Files
swift-mirror/lib/SIL/SILModule.cpp
Joe Groff 0c0d30d5eb SIL: Make ContextGenericParams a constructor parameter of SILFunction.
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.

Thanks Jordan for helping work out the serialization changes needed.

Compared to r13036, this version of the patch includes the decls_block RecordKind enumerators for the GENERIC_PARAM_LIST layouts in the sil_block RecordKind enumerator, as Jordan had suggested before. r13036 caused buildbot failures when building for iOS, but I am unable to reproduce those failures locally now.

Swift SVN r13485
2014-02-05 16:52:02 +00:00

211 lines
7.3 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILExternalSource.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
namespace swift {
/// SILTypeList - The uniqued backing store for the SILValue type list. This
/// is only exposed out of SILValue as an ArrayRef of types, so it should
/// never be used outside of libSIL.
class SILTypeList : public llvm::FoldingSetNode {
public:
unsigned NumTypes;
SILType Types[1]; // Actually variable sized.
void Profile(llvm::FoldingSetNodeID &ID) const {
for (unsigned i = 0, e = NumTypes; i != e; ++i) {
ID.AddPointer(Types[i].getOpaqueValue());
}
}
};
} // end namespace swift.
void SILExternalSource::anchor() {
}
/// SILTypeListUniquingType - This is the type of the folding set maintained by
/// SILModule that these things are uniqued into.
typedef llvm::FoldingSet<SILTypeList> SILTypeListUniquingType;
SILModule::SILModule(Module *SwiftModule)
: TheSwiftModule(SwiftModule), Stage(SILStage::Raw), Types(*this) {
TypeListUniquing = new SILTypeListUniquingType();
}
SILModule::~SILModule() {
delete (SILTypeListUniquingType*)TypeListUniquing;
}
std::pair<SILWitnessTable *, ArrayRef<Substitution>>
SILModule::lookUpWitnessTable(const ProtocolConformance *C) {
// Walk down to the base NormalProtocolConformance.
const ProtocolConformance *ParentC = C;
ArrayRef<Substitution> Subs;
while (!isa<NormalProtocolConformance>(ParentC)) {
switch (ParentC->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
ParentC = cast<InheritedProtocolConformance>(ParentC)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(ParentC);
ParentC = SC->getGenericConformance();
assert(Subs.empty() && "multiple conformance specializations?!");
Subs = SC->getGenericSubstitutions();
break;
}
}
}
const NormalProtocolConformance *NormalC
= cast<NormalProtocolConformance>(ParentC);
// If the normal conformance is for a generic type, and we didn't hit a
// specialized conformance, collect the substitutions from the generic type.
// FIXME: The AST should do this for us.
if (NormalC->getType()->isSpecialized() && Subs.empty()) {
Subs = NormalC->getType()
->gatherAllSubstitutions(NormalC->getDeclContext()->getParentModule(),
nullptr);
}
// Did we already find this?
auto found = WitnessTableLookupCache.find(NormalC);
if (found != WitnessTableLookupCache.end())
return {found->second, Subs};
// If not, search through the witness table list, caching the entries we
// visit.
for (SILWitnessTable &WT : witnessTables) {
WitnessTableLookupCache[WT.getConformance()] = &WT;
if (WT.getConformance() == NormalC)
return {&WT, Subs};
}
return {nullptr, Subs};
}
SILFunction *SILModule::getOrCreateSharedFunction(SILLocation loc,
StringRef name,
CanSILFunctionType type,
GenericParamList *params,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent) {
auto linkage = SILLinkage::Shared;
if (auto fn = lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == type);
assert(fn->getContextGenericParams() == params);
assert(fn->getLinkage() == linkage);
return fn;
}
return SILFunction::create(*this, linkage, name, type, params,
loc, isBareSILFunction, isTransparent);
}
ArrayRef<SILType> ValueBase::getTypes() const {
// No results.
if (TypeOrTypeList.isNull())
return ArrayRef<SILType>();
// Arbitrary list of results.
if (auto *TypeList = TypeOrTypeList.dyn_cast<SILTypeList*>())
return ArrayRef<SILType>(TypeList->Types, TypeList->NumTypes);
// Single result.
return TypeOrTypeList.get<SILType>();
}
/// getSILTypeList - Get a uniqued pointer to a SIL type list. This can only
/// be used by SILValue.
SILTypeList *SILModule::getSILTypeList(ArrayRef<SILType> Types) const {
assert(Types.size() > 1 && "Shouldn't use type list for 0 or 1 types");
auto UniqueMap = (SILTypeListUniquingType*)TypeListUniquing;
llvm::FoldingSetNodeID ID;
for (auto T : Types) {
ID.AddPointer(T.getOpaqueValue());
}
// If we already have this type list, just return it.
void *InsertPoint = 0;
if (SILTypeList *TypeList = UniqueMap->FindNodeOrInsertPos(ID, InsertPoint))
return TypeList;
// Otherwise, allocate a new one.
void *NewListP = BPA.Allocate(sizeof(SILTypeList)+
sizeof(SILType)*(Types.size()-1),
alignof(SILTypeList));
SILTypeList *NewList = new (NewListP) SILTypeList();
NewList->NumTypes = Types.size();
std::copy(Types.begin(), Types.end(), NewList->Types);
UniqueMap->InsertNode(NewList, InsertPoint);
return NewList;
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID =
(llvm::Intrinsic::ID)getLLVMIntrinsicID(NameRef, !Info.Types.empty());
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.startswith("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.startswith("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.startswith("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else {
// Switch through the rest of builtins.
Info.ID = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(ID, Name, Attrs) \
.Case(Name, BuiltinValueKind::ID)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
}
return Info;
}