mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Previously on every step solver would iterate over all constraints in attempt to find `BindParam` which could be contracted. Instead of doing that, let's take advantage of the fact that all (participating) closures are recorded in the constraint system during constraint generation, so it should be possible to check either outer parameter types are contractable with their inner uses.
1750 lines
61 KiB
C++
1750 lines
61 KiB
C++
//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the \c ConstraintGraph class, which describes the
|
|
// relationships among the type variables within a constraint system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/Sema/ConstraintGraph.h"
|
|
#include "swift/Sema/ConstraintGraphScope.h"
|
|
#include "swift/Sema/ConstraintSystem.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
#define DEBUG_TYPE "ConstraintGraph"
|
|
|
|
#pragma mark Graph construction/destruction
|
|
|
|
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
|
|
|
|
ConstraintGraph::~ConstraintGraph() {
|
|
assert(Changes.empty() && "Scope stack corrupted");
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto &impl = TypeVariables[i]->getImpl();
|
|
delete impl.getGraphNode();
|
|
impl.setGraphNode(nullptr);
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph accessors
|
|
|
|
std::pair<ConstraintGraphNode &, unsigned>
|
|
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
|
|
// Check whether we've already created a node for this type variable.
|
|
auto &impl = typeVar->getImpl();
|
|
if (auto nodePtr = impl.getGraphNode()) {
|
|
assert(impl.getGraphIndex() < TypeVariables.size() && "Out-of-bounds index");
|
|
assert(TypeVariables[impl.getGraphIndex()] == typeVar &&
|
|
"Type variable mismatch");
|
|
return { *nodePtr, impl.getGraphIndex() };
|
|
}
|
|
|
|
// Allocate the new node.
|
|
auto nodePtr = new ConstraintGraphNode(*this, typeVar);
|
|
unsigned index = TypeVariables.size();
|
|
impl.setGraphNode(nodePtr);
|
|
impl.setGraphIndex(index);
|
|
|
|
// Record this type variable.
|
|
TypeVariables.push_back(typeVar);
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::addedTypeVariable(typeVar));
|
|
|
|
// If this type variable is not the representative of its equivalence class,
|
|
// add it to its representative's set of equivalences.
|
|
auto typeVarRep = CS.getRepresentative(typeVar);
|
|
if (typeVar != typeVarRep)
|
|
mergeNodes(typeVar, typeVarRep);
|
|
else if (auto fixed = CS.getFixedType(typeVarRep)) {
|
|
// Bind the type variable.
|
|
bindTypeVariable(typeVar, fixed);
|
|
}
|
|
|
|
return { *nodePtr, index };
|
|
}
|
|
|
|
bool ConstraintGraphNode::forRepresentativeVar() const {
|
|
auto *typeVar = getTypeVariable();
|
|
return typeVar == typeVar->getImpl().getRepresentative(nullptr);
|
|
}
|
|
|
|
ArrayRef<TypeVariableType *> ConstraintGraphNode::getEquivalenceClass() const{
|
|
assert(forRepresentativeVar() &&
|
|
"Can't request equivalence class from non-representative type var");
|
|
return getEquivalenceClassUnsafe();
|
|
}
|
|
|
|
ArrayRef<TypeVariableType *>
|
|
ConstraintGraphNode::getEquivalenceClassUnsafe() const{
|
|
if (EquivalenceClass.empty())
|
|
EquivalenceClass.push_back(TypeVar);
|
|
return EquivalenceClass;
|
|
}
|
|
|
|
#pragma mark Node mutation
|
|
void ConstraintGraphNode::addConstraint(Constraint *constraint) {
|
|
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
|
|
ConstraintIndex[constraint] = Constraints.size();
|
|
Constraints.push_back(constraint);
|
|
introduceToInference(constraint, /*notifyFixedBindings=*/true);
|
|
}
|
|
|
|
void ConstraintGraphNode::removeConstraint(Constraint *constraint) {
|
|
auto pos = ConstraintIndex.find(constraint);
|
|
assert(pos != ConstraintIndex.end());
|
|
|
|
// Remove this constraint from the constraint mapping.
|
|
auto index = pos->second;
|
|
ConstraintIndex.erase(pos);
|
|
assert(Constraints[index] == constraint && "Mismatched constraint");
|
|
|
|
retractFromInference(constraint,
|
|
/*notifyFixedBindings=*/true);
|
|
|
|
// If this is the last constraint, just pop it off the list and we're done.
|
|
unsigned lastIndex = Constraints.size()-1;
|
|
if (index == lastIndex) {
|
|
Constraints.pop_back();
|
|
return;
|
|
}
|
|
|
|
// This constraint is somewhere in the middle; swap it with the last
|
|
// constraint, so we can remove the constraint from the vector in O(1)
|
|
// time rather than O(n) time.
|
|
auto lastConstraint = Constraints[lastIndex];
|
|
Constraints[index] = lastConstraint;
|
|
ConstraintIndex[lastConstraint] = index;
|
|
Constraints.pop_back();
|
|
}
|
|
|
|
void ConstraintGraphNode::notifyReferencingVars() const {
|
|
SmallVector<TypeVariableType *, 4> stack;
|
|
|
|
stack.push_back(TypeVar);
|
|
|
|
auto updateAdjacencies = [&](TypeVariableType *typeVar) {
|
|
for (auto *constraint : CG[typeVar].getConstraints()) {
|
|
if (constraint->getClassification() !=
|
|
ConstraintClassification::Relational)
|
|
continue;
|
|
|
|
auto lhsTy = constraint->getFirstType();
|
|
auto rhsTy = constraint->getSecondType();
|
|
|
|
Type affectedTy =
|
|
ConstraintSystem::typeVarOccursInType(typeVar, lhsTy) ? rhsTy : lhsTy;
|
|
|
|
if (auto *affectedVar = affectedTy->getAs<TypeVariableType>()) {
|
|
auto *repr =
|
|
affectedVar->getImpl().getRepresentative(/*record=*/nullptr);
|
|
|
|
if (!repr->getImpl().getFixedType(/*record=*/nullptr))
|
|
CG[repr].reintroduceToInference(constraint,
|
|
/*notifyReferencedVars=*/false);
|
|
}
|
|
}
|
|
};
|
|
|
|
while (!stack.empty()) {
|
|
auto *typeVar = stack.pop_back_val();
|
|
|
|
// All of the relational constraints associated with this
|
|
// variable need to get re-introduced to other mentioned
|
|
// type variable to update their bindings.
|
|
//
|
|
// If variable is a representative of an equivalence class
|
|
// it means that all members have been modified together
|
|
// with their representative and their adjacencies have to
|
|
// get updated as well.
|
|
if (CG[typeVar].forRepresentativeVar()) {
|
|
for (auto *eqVar : CG[typeVar].getEquivalenceClass()) {
|
|
updateAdjacencies(eqVar);
|
|
|
|
for (auto *referrer : CG[eqVar].getReferencedBy())
|
|
stack.push_back(referrer);
|
|
}
|
|
} else {
|
|
updateAdjacencies(typeVar);
|
|
|
|
// If current type variable is referenced by some other
|
|
// type variable as part of its fixed type it means that
|
|
// all of the adjacencies of that variable have to be
|
|
// notified as well otherwise they'll miss change in type.
|
|
for (auto *referrer : CG[typeVar].getReferencedBy())
|
|
stack.push_back(referrer);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::addToEquivalenceClass(
|
|
ArrayRef<TypeVariableType *> typeVars) {
|
|
assert(forRepresentativeVar() &&
|
|
"Can't extend equivalence class of non-representative type var");
|
|
if (EquivalenceClass.empty())
|
|
EquivalenceClass.push_back(getTypeVariable());
|
|
EquivalenceClass.append(typeVars.begin(), typeVars.end());
|
|
|
|
{
|
|
for (auto *newMember : typeVars) {
|
|
auto &node = CG[newMember];
|
|
|
|
for (auto *constraint : node.getConstraints()) {
|
|
introduceToInference(constraint, /*notifyReferencedVars=*/true);
|
|
}
|
|
|
|
node.notifyReferencingVars();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::truncateEquivalenceClass(unsigned prevSize) {
|
|
llvm::SmallSetVector<TypeVariableType *, 4> disconnectedVars;
|
|
for (auto disconnected = EquivalenceClass.begin() + prevSize;
|
|
disconnected != EquivalenceClass.end();
|
|
++disconnected) {
|
|
disconnectedVars.insert(*disconnected);
|
|
}
|
|
|
|
EquivalenceClass.erase(EquivalenceClass.begin() + prevSize,
|
|
EquivalenceClass.end());
|
|
|
|
// We need to re-introduce each constraint associated with
|
|
// "disconnected" member itself and to this representative.
