType>();
|
|
if (fnType && !fnType->getInput()->is<InOutType>()) {
|
|
allAreLValues = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (allAreLValues) {
|
|
// Diagnose the case when the failure.
|
|
diagnoseSubElementFailure(argExpr, applyExpr->getFn()->getLoc(), *CS,
|
|
diag::cannot_apply_lvalue_unop_to_subelement,
|
|
diag::cannot_apply_lvalue_unop_to_rvalue);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: Note that we don't currently suggest a partially matching overload.
|
|
CS->TC.diagnose(argExpr->getLoc(),
|
|
diag::cannot_apply_unop_to_arg,
|
|
overloadName,
|
|
argTyName);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForPrefixUnaryExpr() {
|
|
return diagnoseFailureForUnaryExpr();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForPostfixUnaryExpr() {
|
|
return diagnoseFailureForUnaryExpr();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForSubscriptExpr() {
|
|
assert(expr->getKind() == ExprKind::Subscript ||
|
|
expr->getKind() == ExprKind::PrefixUnary);
|
|
|
|
if (diagnoseContextualConversionError())
|
|
return true;
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto subscriptExpr = cast<SubscriptExpr>(expr);
|
|
auto indexExpr = subscriptExpr->getIndex();
|
|
auto baseExpr = subscriptExpr->getBase();
|
|
|
|
auto indexType = getTypeOfIndependentSubExpression(indexExpr);
|
|
|
|
// Extract the exact argument type from the argument tuple.
|
|
if (auto parenTy = dyn_cast<ParenType>(indexType.getPointer())) {
|
|
indexType = parenTy->getUnderlyingType();
|
|
}
|
|
|
|
// An error has been posted elsewhere.
|
|
if (isErrorTypeKind(indexType))
|
|
return true;
|
|
|
|
auto baseType = getTypeOfIndependentSubExpression(baseExpr);
|
|
|
|
auto indexTypeName = getUserFriendlyTypeName(indexType);
|
|
auto baseTypeName = getUserFriendlyTypeName(baseType);
|
|
|
|
assert(!(indexTypeName.empty() || baseTypeName.empty()));
|
|
|
|
// FIXME: As with unary applications, we don't currently suggest a partially
|
|
// matching overload.
|
|
CS->TC.diagnose(indexExpr->getLoc(),
|
|
diag::cannot_subscript_with_index,
|
|
baseTypeName,
|
|
indexTypeName);
|
|
|
|
expr->setType(ErrorType::get(CS->getASTContext()));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForCallExpr() {
|
|
assert(expr->getKind() == ExprKind::Call);
|
|
|
|
// If there are multiple available overloads to a call expression that
|
|
// didn't have one of the expected attributes below, we may have recorded
|
|
// multiple failures. These shouldn't fall through to the contextual
|
|
// conversion diagnostics because the actual types may be correct
|
|
// (minus the attribute).
|
|
SmallPtrSet<Type, 3> noEscapeSecondTypes;
|
|
for (auto failure : CS->failures) {
|
|
if (failure.getLocator() && failure.getLocator()->getAnchor() != expr)
|
|
continue;
|
|
|
|
if (failure.getKind() == Failure::FunctionNoEscapeMismatch) {
|
|
if (noEscapeSecondTypes.insert(failure.getSecondType()).second)
|
|
::diagnoseFailure(*CS, failure, expr, false);
|
|
}
|
|
}
|
|
|
|
if (diagnoseContextualConversionError())
|
|
return true;
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto callExpr = cast<CallExpr>(expr);
|
|
auto fnExpr = callExpr->getFn();
|
|
auto argExpr = callExpr->getArg();
|
|
|
|
// An error was posted elsewhere.
|
|
if (isErrorTypeKind(fnExpr->getType())) {
|
|
return true;
|
|
}
|
|
|
|
std::string overloadName = "";
|
|
|
|
bool isClosureInvocation = false;
|
|
bool isInvalidTrailingClosureTarget = false;
|
|
bool foundIntermediateError = false;
|
|
bool isInitializer = false;
|
|
bool isOverloadedFn = false;
|
|
|
|
llvm::SmallVector<Type, 16> paramLists;
|
|
llvm::SmallVector<Identifier, 16> argNames;
|
|
llvm::SmallVector<Type, 16> argTypes;
|
|
|
|
// Obtain the function's name, and collect any parameter lists for diffing
|
|
// purposes.
