mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Teach RemoteMirror how to project enum values
This adds two new functions to the SwiftRemoteMirror
facility that support inspecting enum values.
Currently, these support non-payload enums and
single-payload enums, including nested enums and
payloads with struct, tuple, and reference payloads.
In particular, it handles nested `Optional` types.
TODO: Multi-payload enums use different strategies for
encoding the cases that aren't yet supported by this
code.
Note: This relies on information from dataLayoutQuery
to correctly decode invalid pointer values that are used
to encode enums. Existing clients will need to augment
their DLQ functions before using these new APIs.
Resolves rdar://59961527
```
/// Projects the value of an enum.
///
/// Takes the address and typeref for an enum and determines the
/// index of the currently-selected case within the enum.
///
/// Returns true iff the enum case could be successfully determined.
/// In particular, note that this code may fail for valid in-memory data
/// if the compiler is using a strategy we do not yet understand.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_projectEnumValue(SwiftReflectionContextRef ContextRef,
swift_addr_t EnumAddress,
swift_typeref_t EnumTypeRef,
uint64_t *CaseIndex);
/// Finds information about a particular enum case.
///
/// Given an enum typeref and index of a case, returns:
/// * Typeref of the associated payload or zero if there is no payload
/// * Name of the case if known.
///
/// The Name points to a freshly-allocated C string on the heap. You
/// are responsible for freeing the string (via `free()`) when you are finished.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_getEnumCaseTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t EnumTypeRef,
unsigned CaseIndex,
char **CaseName,
swift_typeref_t *PayloadTypeRef);
```
Co-authored-by: Mike Ash <mikeash@apple.com>
665 lines
21 KiB
C++
665 lines
21 KiB
C++
//===--- swift-reflection-dump.cpp - Reflection testing application -------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This is a host-side tool to dump remote reflection sections in swift
|
|
// binaries.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "swift/Basic/LLVMInitialize.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Reflection/ReflectionContext.h"
|
|
#include "swift/Reflection/TypeRef.h"
|
|
#include "swift/Reflection/TypeRefBuilder.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
#include "llvm/Object/RelocationResolver.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
|
|
#if defined(_WIN32)
|
|
#include <io.h>
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(__APPLE__) && defined(__MACH__)
|
|
#include <TargetConditionals.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <csignal>
|
|
|
|
using llvm::ArrayRef;
|
|
using llvm::dyn_cast;
|
|
using llvm::StringRef;
|
|
using namespace llvm::object;
|
|
|
|
using namespace swift;
|
|
using namespace swift::reflection;
|
|
using namespace swift::remote;
|
|
using namespace Demangle;
|
|
|
|
enum class ActionType { DumpReflectionSections, DumpTypeLowering };
|
|
|
|
namespace options {
|
|
static llvm::cl::opt<ActionType> Action(
|
|
llvm::cl::desc("Mode:"),
|
|
llvm::cl::values(
|
|
clEnumValN(ActionType::DumpReflectionSections,
|
|
"dump-reflection-sections",
|
|
"Dump the field reflection section"),
|
|
clEnumValN(
|
|
ActionType::DumpTypeLowering, "dump-type-lowering",
|
|
"Dump the field layout for typeref strings read from stdin")),
|
|
llvm::cl::init(ActionType::DumpReflectionSections));
|
|
|
|
static llvm::cl::list<std::string>
|
|
BinaryFilename("binary-filename",
|
|
llvm::cl::desc("Filenames of the binary files"),
|
|
llvm::cl::OneOrMore);
|
|
|
|
static llvm::cl::opt<std::string>
|
|
Architecture("arch",
|
|
llvm::cl::desc("Architecture to inspect in the binary"),
|
|
llvm::cl::Required);
|
|
} // end namespace options
|
|
|
|
template <typename T> static T unwrap(llvm::Expected<T> value) {
|
|
if (value)
|
|
return std::move(value.get());
|
|
llvm::errs() << "swift-reflection-test error: " << toString(value.takeError())
|
|
<< "\n";
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
using ReadBytesResult = swift::remote::MemoryReader::ReadBytesResult;
|
|
|
|
// Since ObjectMemoryReader maintains ownership of the ObjectFiles and their
|
|
// raw data, we can vend ReadBytesResults with no-op destructors.