|
|
{
|
|
// Re-infer bindings for the current representative.
|
|
resetBindingSet();
|
|
|
|
// Re-infer bindings all all of the newly made representatives.
|
|
for (auto *typeVar : disconnectedVars)
|
|
CG[typeVar].notifyReferencingVars();
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::addReferencedVar(TypeVariableType *typeVar) {
|
|
bool inserted = References.insert(typeVar);
|
|
assert(inserted && "Attempt to reference a duplicate type variable");
|
|
(void)inserted;
|
|
}
|
|
|
|
void ConstraintGraphNode::addReferencedBy(TypeVariableType *typeVar) {
|
|
bool inserted = ReferencedBy.insert(typeVar);
|
|
assert(inserted && "Already referenced by the given type variable");
|
|
(void)inserted;
|
|
}
|
|
|
|
void ConstraintGraphNode::removeReference(TypeVariableType *typeVar) {
|
|
auto removed = References.remove(typeVar);
|
|
assert(removed && "Variables are not connected");
|
|
(void)removed;
|
|
}
|
|
|
|
void ConstraintGraphNode::removeReferencedBy(TypeVariableType *typeVar) {
|
|
auto removed = ReferencedBy.remove(typeVar);
|
|
assert(removed && "Variables are not connected");
|
|
(void)removed;
|
|
}
|
|
|
|
inference::PotentialBindings &ConstraintGraphNode::getCurrentBindings() {
|
|
assert(forRepresentativeVar());
|
|
|
|
if (!Bindings)
|
|
Bindings.emplace(CG.getConstraintSystem(), TypeVar);
|
|
return *Bindings;
|
|
}
|
|
|
|
static bool isUsefulForReferencedVars(Constraint *constraint) {
|
|
switch (constraint->getKind()) {
|
|
// Don't attempt to propagate information about `Bind`s to referenced
|
|
// variables since they are adjacent through that binding already, and
|
|
// there is no useful information in trying to process that kind of
|
|
// constraint.
|
|
case ConstraintKind::Bind:
|
|
return false;
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::introduceToInference(Constraint *constraint,
|
|
bool notifyReferencedVars) {
|
|
if (forRepresentativeVar()) {
|
|
auto fixedType = TypeVar->getImpl().getFixedType(/*record=*/nullptr);
|
|
if (!fixedType)
|
|
getCurrentBindings().infer(constraint);
|
|
} else {
|
|
auto *repr =
|
|
getTypeVariable()->getImpl().getRepresentative(/*record=*/nullptr);
|
|
CG[repr].introduceToInference(constraint, /*notifyReferencedVars=*/false);
|
|
}
|
|
|
|
if (!notifyReferencedVars || !isUsefulForReferencedVars(constraint))
|
|
return;
|
|
|
|
for (auto *fixedBinding : getReferencedVars()) {
|
|
CG[fixedBinding].introduceToInference(constraint,
|
|
/*notifyReferencedVars=*/false);
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::retractFromInference(Constraint *constraint,
|
|
bool notifyReferencedVars) {
|
|
if (forRepresentativeVar()) {
|
|
auto fixedType = TypeVar->getImpl().getFixedType(/*record=*/nullptr);
|
|
if (!fixedType)
|
|
getCurrentBindings().retract(constraint);
|
|
} else {
|
|
auto *repr =
|
|
getTypeVariable()->getImpl().getRepresentative(/*record=*/nullptr);
|
|
CG[repr].retractFromInference(constraint, /*notifyReferencedVars=*/false);
|
|
}
|
|
|
|
if (!notifyReferencedVars || !isUsefulForReferencedVars(constraint))
|
|
return;
|
|
|
|
for (auto *fixedBinding : getReferencedVars()) {
|
|
CG[fixedBinding].retractFromInference(constraint,
|
|
/*notifyReferencedVars=*/false);
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::reintroduceToInference(Constraint *constraint,
|
|
bool notifyReferencedVars) {
|
|
retractFromInference(constraint, notifyReferencedVars);
|
|
introduceToInference(constraint, notifyReferencedVars);
|
|
}
|
|
|
|
void ConstraintGraphNode::resetBindingSet() {
|
|
assert(forRepresentativeVar());
|
|
|
|
Bindings.reset();
|
|
|
|
auto &bindings = getCurrentBindings();
|
|
for (auto *constraint : CG.gatherConstraints(
|
|
TypeVar, ConstraintGraph::GatheringKind::EquivalenceClass)) {
|
|
bindings.infer(constraint);
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph scope management
|
|
ConstraintGraphScope::ConstraintGraphScope(ConstraintGraph &CG)
|
|
: CG(CG), ParentScope(CG.ActiveScope), NumChanges(CG.Changes.size())
|
|
{
|
|
CG.ActiveScope = this;
|
|
}
|
|
|
|
ConstraintGraphScope::~ConstraintGraphScope() {
|
|
// Pop changes off the stack until we hit the change could we had prior to
|
|
// introducing this scope.
|
|
assert(CG.Changes.size() >= NumChanges && "Scope stack corrupted");
|
|
while (CG.Changes.size() > NumChanges) {
|
|
CG.Changes.back().undo(CG);
|
|
CG.Changes.pop_back();
|
|
}
|
|
|
|
// The active scope is now the parent scope.
|
|
CG.ActiveScope = ParentScope;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::addedTypeVariable(TypeVariableType *typeVar) {
|
|
Change result;
|
|
result.Kind = ChangeKind::AddedTypeVariable;
|
|
result.TypeVar = typeVar;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::addedConstraint(Constraint *constraint) {
|
|
Change result;
|
|
result.Kind = ChangeKind::AddedConstraint;
|
|
result.TheConstraint = constraint;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::removedConstraint(Constraint *constraint) {
|
|
Change result;
|
|
result.Kind = ChangeKind::RemovedConstraint;
|
|
result.TheConstraint = constraint;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::extendedEquivalenceClass(TypeVariableType *typeVar,
|
|
unsigned prevSize) {
|
|
Change result;
|
|
result.Kind = ChangeKind::ExtendedEquivalenceClass;
|
|
result.EquivClass.TypeVar = typeVar;
|
|
result.EquivClass.PrevSize = prevSize;
|
|
return result;
|
|
}
|
|
|
|
ConstraintGraph::Change
|
|
ConstraintGraph::Change::boundTypeVariable(TypeVariableType *typeVar,
|
|
Type fixed) {
|
|
Change result;
|
|
result.Kind = ChangeKind::BoundTypeVariable;
|
|
result.Binding.TypeVar = typeVar;
|
|
result.Binding.FixedType = fixed.getPointer();
|
|
return result;
|
|
}
|
|
|
|
void ConstraintGraph::Change::undo(ConstraintGraph &cg) {
|
|
/// Temporarily change the active scope to null, so we don't record
|
|
/// any changes made while performing the undo operation.
|
|
llvm::SaveAndRestore<ConstraintGraphScope *> prevActiveScope(cg.ActiveScope,
|
|
nullptr);
|
|
|
|
switch (Kind) {
|
|
case ChangeKind::AddedTypeVariable:
|
|
cg.removeNode(TypeVar);
|
|
break;
|
|
|
|
case ChangeKind::AddedConstraint:
|
|
cg.removeConstraint(TheConstraint);
|
|
break;
|
|
|
|
case ChangeKind::RemovedConstraint:
|
|
cg.addConstraint(TheConstraint);
|
|
break;
|
|
|
|
case ChangeKind::ExtendedEquivalenceClass: {
|
|
auto &node = cg[EquivClass.TypeVar];
|
|
node.truncateEquivalenceClass(EquivClass.PrevSize);
|
|
break;
|
|
}
|
|
|
|
case ChangeKind::BoundTypeVariable:
|
|
cg.unbindTypeVariable(Binding.TypeVar, Binding.FixedType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph mutation
|
|
|
|
void ConstraintGraph::removeNode(TypeVariableType *typeVar) {
|
|
// Remove this node.
