Files
swift-mirror/lib/IRGen/IRGenSIL.cpp
Joe Groff 0dc5c66cd2 SIL: Move SILFunctionTypeInfo into a side table.
Generate and cache SILFunctionTypeInfo from Swift types on the fly, and simplify the SILType representation down to a CanType and isAddress bit.

Swift SVN r5298
2013-05-24 16:33:52 +00:00

1512 lines
55 KiB
C++

//===--- IRGenSIL.cpp - Swift Per-Function IR Generation ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SourceMgr.h"
#include "swift/Basic/Interleave.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Stmt.h"
#include "swift/SIL/SILConstant.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "CallEmission.h"
#include "Explosion.h"
#include "GenClass.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenProto.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "IRGenModule.h"
#include "IRGenSIL.h"
#include "Linking.h"
#include "TypeInfo.h"
using namespace swift;
using namespace irgen;
llvm::Value *StaticFunction::getExplosionValue(IRGenFunction &IGF) const {
switch (cc) {
case AbstractCC::C:
case AbstractCC::ObjCMethod:
// FIXME: Thunk foreign functions to Swift's CC when producing function
// values.
assert(false && "thunking C functions not yet implemented");
return nullptr;
case AbstractCC::Method:
case AbstractCC::Freestanding:
return IGF.Builder.CreateBitCast(function, IGF.IGM.Int8PtrTy);
}
}
void LoweredValue::getExplosion(IRGenFunction &IGF, Explosion &ex) const {
switch (kind) {
case Kind::Address:
llvm_unreachable("not a value");
case Kind::Explosion:
assert(ex.getKind() == explosion.kind &&
"destination explosion kind mismatch");
for (auto *value : explosion.values)
ex.add(value);
break;
case Kind::StaticFunction:
ex.add(staticFunction.getExplosionValue(IGF));
break;
case Kind::ObjCMethod:
ex.add(objcMethod.getExplosionValue(IGF));
break;
case Kind::MetatypeValue:
ex.add(metatypeValue.getSwiftMetatype());
break;
case Kind::SpecializedValue:
llvm_unreachable("thunking generic function not yet supported");
case Kind::BuiltinValue:
llvm_unreachable("reifying builtin function not yet supported");
}
}
ExplosionKind LoweredValue::getExplosionKind() const {
switch (kind) {
case Kind::Address:
llvm_unreachable("not a value");
case Kind::Explosion:
return explosion.kind;
case Kind::StaticFunction:
case Kind::ObjCMethod:
case Kind::MetatypeValue:
case Kind::SpecializedValue:
case Kind::BuiltinValue:
return ExplosionKind::Minimal;
}
}
IRGenSILFunction::IRGenSILFunction(IRGenModule &IGM,
SILFunction *f,
ExplosionKind explosionLevel)
: IRGenFunction(IGM, explosionLevel,
IGM.getAddrOfSILFunction(f, explosionLevel)),
CurSILFn(f)
{}
IRGenSILFunction::~IRGenSILFunction() {
DEBUG(CurFn->print(llvm::dbgs()));
}
static std::vector<llvm::PHINode*>
emitPHINodesForBBArgs(IRGenSILFunction &IGF,
SILBasicBlock *silBB,
llvm::BasicBlock *llBB) {
std::vector<llvm::PHINode*> phis;
unsigned predecessors = std::count_if(silBB->pred_begin(), silBB->pred_end(),
[](...){ return true; });
IGF.Builder.SetInsertPoint(llBB);
for (SILArgument *arg : make_range(silBB->bbarg_begin(), silBB->bbarg_end())) {
size_t first = phis.size();
const TypeInfo &ti = IGF.getFragileTypeInfo(arg->getType());
if (arg->getType().isAddress()) {
phis.push_back(IGF.Builder.CreatePHI(ti.getStorageType()->getPointerTo(),
predecessors));
IGF.newLoweredAddress(SILValue(arg,0),
ti.getAddressForPointer(phis.back()));
} else {
ExplosionSchema schema = ti.getSchema(IGF.CurExplosionLevel);
for (auto &elt : schema) {
if (elt.isScalar())
phis.push_back(
IGF.Builder.CreatePHI(elt.getScalarType(), predecessors));
else
phis.push_back(
IGF.Builder.CreatePHI(elt.getAggregateType()->getPointerTo(),
predecessors));
}
Explosion argValue(IGF.CurExplosionLevel);
for (llvm::PHINode *phi : make_range(phis.begin()+first, phis.end()))
argValue.add(phi);
IGF.newLoweredExplosion(SILValue(arg,0), argValue);
}
}
return phis;
}
static ArrayRef<SILArgument*> emitEntryPointIndirectReturn(
IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
SILFunctionTypeInfo *funcTI,
std::function<bool()> requiresIndirectResult) {
// Map the indirect return if present.
if (funcTI->hasIndirectReturn()) {
SILArgument *ret = entry->bbarg_begin()[0];
SILValue retv(ret, 0);
TypeInfo const &retType = IGF.IGM.getFragileTypeInfo(ret->getType());
IGF.newLoweredAddress(retv,
retType.getAddressForPointer(params.claimNext()));
return entry->getBBArgs().slice(1);
} else {
// Map an indirect return for a type SIL considers loadable but still
// requires an indirect return at the IR level.
if (requiresIndirectResult()) {
TypeInfo const &retType
= IGF.IGM.getFragileTypeInfo(funcTI->getResultType());
IGF.IndirectReturn = retType.getAddressForPointer(params.claimNext());
}
return entry->getBBArgs();
}
}
/// Emit entry point arguments for a SILFunction with the Swift calling
/// convention.