|
|
static void no_op_destructor(const void*) {}
|
|
|
|
class Image {
|
|
private:
|
|
struct Segment {
|
|
uint64_t Addr;
|
|
StringRef Contents;
|
|
};
|
|
const ObjectFile *O;
|
|
uint64_t HeaderAddress;
|
|
std::vector<Segment> Segments;
|
|
struct DynamicRelocation {
|
|
StringRef Symbol;
|
|
uint64_t Offset;
|
|
};
|
|
llvm::DenseMap<uint64_t, DynamicRelocation> DynamicRelocations;
|
|
|
|
void scanMachO(const MachOObjectFile *O) {
|
|
using namespace llvm::MachO;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
// Collect the segment preferred vm mappings.
|
|
for (const auto &Load : O->load_commands()) {
|
|
if (Load.C.cmd == LC_SEGMENT_64) {
|
|
auto Seg = O->getSegment64LoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(Seg.fileoff,
|
|
Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, Seg.vmaddr);
|
|
} else if (Load.C.cmd == LC_SEGMENT) {
|
|
auto Seg = O->getSegmentLoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(Seg.fileoff,
|
|
Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)Seg.vmaddr);
|
|
}
|
|
}
|
|
|
|
// Walk through the bindings list to collect all the external references
|
|
// in the image.
|
|
llvm::Error error = llvm::Error::success();
|
|
auto OO = const_cast<MachOObjectFile*>(O);
|
|
|
|
for (auto bind : OO->bindTable(error)) {
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
break;
|
|
}
|
|
|
|
// The offset from the symbol is stored at the target address.
|
|
uint64_t Offset;
|
|
auto OffsetContent = getContentsAtAddress(bind.address(),
|
|
O->getBytesInAddress());
|
|
if (OffsetContent.empty())
|
|
continue;
|
|
|
|
if (O->getBytesInAddress() == 8) {
|
|
memcpy(&Offset, OffsetContent.data(), sizeof(Offset));
|
|
} else if (O->getBytesInAddress() == 4) {
|
|
uint32_t OffsetValue;
|
|
memcpy(&OffsetValue, OffsetContent.data(), sizeof(OffsetValue));
|
|
Offset = OffsetValue;
|
|
} else {
|
|
assert(false && "unexpected word size?!");
|
|
}
|
|
|
|
DynamicRelocations.insert({bind.address(), {bind.symbolName(), Offset}});
|
|
}
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
}
|
|
}
|
|
|
|
template<typename ELFT>
|
|
void scanELFType(const ELFObjectFile<ELFT> *O) {
|
|
using namespace llvm::ELF;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
auto phdrs = O->getELFFile()->program_headers();
|
|
if (!phdrs) {
|
|
llvm::consumeError(phdrs.takeError());
|
|
}
|
|
|
|
for (auto &ph : *phdrs) {
|
|
if (ph.p_filesz == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(ph.p_offset,
|
|
ph.p_offset + ph.p_filesz);
|
|
if (contents.empty() || contents.size() != ph.p_filesz)
|
|
continue;
|
|
|
|
Segments.push_back({ph.p_vaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)ph.p_vaddr);
|
|
}
|
|
|
|
// Collect the dynamic relocations.
|
|
auto resolver = getRelocationResolver(*O);
|
|
auto resolverSupports = resolver.first;
|
|
auto resolve = resolver.second;
|
|
|
|
if (!resolverSupports || !resolve)
|
|
return;
|
|
|
|
auto machine = O->getELFFile()->getHeader()->e_machine;
|
|
auto relativeRelocType = getELFRelativeRelocationType(machine);
|
|
|
|
for (auto &S : static_cast<const ELFObjectFileBase*>(O)
|
|
->dynamic_relocation_sections()) {
|
|
bool isRela = O->getSection(S.getRawDataRefImpl())->sh_type
|
|
== llvm::ELF::SHT_RELA;
|
|
|
|
for (const RelocationRef &R : S.relocations()) {
|
|
// `getRelocationResolver` doesn't handle RELATIVE relocations, so we
|
|
// have to do that ourselves.