|
|
auto &impl = typeVar->getImpl();
|
|
unsigned index = impl.getGraphIndex();
|
|
delete impl.getGraphNode();
|
|
impl.setGraphNode(nullptr);
|
|
|
|
// Remove this type variable from the list.
|
|
unsigned lastIndex = TypeVariables.size()-1;
|
|
if (index < lastIndex)
|
|
TypeVariables[index] = TypeVariables[lastIndex];
|
|
TypeVariables.pop_back();
|
|
}
|
|
|
|
void ConstraintGraph::addConstraint(Constraint *constraint) {
|
|
// For the nodes corresponding to each type variable...
|
|
auto referencedTypeVars = constraint->getTypeVariables();
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Note the constraint within the node for that type variable.
|
|
node.addConstraint(constraint);
|
|
}
|
|
|
|
// If the constraint doesn't reference any type variables, it's orphaned;
|
|
// track it as such.
|
|
if (referencedTypeVars.empty()) {
|
|
OrphanedConstraints.push_back(constraint);
|
|
}
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::addedConstraint(constraint));
|
|
}
|
|
|
|
void ConstraintGraph::removeConstraint(Constraint *constraint) {
|
|
// For the nodes corresponding to each type variable...
|
|
auto referencedTypeVars = constraint->getTypeVariables();
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Remove the constraint.
|
|
node.removeConstraint(constraint);
|
|
}
|
|
|
|
// If this is an orphaned constraint, remove it from the list.
|
|
if (referencedTypeVars.empty()) {
|
|
auto known = std::find(OrphanedConstraints.begin(),
|
|
OrphanedConstraints.end(),
|
|
constraint);
|
|
assert(known != OrphanedConstraints.end() && "missing orphaned constraint");
|
|
*known = OrphanedConstraints.back();
|
|
OrphanedConstraints.pop_back();
|
|
}
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::removedConstraint(constraint));
|
|
}
|
|
|
|
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
|
|
TypeVariableType *typeVar2) {
|
|
assert(CS.getRepresentative(typeVar1) == CS.getRepresentative(typeVar2) &&
|
|
"type representatives don't match");
|
|
|
|
// Retrieve the node for the representative that we're merging into.
|
|
auto typeVarRep = CS.getRepresentative(typeVar1);
|
|
auto &repNode = (*this)[typeVarRep];
|
|
|
|
// Retrieve the node for the non-representative.
|
|
assert((typeVar1 == typeVarRep || typeVar2 == typeVarRep) &&
|
|
"neither type variable is the new representative?");
|
|
auto typeVarNonRep = typeVar1 == typeVarRep? typeVar2 : typeVar1;
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::extendedEquivalenceClass(
|
|
typeVarRep,
|
|
repNode.getEquivalenceClass().size()));
|
|
|
|
// Merge equivalence class from the non-representative type variable.
|
|
auto &nonRepNode = (*this)[typeVarNonRep];
|
|
repNode.addToEquivalenceClass(nonRepNode.getEquivalenceClassUnsafe());
|
|
}
|
|
|
|
void ConstraintGraph::bindTypeVariable(TypeVariableType *typeVar, Type fixed) {
|
|
assert(!fixed->is<TypeVariableType>() &&
|
|
"Cannot bind to type variable; merge equivalence classes instead");
|
|
|
|
// Record the change, if there are active scopes.
|
|
if (ActiveScope)
|
|
Changes.push_back(Change::boundTypeVariable(typeVar, fixed));
|
|
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Notify all of the type variables that reference this one.
|
|
//
|
|
// Since this type variable has been replaced with a fixed type
|
|
// all of the concrete types that reference it are going to change,
|
|
// which means that all of the not-yet-attempted bindings should
|
|
// change as well.
|
|
node.notifyReferencingVars();
|
|
|
|
if (!fixed->hasTypeVariable())
|
|
return;
|
|
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
fixed->getTypeVariables(typeVars);
|
|
|
|
for (auto otherTypeVar : typeVars) {
|
|
if (typeVar == otherTypeVar)
|
|
continue;
|
|
|
|
auto &otherNode = (*this)[otherTypeVar];
|
|
|
|
otherNode.addReferencedBy(typeVar);
|
|
node.addReferencedVar(otherTypeVar);
|
|
|
|
// Newly referred vars need to re-introduce all constraints associated
|
|
// with this type variable since they are now going to be used in
|
|
// all of the constraints that reference bound type variable.
|
|
for (auto *constraint : (*this)[typeVar].getConstraints()) {
|
|
if (isUsefulForReferencedVars(constraint))
|
|
otherNode.reintroduceToInference(constraint,
|
|
/*notifyReferencedVars=*/false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::unbindTypeVariable(TypeVariableType *typeVar, Type fixed) {
|
|
auto &node = (*this)[typeVar];
|
|
|
|
// Notify referencing variables (just like in bound case) that this
|
|
// type variable has been modified.
|
|
node.notifyReferencingVars();
|
|
|
|
if (!fixed->hasTypeVariable())
|
|
return;
|
|
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
fixed->getTypeVariables(typeVars);
|
|
|
|
for (auto otherTypeVar : typeVars) {
|
|
auto &otherNode = (*this)[otherTypeVar];
|
|
|
|
otherNode.removeReferencedBy(typeVar);
|
|
node.removeReference(otherTypeVar);
|
|
|
|
// TODO: This might be an overkill but it's (currently)
|
|
// the simpliest way to reliably ensure that all of the
|
|
// no longer related constraints have been retracted.
|
|
if (otherNode.forRepresentativeVar())
|
|
otherNode.resetBindingSet();
|
|
}
|
|
}
|
|
|
|
#pragma mark Algorithms
|
|
|
|
/// Perform a depth-first search.
|
|
///
|
|
/// \param cg The constraint graph.
|
|
/// \param typeVar The type variable we're searching from.
|
|
/// \param preVisitNode Called before traversing a node. Must return \c
|
|
/// false when the node has already been visited.
|
|
/// \param visitConstraint Called before considering a constraint. If it
|
|
/// returns \c false, that constraint will be skipped.
|
|
/// \param visitedConstraints Set of already-visited constraints, used
|
|
/// internally to avoid duplicated work.
|
|
static void depthFirstSearch(
|
|
ConstraintGraph &cg,
|
|
TypeVariableType *typeVar,
|
|
llvm::function_ref<bool(TypeVariableType *)> preVisitNode,
|
|
llvm::function_ref<bool(Constraint *)> visitConstraint,
|
|
llvm::SmallPtrSet<Constraint *, 8> &visitedConstraints) {
|
|
// Visit this node. If we've already seen it, bail out.
|
|
if (!preVisitNode(typeVar))
|
|
return;
|
|
|
|
// Local function to visit adjacent type variables.
|
|
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> adjTypeVars) {
|
|
for (auto adj : adjTypeVars) {
|
|
if (adj == typeVar)
|
|
continue;
|
|
|
|
// Recurse into this node.
|
|
depthFirstSearch(cg, adj, preVisitNode, visitConstraint,
|
|
visitedConstraints);
|
|
}
|
|
};
|
|
|
|
// Walk all of the constraints associated with this node to find related
|
|
// nodes.
|
|
auto &node = cg[typeVar];
|
|
for (auto constraint : node.getConstraints()) {
|
|
// If we've already seen this constraint, skip it.
|
|
if (!visitedConstraints.insert(constraint).second)
|
|
continue;
|
|
|
|
if (visitConstraint(constraint))
|
|
visitAdjacencies(constraint->getTypeVariables());
|
|
}
|
|
|
|
// Visit all of the other nodes in the equivalence class.
|
|
auto repTypeVar = cg.getConstraintSystem().getRepresentative(typeVar);
|
|
if (typeVar == repTypeVar) {
|
|
// We are the representative, so visit all of the other type variables
|
|
// in this equivalence class.
|
|
visitAdjacencies(node.getEquivalenceClass());
|
|
} else {
|
|
// We are not the representative; visit the representative.
|
|
visitAdjacencies(repTypeVar);
|
|
}
|
|
|
|
// Walk any type variables related via fixed bindings.
|
|
visitAdjacencies(node.getReferencedBy());
|
|
visitAdjacencies(node.getReferencedVars());
|
|
}
|
|
|
|
llvm::TinyPtrVector<Constraint *> ConstraintGraph::gatherConstraints(
|
|
TypeVariableType *typeVar, GatheringKind kind,
|
|
llvm::function_ref<bool(Constraint *)> acceptConstraintFn) {
|
|
llvm::TinyPtrVector<Constraint *> constraints;
|
|
// Whether we should consider this constraint at all.