|
|
if (auto DRE = dyn_cast<DeclRefExpr>(fnExpr)) {
|
|
overloadName = DRE->getDecl()->getNameStr();
|
|
|
|
if (auto fnType = DRE->getDecl()->getType()->getAs<AnyFunctionType>()) {
|
|
paramLists.push_back(fnType->getInput());
|
|
}
|
|
|
|
} else if (auto ODRE = dyn_cast<OverloadedDeclRefExpr>(fnExpr)) {
|
|
isOverloadedFn = true;
|
|
overloadName = ODRE->getDecls()[0]->getNameStr().str();
|
|
|
|
// Collect the parameters for later use.
|
|
for (auto D : ODRE->getDecls()) {
|
|
if (auto fnType = D->getType()->getAs<AnyFunctionType>()) {
|
|
paramLists.push_back(fnType->getInput());
|
|
}
|
|
}
|
|
|
|
} else if (auto TE = dyn_cast<TypeExpr>(fnExpr)) {
|
|
isInitializer = true;
|
|
|
|
// It's always a metatype type, so use the instance type name.
|
|
auto instanceType = TE->getType()->getAs<MetatypeType>()->getInstanceType();
|
|
overloadName = instanceType->getString();
|
|
|
|
// TODO: figure out right value for isKnownPrivate
|
|
if (!instanceType->getAs<TupleType>()) {
|
|
auto ctors = CS->TC.lookupConstructors(CS->DC, instanceType);
|
|
for (auto ctor : ctors) {
|
|
if (auto fnType = ctor->getType()->getAs<AnyFunctionType>()) {
|
|
// skip type argument
|
|
if (auto fnType2 = fnType->getResult()->getAs<AnyFunctionType>()) {
|
|
paramLists.push_back(fnType2->getInput());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (paramLists.size() > 1) {
|
|
isOverloadedFn = true;
|
|
}
|
|
} else if (auto UDE = dyn_cast<UnresolvedDotExpr>(fnExpr)) {
|
|
overloadName = UDE->getName().str().str();
|
|
} else if (isa<UnresolvedConstructorExpr>(fnExpr)) {
|
|
overloadName = "init";
|
|
} else {
|
|
isClosureInvocation = true;
|
|
|
|
auto unwrappedExpr = unwrapParenExpr(fnExpr);
|
|
isInvalidTrailingClosureTarget = !isa<ClosureExpr>(unwrappedExpr);
|
|
}
|
|
|
|
// Build the argument type list.
|
|
if (auto parenExpr = dyn_cast<ParenExpr>(argExpr)) {
|
|
auto subType =
|
|
getTypeOfIndependentSubExpression((parenExpr->getSubExpr()));
|
|
|
|
if (isErrorTypeKind(subType))
|
|
foundIntermediateError = true;
|
|
|
|
argNames.push_back(Identifier());
|
|
argTypes.push_back(subType);
|
|
} else if (auto tupleExpr = dyn_cast<TupleExpr>(argExpr)) {
|
|
for (unsigned i = 0; i < tupleExpr->getNumElements(); i++) {
|
|
Identifier elName = tupleExpr->getElementName(i);
|
|
Expr *elExpr = tupleExpr->getElement(i);
|
|
auto elType = getTypeOfIndependentSubExpression(elExpr);
|
|
|
|
if (isErrorTypeKind(elType))
|
|
foundIntermediateError = true;
|
|
|
|
argNames.push_back(elName);
|
|
argTypes.push_back(elType);
|
|
}
|
|
} else if (auto typeExpr = dyn_cast<TypeExpr>(argExpr)) {
|
|
argNames.push_back(Identifier());
|
|
argTypes.push_back(typeExpr->getType());
|
|
}
|
|
|
|
if (foundIntermediateError)
|
|
return true;
|
|
|
|
if (argTypes.size()) {
|
|
|
|
std::string argString = "(" + getTypeListString(argNames, argTypes) + ")";
|
|
|
|
if (!isOverloadedFn) {
|
|
if (isClosureInvocation) {
|
|
|
|
if (isInvalidTrailingClosureTarget) {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
diag::invalid_trailing_closure_target);
|
|
} else {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
diag::cannot_invoke_closure,
|
|
argString);
|
|
}
|
|
} else {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
isInitializer ?
|
|
diag::cannot_apply_initializer_to_args :
|
|
diag::cannot_apply_function_to_args,
|
|
overloadName,
|
|
argString);
|
|
}
|
|
} else {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
isInitializer ?