|
|
if (isRela && R.getType() == relativeRelocType) {
|
|
auto rela = O->getRela(R.getRawDataRefImpl());
|
|
DynamicRelocations.insert({R.getOffset(),
|
|
{{}, HeaderAddress + rela->r_addend}});
|
|
continue;
|
|
}
|
|
|
|
if (!resolverSupports(R.getType()))
|
|
continue;
|
|
auto symbol = R.getSymbol();
|
|
auto name = symbol->getName();
|
|
if (!name) {
|
|
llvm::consumeError(name.takeError());
|
|
continue;
|
|
}
|
|
uint64_t offset = resolve(R, 0, 0);
|
|
DynamicRelocations.insert({R.getOffset(), {*name, offset}});
|
|
}
|
|
}
|
|
}
|
|
|
|
void scanELF(const ELFObjectFileBase *O) {
|
|
if (auto le32 = dyn_cast<ELFObjectFile<ELF32LE>>(O)) {
|
|
scanELFType(le32);
|
|
} else if (auto be32 = dyn_cast<ELFObjectFile<ELF32BE>>(O)) {
|
|
scanELFType(be32);
|
|
} else if (auto le64 = dyn_cast<ELFObjectFile<ELF64LE>>(O)) {
|
|
scanELFType(le64);
|
|
} else if (auto be64 = dyn_cast<ELFObjectFile<ELF64BE>>(O)) {
|
|
scanELFType(be64);
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// FIXME: ReflectionContext tries to read bits of the ELF structure that
|
|
// aren't normally mapped by a phdr. Until that's fixed,
|
|
// allow access to the whole file 1:1 in address space that isn't otherwise
|
|
// mapped.
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
void scanCOFF(const COFFObjectFile *O) {
|
|
HeaderAddress = O->getImageBase();
|
|
|
|
for (auto SectionRef : O->sections()) {
|
|
auto Section = O->getCOFFSection(SectionRef);
|
|
|
|
if (Section->SizeOfRawData == 0)
|
|
continue;
|
|
|
|
auto SectionBase = O->getImageBase() + Section->VirtualAddress;
|
|
auto SectionContent =
|
|
O->getData().slice(Section->PointerToRawData,
|
|
Section->PointerToRawData + Section->SizeOfRawData);
|
|
if (SectionContent.empty()
|
|
|| SectionContent.size() != Section->SizeOfRawData)
|
|
continue;
|
|
|
|
Segments.push_back({SectionBase, SectionContent});
|
|
}
|
|
|
|
// FIXME: We need to map the header at least, but how much of it does
|
|
// Windows typically map?
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
public:
|
|
explicit Image(const ObjectFile *O) : O(O) {
|
|
// Unfortunately llvm doesn't provide a uniform interface for iterating
|
|
// loadable segments or dynamic relocations in executable images yet.
|
|
if (auto macho = dyn_cast<MachOObjectFile>(O)) {
|
|
scanMachO(macho);
|
|
} else if (auto elf = dyn_cast<ELFObjectFileBase>(O)) {
|
|
scanELF(elf);
|
|
} else if (auto coff = dyn_cast<COFFObjectFile>(O)) {
|
|
scanCOFF(coff);
|
|
} else {
|
|
fputs("unsupported image format\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
unsigned getBytesInAddress() const {
|
|
return O->getBytesInAddress();
|
|
}
|
|
|
|
uint64_t getStartAddress() const {
|
|
return HeaderAddress;
|
|
}
|
|
|
|
uint64_t getEndAddress() const {
|
|
uint64_t max = 0;
|
|
for (auto &Segment : Segments) {
|
|
max = std::max(max, Segment.Addr + Segment.Contents.size());
|
|
}
|
|
return max;
|
|
}
|
|
|
|
StringRef getContentsAtAddress(uint64_t Addr, uint64_t Size) const {
|
|
for (auto &Segment : Segments) {
|
|
auto addrInSegment = Segment.Addr <= Addr
|
|
&& Addr + Size <= Segment.Addr + Segment.Contents.size();
|
|
|
|
if (!addrInSegment)
|
|
continue;
|
|
|
|
auto offset = Addr - Segment.Addr;
|
|
auto result = Segment.Contents.drop_front(offset);
|
|
return result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
RemoteAbsolutePointer
|
|
resolvePointer(uint64_t Addr, uint64_t pointerValue) const {
|
|
auto found = DynamicRelocations.find(Addr);
|
|
RemoteAbsolutePointer result;
|
|
if (found == DynamicRelocations.end())
|
|
result = RemoteAbsolutePointer("", pointerValue);
|
|
else
|
|
result = RemoteAbsolutePointer(found->second.Symbol,
|
|
found->second.Offset);
|
|
return result;
|
|
}
|
|
};
|
|
|
|
/// MemoryReader that reads from the on-disk representation of an executable
|
|
/// or dynamic library image.