|
|
auto shouldConsiderConstraint = [&](Constraint *constraint) {
|
|
// For a one-way constraint, only consider it when the left-hand side of
|
|
// the binding is one of the type variables currently under consideration,
|
|
// as only such constraints need solving for this component. Note that we
|
|
// don't perform any other filtering, as the constraint system should be
|
|
// responsible for checking any other conditions.
|
|
if (constraint->isOneWayConstraint()) {
|
|
auto lhsTypeVar = constraint->getFirstType()->castTo<TypeVariableType>();
|
|
return CS.isActiveTypeVariable(lhsTypeVar);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
auto acceptConstraint = [&](Constraint *constraint) {
|
|
return shouldConsiderConstraint(constraint) &&
|
|
acceptConstraintFn(constraint);
|
|
};
|
|
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
llvm::SmallPtrSet<Constraint *, 8> visitedConstraints;
|
|
|
|
if (kind == GatheringKind::AllMentions) {
|
|
// If we've been asked for "all mentions" of a type variable, search for
|
|
// constraints involving both it and its fixed bindings.
|
|
depthFirstSearch(
|
|
*this, typeVar,
|
|
[&](TypeVariableType *typeVar) {
|
|
return typeVars.insert(typeVar).second;
|
|
},
|
|
[&](Constraint *constraint) {
|
|
if (acceptConstraint(constraint))
|
|
constraints.push_back(constraint);
|
|
|
|
// Don't recurse into the constraint's type variables.
|
|
return false;
|
|
},
|
|
visitedConstraints);
|
|
return constraints;
|
|
}
|
|
|
|
// Otherwise only search in the type var's equivalence class and immediate
|
|
// fixed bindings.
|
|
|
|
// Local function to add constraints.
|
|
auto addTypeVarConstraints = [&](TypeVariableType *adjTypeVar) {
|
|
if (!typeVars.insert(adjTypeVar).second)
|
|
return;
|
|
|
|
for (auto constraint : (*this)[adjTypeVar].getConstraints()) {
|
|
if (visitedConstraints.insert(constraint).second &&
|
|
acceptConstraint(constraint))
|
|
constraints.push_back(constraint);
|
|
}
|
|
};
|
|
|
|
auto &reprNode = (*this)[CS.getRepresentative(typeVar)];
|
|
auto equivClass = reprNode.getEquivalenceClass();
|
|
for (auto typeVar : equivClass) {
|
|
if (!typeVars.insert(typeVar).second)
|
|
continue;
|
|
|
|
auto &node = (*this)[typeVar];
|
|
|
|
for (auto constraint : node.getConstraints()) {
|
|
if (visitedConstraints.insert(constraint).second &&
|
|
acceptConstraint(constraint))
|
|
constraints.push_back(constraint);
|
|
}
|
|
|
|
for (auto adjTypeVar : node.getReferencedBy()) {
|
|
addTypeVarConstraints(adjTypeVar);
|
|
}
|
|
|
|
for (auto adjTypeVar : node.getReferencedVars()) {
|
|
addTypeVarConstraints(adjTypeVar);
|
|
}
|
|
}
|
|
|
|
return constraints;
|
|
}
|
|
|
|
namespace {
|
|
/// A union-find connected components algorithm used to find the connected
|
|
/// components within a constraint graph.
|
|
class ConnectedComponents {
|
|
ConstraintGraph &cg;
|
|
ArrayRef<TypeVariableType *> typeVars;
|
|
|
|
/// A mapping from each type variable to its representative in a union-find
|
|
/// data structure, excluding entries where the type variable is its own
|
|
/// representative.
|
|
mutable llvm::SmallDenseMap<TypeVariableType *, TypeVariableType *>
|
|
representatives;
|
|
|
|
/// The complete set of constraints that were visited while computing
|
|
/// connected components.
|
|
llvm::SmallPtrSet<Constraint *, 8> visitedConstraints;
|
|
|
|
/// Describes the one-way incoming and outcoming adjacencies of
|
|
/// a component within the directed graph of one-way constraints.
|
|
struct OneWayComponent {
|
|
/// The (uniqued) set of type variable representatives to which this
|
|
/// component has an outgoing edge.
|
|
TinyPtrVector<TypeVariableType *> outAdjacencies;
|
|
|
|
/// The (uniqued) set of type variable representatives from which this
|
|
/// component has an incoming edge.
|
|
TinyPtrVector<TypeVariableType *> inAdjacencies;
|
|
};
|
|
|
|
// Adjacency list representation of the directed graph of edges for
|
|
// one-way constraints, using type variable representatives as the
|
|
// nodes.
|
|
llvm::SmallDenseMap<TypeVariableType *, OneWayComponent> oneWayDigraph;
|
|
|
|
public:
|
|
using Component = ConstraintGraph::Component;
|
|
|
|
/// Compute connected components for the given set of type variables
|
|
/// in the constraint graph.
|
|
ConnectedComponents(ConstraintGraph &cg,
|
|
ArrayRef<TypeVariableType *> typeVars)
|
|
: cg(cg), typeVars(typeVars)
|
|
{
|
|
auto oneWayConstraints = connectedComponents();
|
|
|
|
// If there were no one-way constraints, we're done.
|
|
if (oneWayConstraints.empty())
|
|
return;
|
|
|
|
// Build the directed one-way constraint graph.
|
|
buildOneWayConstraintGraph(oneWayConstraints);
|
|
}
|
|
|
|
/// Retrieve the set of components.
|
|
SmallVector<Component, 1> getComponents() const {
|
|
// Figure out which components have unbound type variables and/or
|
|
// constraints. These are the only components we want to report.
|
|
llvm::SmallDenseSet<TypeVariableType *> validComponents;
|
|
auto &cs = cg.getConstraintSystem();
|
|
for (auto typeVar : typeVars) {
|
|
// If this type variable has a fixed type, skip it.
|
|
if (cs.getFixedType(typeVar))
|
|
continue;
|
|
|
|
auto rep = findRepresentative(typeVar);
|
|
validComponents.insert(rep);
|
|
}
|
|
|
|
for (auto &constraint : cs.getConstraints()) {
|
|
for (auto typeVar : constraint.getTypeVariables()) {
|
|
auto rep = findRepresentative(typeVar);
|
|
validComponents.insert(rep);
|
|
}
|
|
}
|
|
|
|
// Capture the type variables of each component.
|
|
llvm::SmallDenseMap<TypeVariableType *, Component> components;
|
|
SmallVector<TypeVariableType *, 4> representativeTypeVars;
|
|
for (auto typeVar : typeVars) {
|
|
// Find the representative. If we aren't creating a type variable
|
|
// for this component, skip it.
|
|
auto rep = findRepresentative(typeVar);
|
|
if (validComponents.count(rep) == 0)
|
|
continue;
|
|
|
|
// If this type variable is the representative, add it to the list of
|
|
// representatives.
|
|
if (rep == typeVar) {
|
|
representativeTypeVars.push_back(rep);
|
|
}
|
|
|
|
// Record this type variable in the set of type variables for its
|
|
// component.
|
|
auto &component = components.insert(
|
|
{rep, Component(components.size())}).first->second;
|
|
component.typeVars.push_back(typeVar);
|
|
}
|
|
|
|
// Retrieve the component for the given representative type variable.
|
|
auto getComponent = [&](TypeVariableType *rep) -> Component& {
|
|
auto component = components.find(rep);
|
|
assert(component != components.end());
|
|
return component->second;
|
|
};
|
|
|
|
// Assign each constraint to its appropriate component.
|
|
// Note: we use the inactive constraints so that we maintain the
|
|
// order of constraints when we re-introduce them.
|
|
for (auto &constraint : cs.getConstraints()) {
|
|
auto constraintTypeVars = constraint.getTypeVariables();
|
|
if (constraintTypeVars.empty())
|
|
continue;
|
|
|
|
TypeVariableType *typeVar;
|
|
if (constraint.isOneWayConstraint()) {
|
|
// For one-way constraints, associate the constraint with the
|
|
// left-hand type variable.