|
|
diag::cannot_find_appropriate_initializer_with_list :
|
|
diag::cannot_find_appropriate_overload_with_list,
|
|
overloadName,
|
|
argString);
|
|
}
|
|
} else {
|
|
|
|
if (isClosureInvocation) {
|
|
CS->TC.diagnose(fnExpr->getLoc(), diag::cannot_infer_closure_type);
|
|
|
|
if (!isInvalidTrailingClosureTarget) {
|
|
auto closureExpr = dyn_cast<ClosureExpr>(unwrapParenExpr(fnExpr));
|
|
|
|
if (!closureExpr->hasSingleExpressionBody() &&
|
|
!closureExpr->hasExplicitResultType() &&
|
|
closureExpr->getBody()->getElements().size()) {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
diag::mult_stmt_closures_require_explicit_result);
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
CS->TC.diagnose(fnExpr->getLoc(),
|
|
isInitializer ?
|
|
diag::cannot_find_initializer_with_no_params :
|
|
diag::cannot_find_overload_with_no_params,
|
|
overloadName);
|
|
}
|
|
}
|
|
|
|
// Did the user intend on invoking a different overload?
|
|
if (paramLists.size()) {
|
|
if(!isOverloadedFn) {
|
|
std::string paramString = "";
|
|
SmallVector<Identifier, 16> paramNames;
|
|
SmallVector<Type, 16> paramTypes;
|
|
|
|
if (auto parenType = dyn_cast<ParenType>(paramLists[0].getPointer())) {
|
|
paramNames.push_back(Identifier());
|
|
paramTypes.push_back(parenType->getUnderlyingType());
|
|
} else if (auto tupleType = paramLists[0]->getAs<TupleType>()) {
|
|
for (auto field : tupleType->getElements()) {
|
|
paramNames.push_back(field.getName());
|
|
paramTypes.push_back(field.getType());
|
|
}
|
|
}
|
|
|
|
if (paramTypes.size()) {
|
|
paramString = "(" + getTypeListString(paramNames, paramTypes) + ")";
|
|
|
|
CS->TC.diagnose(argExpr->getLoc(),
|
|
diag::expected_certain_args,
|
|
paramString);
|
|
}
|
|
} else {
|
|
suggestPotentialOverloads(overloadName,
|
|
fnExpr->getLoc(),
|
|
paramLists,
|
|
argTypes);
|
|
}
|
|
}
|
|
|
|
expr->setType(ErrorType::get(CS->getASTContext()));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForAssignExpr() {
|
|
assert(expr->getKind() == ExprKind::Assign);
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto assignExpr = cast<AssignExpr>(expr);
|
|
auto destExpr = assignExpr->getDest();
|
|
auto srcExpr = assignExpr->getSrc();
|
|
|
|
auto destType = getTypeOfIndependentSubExpression(destExpr);
|
|
auto srcType = getTypeOfIndependentSubExpression(srcExpr);
|
|
|
|
// If the source type is already an error type, we've likely already posted
|
|
// an error due to a contextual type conversion error.
|
|
if (isErrorTypeKind(srcType) || isErrorTypeKind(destType))
|
|
return true;
|
|
|
|
// If the result type is a non-lvalue, then we are failing because it is
|
|
// immutable and that's not a great thing to assign to.
|
|
if (!destType->isLValueType()) {
|
|
diagnoseAssignmentFailure(destExpr, destType, assignExpr->getLoc(), *CS);
|
|
return true;
|
|
}
|
|
|
|
auto destTypeName = getUserFriendlyTypeName(destType);
|
|
auto srcTypeName = getUserFriendlyTypeName(srcType);
|
|
CS->TC.diagnose(srcExpr->getLoc(), diag::cannot_assign_values, srcTypeName,
|
|
destTypeName);
|
|
return true;
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForInOutExpr() {
|
|
assert(expr->getKind() == ExprKind::InOut);
|
|
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
|
|
auto inoutExpr = cast<InOutExpr>(expr);
|
|
auto addressedExpr = inoutExpr->getSubExpr();
|
|
|
|
auto subExprType = getTypeOfIndependentSubExpression(addressedExpr);
|
|
|
|
|
|
// The common cause is that the operand is not an lvalue.