|
|
///
|
|
/// This reader uses a remote addressing scheme where the most significant
|
|
/// 16 bits of the address value serve as an index into the array of loaded images,
|
|
/// and the low 48 bits correspond to the preferred virtual address mapping of
|
|
/// the image.
|
|
class ObjectMemoryReader : public MemoryReader {
|
|
struct ImageEntry {
|
|
Image TheImage;
|
|
uint64_t Slide;
|
|
};
|
|
std::vector<ImageEntry> Images;
|
|
|
|
std::pair<const Image *, uint64_t>
|
|
decodeImageIndexAndAddress(uint64_t Addr) const {
|
|
for (auto &Image : Images) {
|
|
if (Image.TheImage.getStartAddress() + Image.Slide <= Addr
|
|
&& Addr < Image.TheImage.getEndAddress() + Image.Slide) {
|
|
return {&Image.TheImage, Addr - Image.Slide};
|
|
}
|
|
}
|
|
return {nullptr, 0};
|
|
}
|
|
|
|
uint64_t
|
|
encodeImageIndexAndAddress(const Image *image, uint64_t imageAddr) const {
|
|
auto entry = (const ImageEntry*)image;
|
|
return imageAddr + entry->Slide;
|
|
}
|
|
|
|
StringRef getContentsAtAddress(uint64_t Addr, uint64_t Size) {
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) = decodeImageIndexAndAddress(Addr);
|
|
|
|
if (!image)
|
|
return StringRef();
|
|
|
|
return image->getContentsAtAddress(imageAddr, Size);
|
|
}
|
|
|
|
public:
|
|
explicit ObjectMemoryReader(
|
|
const std::vector<const ObjectFile *> &ObjectFiles) {
|
|
if (ObjectFiles.empty()) {
|
|
fputs("no object files provided\n", stderr);
|
|
abort();
|
|
}
|
|
unsigned WordSize = 0;
|
|
for (const ObjectFile *O : ObjectFiles) {
|
|
// All the object files we look at should share a word size.
|
|
if (!WordSize) {
|
|
WordSize = O->getBytesInAddress();
|
|
} else if (WordSize != O->getBytesInAddress()) {
|
|
fputs("object files must all be for the same architecture\n", stderr);
|
|
abort();
|
|
}
|
|
Images.push_back({Image(O), 0});
|
|
}
|
|
|
|
// If there is more than one image loaded, try to fit them into one address
|
|
// space.
|
|
if (Images.size() > 1) {
|
|
uint64_t NextAddrSpace = 0;
|
|
for (auto &Image : Images) {
|
|
Image.Slide = NextAddrSpace - Image.TheImage.getStartAddress();
|
|
NextAddrSpace +=
|
|
Image.TheImage.getEndAddress() - Image.TheImage.getStartAddress();
|
|
NextAddrSpace = (NextAddrSpace + 16383) & ~16383;
|
|
}
|
|
|
|
if (WordSize < 8 && NextAddrSpace > 0xFFFFFFFFu) {
|
|
fputs("object files did not fit in address space", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
ArrayRef<ImageEntry> getImages() const { return Images; }
|
|
|
|
bool queryDataLayout(DataLayoutQueryType type, void *inBuffer,
|
|
void *outBuffer) override {
|
|
auto wordSize = Images.front().TheImage.getBytesInAddress();
|
|
// TODO: The following should be set based on inspecting the image.
|
|
// This code sets it to match the platform this code was compiled for.