|
|
typeVar = constraint.getFirstType()->castTo<TypeVariableType>();
|
|
} else {
|
|
typeVar = constraintTypeVars.front();
|
|
}
|
|
|
|
auto rep = findRepresentative(typeVar);
|
|
getComponent(rep).addConstraint(&constraint);
|
|
}
|
|
|
|
// If we have any one-way constraint information, compute the ordering
|
|
// of representative type variables needed to respect one-way
|
|
// constraints while solving.
|
|
if (!oneWayDigraph.empty()) {
|
|
// Sort the representative type variables based on the disjunction
|
|
// count, so
|
|
std::sort(representativeTypeVars.begin(), representativeTypeVars.end(),
|
|
[&](TypeVariableType *lhs, TypeVariableType *rhs) {
|
|
return getComponent(lhs).getNumDisjunctions() >
|
|
getComponent(rhs).getNumDisjunctions();
|
|
});
|
|
|
|
representativeTypeVars =
|
|
computeOneWayComponentOrdering(representativeTypeVars,
|
|
validComponents);
|
|
|
|
// Fill in one-way dependency information for all of the components.
|
|
for (auto typeVar : representativeTypeVars) {
|
|
auto knownOneWayComponent = oneWayDigraph.find(typeVar);
|
|
if (knownOneWayComponent == oneWayDigraph.end())
|
|
continue;
|
|
|
|
auto &oneWayComponent = knownOneWayComponent->second;
|
|
auto &component = getComponent(typeVar);
|
|
for (auto inAdj : oneWayComponent.inAdjacencies) {
|
|
if (validComponents.count(inAdj) == 0)
|
|
continue;
|
|
|
|
component.recordDependency(getComponent(inAdj));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Flatten the set of components.
|
|
SmallVector<Component, 1> flatComponents;
|
|
flatComponents.reserve(
|
|
representativeTypeVars.size() + cg.getOrphanedConstraints().size());
|
|
for (auto rep: representativeTypeVars) {
|
|
assert(components.count(rep) == 1);
|
|
flatComponents.push_back(std::move(getComponent(rep)));
|
|
}
|
|
|
|
// Gather orphaned constraints; each gets its own component.
|
|
for (auto orphaned : cg.getOrphanedConstraints()) {
|
|
flatComponents.push_back(Component(flatComponents.size()));
|
|
flatComponents.back().addConstraint(orphaned);
|
|
}
|
|
|
|
// Create component ordering based on the information associated
|
|
// with constraints in each step - e.g. number of disjunctions,
|
|
// since components are going to be executed in LIFO order, we'd
|
|
// want to have smaller/faster components at the back of the list.
|
|
// When there are one-way constraints, we can't reorder them, so only
|
|
// sort the orphaned constraints at the back. In the absense of
|
|
// one-way constraints, sort everything.
|
|
if (components.size() > 1) {
|
|
auto sortStart = oneWayDigraph.empty()
|
|
? flatComponents.begin()
|
|
: flatComponents.end() - cg.getOrphanedConstraints().size();
|
|
std::sort(sortStart, flatComponents.end(),
|
|
[&](const Component &lhs, const Component &rhs) {
|
|
return lhs.getNumDisjunctions() > rhs.getNumDisjunctions();
|
|
});
|
|
}
|
|
|
|
return flatComponents;
|
|
}
|
|
|
|
/// Find the representative for the given type variable within the set
|
|
/// of representatives in a union-find data structure.
|
|
TypeVariableType *findRepresentative(TypeVariableType *typeVar) const {
|
|
// If we don't have a record of this type variable, it is it's own
|
|
// representative.
|
|
auto known = representatives.find(typeVar);
|
|
if (known == representatives.end() || known->second == typeVar)
|
|
return typeVar;
|
|
|
|
// Find the representative of the parent.
|
|
auto parent = known->second;
|
|
auto rep = findRepresentative(parent);
|
|
representatives[typeVar] = rep;
|
|
|
|
return rep;
|
|
}
|
|
|
|
private:
|
|
/// Perform the union of two type variables in a union-find data structure
|
|
/// used for connected components.
|
|
///
|
|
/// \returns true if the two components were separate and have now been
|
|
/// joined, \c false if they were already in the same set.
|
|
bool unionSets(TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
|
|
auto rep1 = findRepresentative(typeVar1);
|
|
auto rep2 = findRepresentative(typeVar2);
|
|
if (rep1 == rep2)
|
|
return false;
|
|
|
|
// Reparent the type variable with the higher ID. The actual choice doesn't
|
|
// matter, but this makes debugging easier.
|
|
if (rep1->getID() < rep2->getID())
|
|
representatives[rep2] = rep1;
|
|
else
|
|
representatives[rep1] = rep2;
|
|
return true;
|
|
}
|
|
|
|
/// Perform the connected components algorithm, skipping one-way
|
|
/// constraints.
|
|
///
|
|
/// \returns the set of one-way constraints that were skipped.
|
|
TinyPtrVector<Constraint *> connectedComponents() {
|
|
TinyPtrVector<Constraint *> oneWayConstraints;
|
|
|
|
// Perform a depth-first search from each type variable to identify
|
|
// what component it is in.
|
|
for (auto typeVar : typeVars) {
|
|
// If we've already assigned a representative to this type variable,
|
|
// we're done.
|
|
if (representatives.count(typeVar) > 0)
|
|
continue;
|
|
|
|
// Perform a depth-first search to mark those type variables that are
|
|
// in the same component as this type variable.
|
|
depthFirstSearch(
|
|
cg, typeVar,
|
|
[&](TypeVariableType *found) {
|
|
// If we have already seen this node, we're done.
|
|
auto inserted = representatives.insert({found, typeVar});
|
|
assert((inserted.second || inserted.first->second == typeVar) &&
|
|
"Wrong component?");
|
|
|
|
return inserted.second;
|
|
},
|
|
[&](Constraint *constraint) {
|
|
// Record and skip one-way constraints.
|
|
if (constraint->isOneWayConstraint()) {
|
|
oneWayConstraints.push_back(constraint);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
},
|
|
visitedConstraints);
|
|
}
|
|
|
|
return oneWayConstraints;
|
|
}
|
|
|
|
/// Insert the given type variable into the given vector if it isn't
|
|
/// already present.
|
|
static void insertIfUnique(TinyPtrVector<TypeVariableType *> &vector,
|
|
TypeVariableType *typeVar) {
|
|
if (std::find(vector.begin(), vector.end(), typeVar) == vector.end())
|
|
vector.push_back(typeVar);
|
|
}
|
|
|
|
/// Retrieve the (uniqued) set of type variable representations that occur
|
|
/// within the given type.
|
|
TinyPtrVector<TypeVariableType *>
|
|
getRepresentativesInType(Type type) const {
|
|
TinyPtrVector<TypeVariableType *> results;
|
|
|
|
SmallPtrSet<TypeVariableType *, 2> typeVars;
|
|
type->getTypeVariables(typeVars);
|
|
for (auto typeVar : typeVars) {
|
|
auto rep = findRepresentative(typeVar);
|
|
insertIfUnique(results, rep);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
/// Add all of the one-way constraints to the one-way digraph
|
|
void addOneWayConstraintEdges(ArrayRef<Constraint *> oneWayConstraints) {
|
|
for (auto constraint : oneWayConstraints) {
|
|
auto lhsTypeReps =
|
|
getRepresentativesInType(constraint->getFirstType());
|
|
auto rhsTypeReps =
|
|
getRepresentativesInType(constraint->getSecondType());
|
|
|
|
// Add an edge from the type representatives on the right-hand side
|
|
// of the one-way constraint to the type representatives on the
|
|
// left-hand side, because the right-hand type variables need to
|
|
// be solved before the left-hand type variables.
|
|
for (auto lhsTypeRep : lhsTypeReps) {
|
|
for (auto rhsTypeRep : rhsTypeReps) {
|
|
if (lhsTypeRep == rhsTypeRep)
|
|
continue;
|
|
|
|
insertIfUnique(oneWayDigraph[rhsTypeRep].outAdjacencies,lhsTypeRep);
|
|
insertIfUnique(oneWayDigraph[lhsTypeRep].inAdjacencies,rhsTypeRep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
using TypeVariablePair = std::pair<TypeVariableType *, TypeVariableType *>;
|
|
|
|
/// Build the directed graph of one-way constraints among components.
|
|
void buildOneWayConstraintGraph(ArrayRef<Constraint *> oneWayConstraints) {
|
|
auto &cs = cg.getConstraintSystem();
|
|
auto &ctx = cs.getASTContext();
|
|
bool contractedCycle = false;
|
|
do {
|
|
// Construct the one-way digraph from scratch.