|
|
if (!subExprType->isLValueType()) {
|
|
diagnoseSubElementFailure(addressedExpr, inoutExpr->getLoc(), *CS,
|
|
diag::cannot_pass_rvalue_inout_subelement,
|
|
diag::cannot_pass_rvalue_inout);
|
|
return true;
|
|
}
|
|
|
|
return diagnoseGeneralFailure();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForCoerceExpr() {
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
CoerceExpr *coerceExpr = cast<CoerceExpr>(expr);
|
|
|
|
Expr *subExpr = coerceExpr->getSubExpr();
|
|
Type subType = getTypeOfIndependentSubExpression(subExpr);
|
|
if (isErrorTypeKind(subType)) {
|
|
return true;
|
|
}
|
|
|
|
std::pair<Type, Type> conversionTypes(nullptr, nullptr);
|
|
if (conversionConstraint &&
|
|
conversionConstraint->getKind() == ConstraintKind::ExplicitConversion &&
|
|
conversionConstraint->getLocator()->getAnchor() == expr) {
|
|
conversionTypes = getBoundTypesFromConstraint(CS, coerceExpr,
|
|
conversionConstraint);
|
|
} else {
|
|
conversionTypes.first = subType->getLValueOrInOutObjectType();
|
|
conversionTypes.second = coerceExpr->getType();
|
|
}
|
|
|
|
if (conversionTypes.first && conversionTypes.second) {
|
|
CS->TC.diagnose(coerceExpr->getLoc(), diag::invalid_relation,
|
|
Failure::TypesNotConvertible - Failure::TypesNotEqual,
|
|
conversionTypes.first, conversionTypes.second)
|
|
.highlight(coerceExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
return diagnoseGeneralFailure();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForForcedCheckedCastExpr() {
|
|
assert(expr->getKind() == ExprKind::ForcedCheckedCast);
|
|
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
|
|
ForcedCheckedCastExpr *castExpr = dyn_cast<ForcedCheckedCastExpr>(expr);
|
|
|
|
Expr *subExpr = castExpr->getSubExpr();
|
|
Type subType = getTypeOfIndependentSubExpression(subExpr);
|
|
if (isErrorTypeKind(subType)) {
|
|
return true;
|
|
}
|
|
|
|
std::pair<Type, Type> conversionTypes(nullptr, nullptr);
|
|
if (conversionConstraint &&
|
|
conversionConstraint->getKind() == ConstraintKind::CheckedCast &&
|
|
conversionConstraint->getLocator()->getAnchor() == expr) {
|
|
conversionTypes = getBoundTypesFromConstraint(CS, castExpr,
|
|
conversionConstraint);
|
|
} else {
|
|
conversionTypes.first = subType->getLValueOrInOutObjectType();
|
|
conversionTypes.second = castExpr->getType();
|
|
}
|
|
|
|
if (conversionTypes.first && conversionTypes.second) {
|
|
CS->TC.diagnose(castExpr->getLoc(), diag::invalid_relation,
|
|
Failure::TypesNotConvertible - Failure::TypesNotEqual,
|
|
conversionTypes.first, conversionTypes.second)
|
|
.highlight(castExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
return diagnoseGeneralFailure();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailureForTupleExpr() {
|
|
assert(expr->getKind() == ExprKind::Tuple);
|
|
|
|
auto tupleExpr = cast<TupleExpr>(expr);
|
|
|
|
// Stop at the first failed sub-expression.
|
|
for (auto elt : tupleExpr->getElements()) {
|
|
if (getTypeOfIndependentSubExpression(elt)->getAs<ErrorType>())
|
|
return true;
|
|
}
|
|
|
|
return diagnoseGeneralFailure();
|
|
}
|
|
|
|
bool FailureDiagnosis::diagnoseFailure() {
|
|
assert(CS && expr);
|
|
|
|
// If a bridging conversion slips through, treat it as ambiguous.
|
|
if (bridgeToObjCConstraint) {
|
|
CS->TC.diagnose(expr->getLoc(), diag::type_of_expression_is_ambiguous);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Move on to expr-specific diagnostics.
|
|
switch(expr->getKind()) {
|
|
|
|
#define EXPR(ID, PARENT) \
|
|
case ExprKind::ID: return diagnoseFailureFor##ID##Expr();
|
|
#include "swift/AST/ExprNodes.def"
|
|
|
|
}
|
|
|
|
llvm_unreachable("unrecognized expr kind");
|
|
}
|
|
|
|
/// Given a specific expression and the remnants of the failed constraint
|
|
/// system, produce a specific diagnostic.
|
|
bool ConstraintSystem::diagnoseFailureForExpr(Expr *expr) {
|
|
|
|
FailureDiagnosis diagnosis(expr, this);
|
|
|
|
// Now, attempt to diagnose the failure from the info we've collected.
|
|
if (diagnosis.diagnoseFailure())
|
|
return true;
|
|
|
|
// A DiscardAssignmentExpr is special in that it introduces a new type
|
|
// variable but places no constraints upon it. Instead, it relies on the rhs
|
|
// of its assignment expression to determine its type. Unfortunately, in the
|
|
// case of error recovery, the "_" expression may be left alone with no
|
|
// constraints for us to derive an error from. In that case, we'll fall back
|
|
// to the "outside assignment" error.