|
|
#if defined(__APPLE__) && __APPLE__
|
|
auto applePlatform = true;
|
|
#else
|
|
auto applePlatform = false;
|
|
#endif
|
|
#if defined(__APPLE__) && __APPLE__ && ((defined(TARGET_OS_IOS) && TARGET_OS_IOS) || (defined(TARGET_OS_IOS) && TARGET_OS_WATCH) || (defined(TARGET_OS_TV) && TARGET_OS_TV))
|
|
auto iosDerivedPlatform = true;
|
|
#else
|
|
auto iosDerivedPlatform = false;
|
|
#endif
|
|
|
|
switch (type) {
|
|
case DLQ_GetPointerSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetSizeSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetObjCReservedLowBits: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
if (applePlatform && !iosDerivedPlatform && wordSize == 8) {
|
|
// Obj-C reserves low bit on 64-bit macOS only.
|
|
// Other Apple platforms don't reserve this bit (even when
|
|
// running on x86_64-based simulators).
|
|
*result = 1;
|
|
} else {
|
|
*result = 0;
|
|
}
|
|
return true;
|
|
}
|
|
case DLQ_GetLeastValidPointerValue: {
|
|
auto result = static_cast<uint64_t *>(outBuffer);
|
|
if (applePlatform && wordSize == 8) {
|
|
// Swift reserves the first 4GiB on 64-bit Apple platforms
|
|
*result = 0x100000000;
|
|
} else {
|
|
// Swift reserves the first 4KiB everywhere else
|
|
*result = 0x1000;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
RemoteAddress getImageStartAddress(unsigned i) const {
|
|
assert(i < Images.size());
|
|
|
|
return RemoteAddress(
|
|
encodeImageIndexAndAddress(&Images[i].TheImage,
|
|
Images[i].TheImage.getStartAddress()));
|
|
}
|
|
|
|
// TODO: We could consult the dynamic symbol tables of the images to
|
|
// implement this.
|
|
RemoteAddress getSymbolAddress(const std::string &name) override {
|
|
return RemoteAddress(nullptr);
|
|
}
|
|
|
|
ReadBytesResult readBytes(RemoteAddress Addr, uint64_t Size) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, Size);
|
|
return ReadBytesResult(resultBuffer.data(), no_op_destructor);
|
|
}
|
|
|
|
bool readString(RemoteAddress Addr, std::string &Dest) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, 1);
|
|
if (resultBuffer.empty())
|
|
return false;
|
|
|
|
// Make sure there's a null terminator somewhere in the contents.
|
|
unsigned i = 0;
|
|
for (unsigned e = resultBuffer.size(); i < e; ++i) {
|
|
if (resultBuffer[i] == 0)
|
|
goto found_terminator;
|
|
}
|
|
return false;
|
|
|
|
found_terminator:
|
|
Dest.append(resultBuffer.begin(), resultBuffer.begin() + i);
|
|
return true;
|
|
}
|
|
|
|
RemoteAbsolutePointer resolvePointer(RemoteAddress Addr,
|
|
uint64_t pointerValue) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) =
|
|
decodeImageIndexAndAddress(addrValue);
|
|
|
|
if (!image)
|
|
return RemoteAbsolutePointer();
|
|
|
|
auto resolved = image->resolvePointer(imageAddr, pointerValue);
|
|
|
|
if (resolved && resolved.isResolved()) {
|
|
// Mix in the image index again to produce a remote address pointing into
|
|
// the same image.
|
|
return RemoteAbsolutePointer("", encodeImageIndexAndAddress(image,
|
|
resolved.getResolvedAddress().getAddressData()));
|
|
}
|
|
// If the pointer is relative to an unresolved relocation, leave it as is.