|
|
oneWayDigraph.clear();
|
|
addOneWayConstraintEdges(oneWayConstraints);
|
|
|
|
// Minimize the in-adjacencies, detecting cycles along the way.
|
|
SmallVector<TypeVariablePair, 4> cycleEdges;
|
|
removeIndirectOneWayInAdjacencies(cycleEdges);
|
|
|
|
// For any contractions we need to perform due to cycles, perform a
|
|
// union the connected components based on the type variable pairs.
|
|
contractedCycle = false;
|
|
for (const auto &edge : cycleEdges) {
|
|
if (unionSets(edge.first, edge.second)) {
|
|
if (cs.isDebugMode()) {
|
|
auto &log = llvm::errs();
|
|
if (cs.solverState)
|
|
log.indent(cs.solverState->depth * 2);
|
|
|
|
log << "Collapsing one-way components for $T"
|
|
<< edge.first->getID() << " and $T" << edge.second->getID()
|
|
<< " due to cycle.\n";
|
|
}
|
|
|
|
if (ctx.Stats) {
|
|
++ctx.Stats->getFrontendCounters()
|
|
.NumCyclicOneWayComponentsCollapsed;
|
|
}
|
|
|
|
contractedCycle = true;
|
|
}
|
|
}
|
|
} while (contractedCycle);
|
|
}
|
|
|
|
/// Perform a depth-first search to produce a from the given type variable,
|
|
/// notifying the function object.
|
|
///
|
|
/// \param getAdjacencies Called to retrieve the set of type variables
|
|
/// that are adjacent to the given type variable.
|
|
///
|
|
/// \param preVisit Called before visiting the adjacencies of the given
|
|
/// type variable. When it returns \c true, the adjacencies of this type
|
|
/// variable will be visited. When \c false, the adjacencies will not be
|
|
/// visited and \c postVisit will not be called.
|
|
///
|
|
/// \param postVisit Called after visiting the adjacencies of the given
|
|
/// type variable.
|
|
static void postorderDepthFirstSearchRec(
|
|
TypeVariableType *typeVar,
|
|
llvm::function_ref<
|
|
ArrayRef<TypeVariableType *>(TypeVariableType *)> getAdjacencies,
|
|
llvm::function_ref<bool(TypeVariableType *)> preVisit,
|
|
llvm::function_ref<void(TypeVariableType *)> postVisit) {
|
|
if (!preVisit(typeVar))
|
|
return;
|
|
|
|
for (auto adj : getAdjacencies(typeVar)) {
|
|
postorderDepthFirstSearchRec(adj, getAdjacencies, preVisit, postVisit);
|
|
}
|
|
|
|
postVisit(typeVar);
|
|
}
|
|
|
|
/// Minimize the incoming adjacencies for one of the nodes in the one-way
|
|
/// directed graph by eliminating any in-adjacencies that can also be
|
|
/// found indirectly.
|
|
void removeIndirectOneWayInAdjacencies(
|
|
TypeVariableType *typeVar,
|
|
OneWayComponent &component,
|
|
SmallVectorImpl<TypeVariablePair> &cycleEdges) {
|
|
// Perform a depth-first search from each of the in adjacencies to
|
|
// this type variable, traversing each of the one-way edges backwards
|
|
// to find all of the components whose type variables must be
|
|
// bound before this component can be solved.
|
|
SmallPtrSet<TypeVariableType *, 4> visited;
|
|
SmallPtrSet<TypeVariableType *, 4> indirectlyReachable;
|
|
SmallVector<TypeVariableType *, 4> currentPath;
|
|
for (auto inAdj : component.inAdjacencies) {
|
|
postorderDepthFirstSearchRec(
|
|
inAdj,
|
|
[&](TypeVariableType *typeVar) -> ArrayRef<TypeVariableType *> {
|
|
// Traverse the outgoing adjacencies for the subcomponent
|
|
auto oneWayComponent = oneWayDigraph.find(typeVar);
|
|
if (oneWayComponent == oneWayDigraph.end()) {
|
|
return { };
|
|
}
|
|
|
|
return oneWayComponent->second.inAdjacencies;
|
|
},
|
|
[&](TypeVariableType *typeVar) {
|
|
// If we haven't seen this type variable yet, add it to the
|
|
// path.
|
|
if (visited.insert(typeVar).second) {
|
|
currentPath.push_back(typeVar);
|
|
return true;
|
|
}
|
|
|
|
// Add edges between this type variable and every other type
|
|
// variable in the path.
|
|
for (auto otherTypeVar : llvm::reverse(currentPath)) {
|
|
// When we run into our own type variable, we're done.
|
|
if (otherTypeVar == typeVar)
|
|
break;
|
|
|
|
cycleEdges.push_back({typeVar, otherTypeVar});
|
|
}
|
|
|
|
return false;
|
|
},
|
|
[&](TypeVariableType *dependsOn) {
|
|
// Remove this type variable from the path.
|
|
assert(currentPath.back() == dependsOn);
|
|
currentPath.pop_back();
|
|
|
|
// Don't record dependency on ourselves.
|
|
if (dependsOn == inAdj)
|
|
return;
|
|
|
|
indirectlyReachable.insert(dependsOn);
|
|
});
|
|
|
|
// Remove any in-adjacency of this component that is indirectly
|
|
// reachable.
|
|
component.inAdjacencies.erase(
|
|
std::remove_if(component.inAdjacencies.begin(),
|
|
component.inAdjacencies.end(),
|
|
[&](TypeVariableType *inAdj) {
|
|
return indirectlyReachable.count(inAdj) > 0;
|
|
}),
|
|
component.inAdjacencies.end());
|
|
}
|
|
}
|
|
|
|
/// Minimize the incoming adjacencies for all of the nodes in the one-way
|
|
/// directed graph by eliminating any in-adjacencies that can also be
|
|
/// found indirectly.
|
|
void removeIndirectOneWayInAdjacencies(
|
|
SmallVectorImpl<TypeVariablePair> &cycleEdges) {
|
|
for (auto &oneWayEntry : oneWayDigraph) {
|
|
auto typeVar = oneWayEntry.first;
|
|
auto &component = oneWayEntry.second;
|
|
removeIndirectOneWayInAdjacencies(typeVar, component, cycleEdges);
|
|
}
|
|
}
|
|
|
|
/// Compute the order in which the components should be visited to respect
|
|
/// one-way constraints.
|
|
///
|
|
/// \param representativeTypeVars the set of type variables that
|
|
/// represent the components, in a preferred ordering that does not
|
|
/// account for one-way constraints.
|
|
/// \returns the set of type variables that represent the components, in
|
|
/// an ordering that ensures that components containing type variables
|
|
/// that occur on the left-hand side of a one-way constraint will be
|
|
/// solved after the components for type variables on the right-hand
|
|
/// side of that constraint.
|
|
SmallVector<TypeVariableType *, 4> computeOneWayComponentOrdering(
|
|
ArrayRef<TypeVariableType *> representativeTypeVars,
|
|
llvm::SmallDenseSet<TypeVariableType *> &validComponents) const {
|
|
SmallVector<TypeVariableType *, 4> orderedReps;
|
|
orderedReps.reserve(representativeTypeVars.size());
|
|
SmallPtrSet<TypeVariableType *, 4> visited;
|
|
for (auto rep : llvm::reverse(representativeTypeVars)) {
|
|
// Perform a postorder depth-first search through the one-way digraph,
|
|
// starting at this representative, to establish the dependency
|
|
// ordering amongst components that are reachable
|
|
// to establish the dependency ordering for the representative type
|
|
// variables.
|
|
postorderDepthFirstSearchRec(
|
|
rep,
|
|
[&](TypeVariableType *typeVar) -> ArrayRef<TypeVariableType *> {
|
|
// Traverse the outgoing adjacencies for the subcomponent
|
|
assert(typeVar == findRepresentative(typeVar));
|
|
auto oneWayComponent = oneWayDigraph.find(typeVar);
|
|
if (oneWayComponent == oneWayDigraph.end()) {
|
|
return { };
|
|
}
|
|
|
|
return oneWayComponent->second.outAdjacencies;
|
|
},
|
|
[&](TypeVariableType *typeVar) {
|
|
return visited.insert(typeVar).second;
|
|
},
|
|
[&](TypeVariableType *typeVar) {
|
|
// Record this type variable, if it's one of the representative
|
|
// type variables.