|
|
if (ActiveConstraints.empty() &&
|
|
InactiveConstraints.empty() &&
|
|
!failedConstraint) {
|
|
|
|
if (isa<DiscardAssignmentExpr>(expr)) {
|
|
TC.diagnose(expr->getLoc(), diag::discard_expr_outside_of_assignment)
|
|
.highlight(expr->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
if (auto dot = dyn_cast<UnresolvedDotExpr>(expr)) {
|
|
TC.diagnose(expr->getLoc(),
|
|
diag::not_enough_context_for_generic_method_reference,
|
|
dot->getName());
|
|
|
|
return true;
|
|
}
|
|
|
|
// If there are no posted constraints or failures, then there was
|
|
// not enough contextual information available to infer a type for the
|
|
// expression.
|
|
TC.diagnose(expr->getLoc(), diag::type_of_expression_is_ambiguous);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ConstraintSystem::salvage(SmallVectorImpl<Solution> &viable,
|
|
Expr *expr,
|
|
bool onlyFailures) {
|
|
|
|
// If there were any unavoidable failures, emit the first one we can.
|
|
if (!unavoidableFailures.empty()) {
|
|
for (auto failure : unavoidableFailures) {
|
|
|
|
// In the 'onlyFailures' case, we'll want to synthesize a locator if one
|
|
// does not exist. That allows us to emit decent diagnostics for
|
|
// constraint application failures where the constraints themselves lack
|
|
// a valid location.
|
|
if (diagnoseFailure(*this, *failure, expr, onlyFailures))
|
|
return true;
|
|
}
|
|
|
|
if (onlyFailures)
|
|
return true;
|
|
|
|
// If we can't make sense of the existing constraints (or none exist), go
|
|
// ahead and try the unavoidable failures again, but with locator
|
|
// substitutions in place.
|
|
if (!this->diagnoseFailureForExpr(expr) &&
|
|
!unavoidableFailures.empty()) {
|
|
for (auto failure : unavoidableFailures) {
|
|
if (diagnoseFailure(*this, *failure, expr, true))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// There were no unavoidable failures, so attempt to solve again, capturing
|
|
// any failures that come from our attempts to select overloads or bind
|
|
// type variables.
|
|
{
|
|
viable.clear();
|
|
|
|
// Set up solver state.
|
|
SolverState state(*this);
|
|
state.recordFailures = true;
|
|
this->solverState = &state;
|
|
|
|
// Solve the system.
|
|
solve(viable);
|
|
|
|
// Check whether we have a best solution; this can happen if we found
|
|
// a series of fixes that worked.
|
|
if (auto best = findBestSolution(viable, /*minimize=*/true)) {
|
|
if (*best != 0)
|
|
viable[0] = std::move(viable[*best]);
|
|
viable.erase(viable.begin() + 1, viable.end());
|
|
return false;
|
|
}
|
|
|
|
// FIXME: If we were able to actually fix things along the way,
|
|
// we may have to hunt for the best solution. For now, we don't care.
|
|
|
|
// If there are multiple solutions, try to diagnose an ambiguity.
|
|
if (viable.size() > 1) {
|
|
if (getASTContext().LangOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log << "---Ambiguity error: "
|
|
<< viable.size() << " solutions found---\n";
|
|
int i = 0;
|
|
for (auto &solution : viable) {
|
|
log << "---Ambiguous solution #" << i++ << "---\n";
|
|
solution.dump(&TC.Context.SourceMgr, log);
|
|
log << "\n";
|
|
}
|
|
}
|
|
|
|
if (diagnoseAmbiguity(*this, viable)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Remove the solver state.
|
|
this->solverState = nullptr;
|
|
|
|
// Fall through to produce diagnostics.
|
|
}
|
|
|
|
if (failures.size() == 1) {
|
|
auto &failure = unavoidableFailures.empty()? *failures.begin()
|
|
: **unavoidableFailures.begin();
|
|
|
|
if (diagnoseFailure(*this, failure, expr, false))
|
|
return true;
|
|
}
|
|
|
|
if (getExpressionTooComplex()) {
|
|
TC.diagnose(expr->getLoc(), diag::expression_too_complex).
|
|
highlight(expr->getSourceRange());
|
|
|
|
return true;
|
|
}
|
|
|
|
// If all else fails, attempt to diagnose the failure by looking through the
|
|
// system's constraints.
|
|
this->diagnoseFailureForExpr(expr);
|
|
|
|
return true;
|
|
}
|