|
|
return resolved;
|
|
}
|
|
};
|
|
|
|
using ReflectionContextOwner
|
|
= std::unique_ptr<void, void (*)(void*)>;
|
|
|
|
template<typename Runtime>
|
|
static std::pair<ReflectionContextOwner, TypeRefBuilder &>
|
|
makeReflectionContextForMetadataReader(
|
|
std::shared_ptr<ObjectMemoryReader> reader) {
|
|
using ReflectionContext = ReflectionContext<Runtime>;
|
|
auto context = new ReflectionContext(reader);
|
|
auto &builder = context->getBuilder();
|
|
for (unsigned i = 0, e = reader->getImages().size(); i < e; ++i) {
|
|
context->addImage(reader->getImageStartAddress(i));
|
|
}
|
|
return {ReflectionContextOwner(context,
|
|
[](void *x){ delete (ReflectionContext*)x; }),
|
|
builder};
|
|
}
|
|
|
|
|
|
static std::pair<ReflectionContextOwner, TypeRefBuilder &>
|
|
makeReflectionContextForObjectFiles(
|
|
const std::vector<const ObjectFile *> &objectFiles) {
|
|
auto Reader = std::make_shared<ObjectMemoryReader>(objectFiles);
|
|
|
|
uint8_t pointerSize;
|
|
Reader->queryDataLayout(DataLayoutQueryType::DLQ_GetPointerSize,
|
|
nullptr, &pointerSize);
|
|
|
|
switch (pointerSize) {
|
|
case 4:
|
|
return makeReflectionContextForMetadataReader<External<RuntimeTarget<4>>>
|
|
(std::move(Reader));
|
|
case 8:
|
|
return makeReflectionContextForMetadataReader<External<RuntimeTarget<8>>>
|
|
(std::move(Reader));
|
|
default:
|
|
fputs("unsupported word size in object file\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static int doDumpReflectionSections(ArrayRef<std::string> BinaryFilenames,
|
|
StringRef Arch, ActionType Action,
|
|
FILE *file) {
|
|
// Note: binaryOrError and objectOrError own the memory for our ObjectFile;
|
|
// once they go out of scope, we can no longer do anything.
|
|
std::vector<OwningBinary<Binary>> BinaryOwners;
|
|
std::vector<std::unique_ptr<ObjectFile>> ObjectOwners;
|
|
std::vector<const ObjectFile *> ObjectFiles;
|
|
|
|
for (const std::string &BinaryFilename : BinaryFilenames) {
|
|
auto BinaryOwner = unwrap(createBinary(BinaryFilename));
|
|
Binary *BinaryFile = BinaryOwner.getBinary();
|
|
|
|
// The object file we are doing lookups in -- either the binary itself, or
|
|
// a particular slice of a universal binary.
|
|
std::unique_ptr<ObjectFile> ObjectOwner;
|
|
const ObjectFile *O = dyn_cast<ObjectFile>(BinaryFile);
|
|
if (!O) {
|
|
auto Universal = cast<MachOUniversalBinary>(BinaryFile);
|
|
ObjectOwner = unwrap(Universal->getMachOObjectForArch(Arch));
|
|
O = ObjectOwner.get();
|
|
}
|
|
|
|
// Retain the objects that own section memory
|
|
BinaryOwners.push_back(std::move(BinaryOwner));
|
|
ObjectOwners.push_back(std::move(ObjectOwner));
|
|
ObjectFiles.push_back(O);
|
|
}
|
|
|
|
auto context = makeReflectionContextForObjectFiles(ObjectFiles);
|
|
auto &builder = context.second;
|
|
|
|
switch (Action) {
|
|
case ActionType::DumpReflectionSections:
|
|
// Dump everything
|
|
builder.dumpAllSections(file);
|
|
break;
|
|
case ActionType::DumpTypeLowering: {
|
|
for (std::string Line; std::getline(std::cin, Line);) {
|
|
if (Line.empty())
|
|
continue;
|
|
|
|
if (StringRef(Line).startswith("//"))
|
|
continue;
|
|
|
|
Demangle::Demangler Dem;
|
|
auto Demangled = Dem.demangleType(Line);
|
|
auto *TypeRef =
|
|
swift::Demangle::decodeMangledType(builder, Demangled);
|
|
if (TypeRef == nullptr) {
|
|
fprintf(file, "Invalid typeref:%s\n", Line.c_str());
|
|
continue;
|
|
}
|
|
|
|
TypeRef->dump(file);
|
|
auto *TypeInfo = builder.getTypeConverter().getTypeInfo(TypeRef);
|
|
if (TypeInfo == nullptr) {
|
|
fprintf(file, "Invalid lowering\n");
|
|
continue;
|
|
}
|
|
TypeInfo->dump(file);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
PROGRAM_START(argc, argv);
|
|
llvm::cl::ParseCommandLineOptions(argc, argv, "Swift Reflection Dump\n");
|
|
return doDumpReflectionSections(options::BinaryFilename,
|
|
options::Architecture, options::Action,
|
|
stdout);
|
|
}
|