|
|
if (validComponents.count(typeVar) > 0)
|
|
orderedReps.push_back(typeVar);
|
|
});
|
|
}
|
|
|
|
assert(orderedReps.size() == representativeTypeVars.size());
|
|
return orderedReps;
|
|
}
|
|
};
|
|
}
|
|
|
|
void ConstraintGraph::Component::addConstraint(Constraint *constraint) {
|
|
if (constraint->getKind() == ConstraintKind::Disjunction)
|
|
++numDisjunctions;
|
|
|
|
constraints.push_back(constraint);
|
|
}
|
|
|
|
void ConstraintGraph::Component::recordDependency(const Component &component) {
|
|
dependencies.push_back(component.solutionIndex);
|
|
}
|
|
|
|
SmallVector<ConstraintGraph::Component, 1>
|
|
ConstraintGraph::computeConnectedComponents(
|
|
ArrayRef<TypeVariableType *> typeVars) {
|
|
// Perform connected components via a union-find algorithm on all of the
|
|
// constraints adjacent to these type variables.
|
|
ConnectedComponents cc(*this, typeVars);
|
|
return cc.getComponents();
|
|
}
|
|
|
|
|
|
/// For a given constraint kind, decide if we should attempt to eliminate its
|
|
/// edge in the graph.
|
|
static bool shouldContractEdge(ConstraintKind kind) {
|
|
switch (kind) {
|
|
case ConstraintKind::BindParam:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool ConstraintGraph::contractEdges() {
|
|
// Current constraint system doesn't have any closure expressions
|
|
// associated with it so there is nothing to here.
|
|
if (CS.ClosureTypes.empty())
|
|
return false;
|
|
|
|
SmallVector<Constraint *, 16> constraints;
|
|
for (const auto &closure : CS.ClosureTypes) {
|
|
for (const auto ¶m : closure.second->getParams()) {
|
|
auto paramTy = param.getPlainType()->getAs<TypeVariableType>();
|
|
if (!paramTy)
|
|
continue;
|
|
|
|
// This closure is not currently in scope.
|
|
if (!CS.TypeVariables.count(paramTy))
|
|
break;
|
|
|
|
// Nothing to contract here since outside parameter
|
|
// is already bound to a concrete type.
|
|
if (CS.getFixedType(paramTy))
|
|
continue;
|
|
|
|
for (auto *constraint : (*this)[paramTy].getConstraints()) {
|
|
// Track how many constraints did contraction algorithm iterated over.
|
|
incrementConstraintsPerContractionCounter();
|
|
|
|
if (shouldContractEdge(constraint->getKind()))
|
|
constraints.push_back(constraint);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool didContractEdges = false;
|
|
for (auto *constraint : constraints) {
|
|
auto kind = constraint->getKind();
|
|
|
|
// Contract binding edges between type variables.
|
|
assert(shouldContractEdge(kind));
|
|
|
|
auto t1 = constraint->getFirstType()->getDesugaredType();
|
|
auto t2 = constraint->getSecondType()->getDesugaredType();
|
|
|
|
auto tyvar1 = t1->getAs<TypeVariableType>();
|
|
auto tyvar2 = t2->getAs<TypeVariableType>();
|
|
|
|
if (!(tyvar1 && tyvar2))
|
|
continue;
|
|
|
|
// If the argument is allowed to bind to `inout`, in general,
|
|
// it's invalid to contract the edge between argument and parameter,
|
|
// but if we can prove that there are no possible bindings
|
|
// which result in attempt to bind `inout` type to argument
|
|
// type variable, we should go ahead and allow (temporary)
|
|
// contraction, because that greatly helps with performance.
|
|
// Such action is valid because argument type variable can
|
|
// only get its bindings from related overload, which gives
|
|
// us enough information to decided on l-valueness.
|
|
if (tyvar1->getImpl().canBindToInOut()) {
|
|
bool isNotContractable = true;
|
|
if (auto bindings = CS.getBindingsFor(tyvar1)) {
|
|
// Holes can't be contracted.
|
|
if (bindings.isHole())
|
|
continue;
|
|
|
|
for (auto &binding : bindings.Bindings) {
|
|
auto type = binding.BindingType;
|
|
isNotContractable = type.findIf([&](Type nestedType) -> bool {
|
|
if (auto tv = nestedType->getAs<TypeVariableType>()) {
|
|
if (tv->getImpl().canBindToInOut())
|
|
return true;
|
|
}
|
|
|
|
return nestedType->is<InOutType>();
|
|
});
|
|
|
|
// If there is at least one non-contractable binding, let's
|
|
// not risk contracting this edge.
|
|
if (isNotContractable)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isNotContractable)
|
|
continue;
|
|
}
|
|
|
|
auto rep1 = CS.getRepresentative(tyvar1);
|
|
auto rep2 = CS.getRepresentative(tyvar2);
|
|
|
|
if (CS.isDebugMode()) {
|
|
auto &log = llvm::errs();
|
|
if (CS.solverState)
|
|
log.indent(CS.solverState->depth * 2);
|
|
|
|
log << "Contracting constraint ";
|
|
constraint->print(log, &CS.getASTContext().SourceMgr);
|
|
log << "\n";
|
|
}
|
|
|
|
// Merge the edges and retire the constraint.
|
|
CS.retireConstraint(constraint);
|
|
if (rep1 != rep2)
|
|
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
|
|
didContractEdges = true;
|
|
}
|
|
return didContractEdges;
|
|
}
|
|
|
|
void ConstraintGraph::optimize() {
|
|
// Merge equivalence classes until a fixed point is reached.
|
|
while (contractEdges()) {}
|
|
}
|
|
|
|
void ConstraintGraph::incrementConstraintsPerContractionCounter() {
|
|
SWIFT_FUNC_STAT;
|
|
auto &context = CS.getASTContext();
|
|
if (auto *Stats = context.Stats) {
|
|
++Stats->getFrontendCounters()
|
|
.NumConstraintsConsideredForEdgeContraction;
|
|
}
|
|
}
|
|
|
|
#pragma mark Debugging output
|
|
|
|
void ConstraintGraphNode::print(llvm::raw_ostream &out, unsigned indent,
|
|
PrintOptions PO) const {
|
|
out.indent(indent);
|
|
Type(TypeVar).print(out, PO);
|
|
out << ":\n";
|
|
|
|
// Print constraints.
|
|
if (!Constraints.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Constraints:\n";
|
|
SmallVector<Constraint *, 4> sortedConstraints(Constraints.begin(),
|
|
Constraints.end());
|
|
std::sort(sortedConstraints.begin(), sortedConstraints.end());
|
|
|
|
for (auto constraint : sortedConstraints) {
|
|
out.indent(indent + 4);
|
|
constraint->print(out, &TypeVar->getASTContext().SourceMgr);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
auto printVarList = [&](ArrayRef<TypeVariableType *> typeVars) {
|
|
SmallVector<TypeVariableType *, 4> sorted(typeVars.begin(), typeVars.end());
|
|
std::sort(sorted.begin(), sorted.end(),
|
|
[&](TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
|
|
return typeVar1->getID() < typeVar2->getID();
|
|
});
|
|
|
|
interleave(
|
|
sorted,
|
|
[&](TypeVariableType *typeVar) { out << typeVar->getString(PO); },
|
|
[&out] { out << ", "; });
|
|
};
|
|
|
|
// Print fixed bindings.
|
|
if (!ReferencedBy.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Referenced By: ";
|
|
printVarList(getReferencedBy());
|
|
out << "\n";
|
|
}
|
|
|
|
if (!References.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "References: ";
|
|
printVarList(getReferencedVars());
|
|
out << "\n";
|
|
}
|
|
|
|
// Print equivalence class.
|
|
if (forRepresentativeVar() && EquivalenceClass.size() > 1) {
|
|
out.indent(indent + 2);
|
|
out << "Equivalence class:";
|
|
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
|
|
out << ' ';
|
|
EquivalenceClass[i]->print(out, PO);
|
|
}
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraphNode::dump() const {
|
|
PrintOptions PO;
|
|
PO.PrintTypesForDebugging = true;
|
|
print(llvm::dbgs(), 0, PO);
|
|
}
|
|
|
|
void ConstraintGraph::print(ArrayRef<TypeVariableType *> typeVars,
|
|
llvm::raw_ostream &out) {
|
|
PrintOptions PO;
|
|
PO.PrintTypesForDebugging = true;
|
|
|
|
for (auto typeVar : typeVars) {
|
|
(*this)[typeVar].print(out, 2, PO);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::dump() {
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
void ConstraintGraph::dump(llvm::raw_ostream &out) {
|
|
print(CS.getTypeVariables(), out);
|
|
}
|
|
|
|
void ConstraintGraph::printConnectedComponents(
|
|
ArrayRef<TypeVariableType *> typeVars,
|
|
llvm::raw_ostream &out) {
|
|
auto components = computeConnectedComponents(typeVars);
|
|
PrintOptions PO;
|
|
PO.PrintTypesForDebugging = true;
|
|
for (const auto& component : components) {
|
|
out.indent(2);
|
|
out << component.solutionIndex << ": ";
|
|
SWIFT_DEFER {
|
|
out << '\n';
|
|
};
|
|
|
|
// Print all of the type variables in this connected component.
|
|
interleave(component.typeVars,
|
|
[&](TypeVariableType *typeVar) {
|
|
Type(typeVar).print(out, PO);
|
|
},
|
|
[&] {
|
|
out << ' ';
|
|
});
|
|
|
|
auto dependencies = component.getDependencies();
|
|
if (dependencies.empty())
|
|
continue;
|
|
|
|
SmallVector<unsigned, 4> indices{dependencies.begin(), dependencies.end()};
|
|
// Sort dependencies so output is stable.
|
|
llvm::sort(indices);
|
|
|
|
// Print all of the one-way components.
|
|
out << " depends on ";
|
|
llvm::interleave(
|
|
indices, [&out](unsigned index) { out << index; },
|
|
[&out] { out << ", "; });
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::dumpConnectedComponents() {
|
|
printConnectedComponents(CS.getTypeVariables(), llvm::dbgs());
|
|
}
|
|
|
|
#pragma mark Verification of graph invariants
|
|
|
|
/// Require that the given condition evaluate true.
|
|
///
|
|
/// If the condition is not true, complain about the problem and abort.
|
|
///
|
|
/// \param condition The actual Boolean condition.
|
|
///
|
|
/// \param complaint A string that describes the problem.
|
|
///
|
|
/// \param cg The constraint graph that failed verification.
|
|
///
|
|
/// \param node If non-null, the graph node that failed verification.
|
|
///
|
|
/// \param extraContext If provided, a function that will be called to
|
|
/// provide extra, contextual information about the failure.
|
|
static void _require(bool condition, const Twine &complaint,
|
|
ConstraintGraph &cg,
|
|
ConstraintGraphNode *node,
|
|
const std::function<void()> &extraContext = nullptr) {
|
|
if (condition)
|
|
return;
|
|
|
|
// Complain
|
|
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
|
|
if (extraContext)
|
|
extraContext();
|
|
|
|
// Print the graph.
|
|
// FIXME: Highlight the offending node/constraint/etc.
|
|
cg.dump(llvm::dbgs());
|
|
|
|
abort();
|
|
}
|
|
|
|
/// Print a type variable value.
|
|
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
|
|
typeVar->print(os);
|
|
}
|
|
|
|
/// Print a constraint value.
|
|
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
|
|
constraint->print(os, nullptr);
|
|
}
|
|
|
|
/// Print an unsigned value.
|
|
static void printValue(llvm::raw_ostream &os, unsigned value) {
|
|
os << value;
|
|
}
|
|
|
|
void ConstraintGraphNode::verify(ConstraintGraph &cg) {
|
|
#define require(condition, complaint) _require(condition, complaint, cg, this)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, cg, this, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, cg, this, [&] { \
|
|
llvm::dbgs() << " "; \
|
|
printValue(llvm::dbgs(), value1); \
|
|
llvm::dbgs() << " != "; \
|
|
printValue(llvm::dbgs(), value2); \
|
|
llvm::dbgs() << '\n'; \
|
|
})
|
|
|
|
// Verify that the constraint map/vector haven't gotten out of sync.
|
|
requireSameValue(Constraints.size(), ConstraintIndex.size(),
|
|
"constraint vector and map have different sizes");
|
|
for (auto info : ConstraintIndex) {
|
|
require(info.second < Constraints.size(), "constraint index out-of-range");
|
|
requireSameValue(info.first, Constraints[info.second],
|
|
"constraint map provides wrong index into vector");
|
|
}
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
void ConstraintGraph::verify() {
|
|
#define require(condition, complaint) \
|
|
_require(condition, complaint, *this, nullptr)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, *this, nullptr, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, *this, nullptr, [&] { \
|
|
llvm::dbgs() << " "; \
|
|
printValue(llvm::dbgs(), value1); \
|
|
llvm::dbgs() << " != "; \
|
|
printValue(llvm::dbgs(), value2); \
|
|
llvm::dbgs() << '\n'; \
|
|
})
|
|
|
|
// Verify that the type variables are either representatives or represented
|
|
// within their representative's equivalence class.
|
|
// FIXME: Also check to make sure the equivalence classes aren't too large?
|
|
for (auto typeVar : TypeVariables) {
|
|
auto typeVarRep = CS.getRepresentative(typeVar);
|
|
auto &repNode = (*this)[typeVarRep];
|
|
if (typeVar != typeVarRep) {
|
|
// This type variable should be in the equivalence class of its
|
|
// representative.
|
|
require(std::find(repNode.getEquivalenceClass().begin(),
|
|
repNode.getEquivalenceClass().end(),
|
|
typeVar) != repNode.getEquivalenceClass().end(),
|
|
"type variable not present in its representative's equiv class");
|
|
} else {
|
|
// Each of the type variables in the same equivalence class as this type
|
|
// should have this type variable as their representative.
|
|
for (auto equiv : repNode.getEquivalenceClass()) {
|
|
requireSameValue(
|
|
typeVar, equiv->getImpl().getRepresentative(nullptr),
|
|
"representative and an equivalent type variable's representative");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that our type variable map/vector are in sync.
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto typeVar = TypeVariables[i];
|
|
auto &impl = typeVar->getImpl();
|
|
requireSameValue(impl.getGraphIndex(), i, "wrong graph node index");
|
|
require(impl.getGraphNode(), "null graph node");
|
|
}
|
|
|
|
// Verify consistency of all of the nodes in the graph.
|
|
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
|
|
auto typeVar = TypeVariables[i];
|
|
auto &impl = typeVar->getImpl();
|
|
impl.getGraphNode()->verify(*this);
|
|
}
|
|
|
|
// Collect all of the constraints known to the constraint graph.
|
|
llvm::SmallPtrSet<Constraint *, 4> knownConstraints;
|
|
for (auto typeVar : getTypeVariables()) {
|
|
for (auto constraint : (*this)[typeVar].getConstraints())
|
|
knownConstraints.insert(constraint);
|
|
}
|
|
|
|
// Verify that all of the constraints in the constraint system
|
|
// are accounted for.
|
|
for (auto &constraint : CS.getConstraints()) {
|
|
// Check whether the constraint graph knows about this constraint.
|
|
auto referencedTypeVars = constraint.getTypeVariables();
|
|
requireWithContext((knownConstraints.count(&constraint) ||
|
|
referencedTypeVars.empty()),
|
|
"constraint graph doesn't know about constraint",
|
|
[&] {
|
|
llvm::dbgs() << "constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
// Make sure each of the type variables referenced knows about this
|
|
// constraint.
|
|
for (auto typeVar : referencedTypeVars) {
|
|
auto nodePtr = typeVar->getImpl().getGraphNode();
|
|
requireWithContext(nodePtr,
|
|
"type variable in constraint not known",
|
|
[&] {
|
|
llvm::dbgs() << "type variable = ";
|
|
printValue(llvm::dbgs(), typeVar);
|
|
llvm::dbgs() << ", constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
auto &node = *nodePtr;
|
|
auto constraintPos = node.ConstraintIndex.find(&constraint);
|
|
requireWithContext(constraintPos != node.ConstraintIndex.end(),
|
|
"type variable doesn't know about constraint",
|
|
[&] {
|
|
llvm::dbgs() << "type variable = ";
|
|
printValue(llvm::dbgs(), typeVar);
|
|
llvm::dbgs() << ", constraint = ";
|
|
printValue(llvm::dbgs(), &constraint);
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
}
|
|
}
|
|
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
|