static void emitEntryPointArgumentsNativeCC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
SILType funcTy) {
SILFunctionTypeInfo *funcTI = funcTy.getFunctionTypeInfo(*IGF.IGM.SILMod);
// Map the indirect return if present.
ArrayRef<SILArgument*> args
= emitEntryPointIndirectReturn(IGF, entry, params, funcTI,
[&]() -> bool {
TypeInfo const &retType
= IGF.IGM.getFragileTypeInfo(funcTI->getResultType());
ExplosionSchema schema = retType.getSchema(IGF.CurExplosionLevel);
return schema.requiresIndirectResult();
});
// Map the remaining SIL argument to LLVM arguments.
for (SILArgument *arg : args) {
SILValue argv(arg, 0);
TypeInfo const &argType = IGF.getFragileTypeInfo(arg->getType());
if (arg->getType().isAddress()) {
IGF.newLoweredAddress(argv,
argType.getAddressForPointer(params.claimNext()));
continue;
}
Explosion explosion(IGF.CurExplosionLevel);
argType.reexplode(IGF, params, explosion);
IGF.newLoweredExplosion(arg, explosion);
}
// Bind polymorphic arguments.
if (auto polyFn = funcTy.getAs<PolymorphicFunctionType>())
emitPolymorphicParameters(IGF, polyFn, params);
}
/// Emit entry point arguments for the parameters of a C function, or the
/// method parameters of an ObjC method.
static void emitEntryPointArgumentsCOrObjC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
ArrayRef<SILArgument*> args) {
for (SILArgument *arg : args) {
TypeInfo const &argType = IGF.getFragileTypeInfo(arg->getType());
if (arg->getType().isAddress()) {
IGF.newLoweredAddress(arg,
argType.getAddressForPointer(params.claimNext()));
continue;
}
Explosion argExplosion(IGF.CurExplosionLevel);
// Load and explode an argument that is 'byval' in the C calling convention.
if (requiresExternalByvalArgument(IGF.IGM, arg->getType())) {
Address byval = argType.getAddressForPointer(params.claimNext());
argType.load(IGF, byval, argExplosion);
} else {
argType.reexplode(IGF, params, argExplosion);
}
IGF.newLoweredExplosion(arg, argExplosion);
}
}
/// Emit entry point arguments for a SILFunction with the ObjC method calling
/// convention. This convention inserts the '_cmd' objc_msgSend argument after
/// the first non-sret argument.
static void emitEntryPointArgumentsObjCMethodCC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
SILType funcTy) {
SILFunctionTypeInfo *funcTI = funcTy.getFunctionTypeInfo(*IGF.IGM.SILMod);
// Map the indirect return if present.
ArrayRef<SILArgument*> args
= emitEntryPointIndirectReturn(IGF, entry, params, funcTI, [&] {
return requiresExternalIndirectResult(IGF.IGM, funcTI->getResultType());
});
// Map the self argument. This should always be an ObjC pointer type so
// should never need to be loaded from a byval.
SILArgument *selfArg = args[0];
TypeInfo const &selfType = IGF.getFragileTypeInfo(selfArg->getType());
Explosion self(IGF.CurExplosionLevel);
selfType.reexplode(IGF, params, self);
IGF.newLoweredExplosion(selfArg, self);
// Discard the implicit _cmd argument.
params.claimNext();
// Map the rest of the arguments as in the C calling convention.
emitEntryPointArgumentsCOrObjC(IGF, entry, params, args.slice(1));
}
/// Emit entry point arguments for a SILFunction with the C calling
/// convention.
static void emitEntryPointArgumentsCCC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
SILType funcTy) {
SILFunctionTypeInfo *funcTI = funcTy.getFunctionTypeInfo(*IGF.IGM.SILMod);
// Map the indirect return if present.
ArrayRef<SILArgument*> args
= emitEntryPointIndirectReturn(IGF, entry, params, funcTI, [&] {
return requiresExternalIndirectResult(IGF.IGM, funcTI->getResultType());
});
emitEntryPointArgumentsCOrObjC(IGF, entry, params, args);
}
void IRGenSILFunction::emitSILFunction() {
DEBUG(llvm::dbgs() << "emitting SIL function: ";
CurSILFn->printName(llvm::dbgs());
llvm::dbgs() << '\n';
CurSILFn->print(llvm::dbgs()));
assert(!CurSILFn->empty() && "function has no basic blocks?!");
// Map the entry bb.
loweredBBs[CurSILFn->begin()] = LoweredBB(CurFn->begin(), {});
// Create LLVM basic blocks for the other bbs.
for (SILBasicBlock *bb = CurSILFn->begin()->getNextNode();
bb != CurSILFn->end(); bb = bb->getNextNode()) {
// FIXME: Use the SIL basic block's name.
llvm::BasicBlock *llBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
std::vector<llvm::PHINode*> phis = emitPHINodesForBBArgs(*this, bb, llBB);
CurFn->getBasicBlockList().push_back(llBB);
loweredBBs[bb] = LoweredBB(llBB, std::move(phis));
}
auto entry = loweredBBs.begin();
Builder.SetInsertPoint(entry->second.bb);
// Map the LLVM arguments to arguments on the entry point BB.
Explosion params = collectParameters();
SILType funcTy = CurSILFn->getLoweredType();
switch (CurSILFn->getAbstractCC()) {
case AbstractCC::Freestanding:
case AbstractCC::Method:
emitEntryPointArgumentsNativeCC(*this, entry->first, params, funcTy);
break;
case AbstractCC::ObjCMethod:
emitEntryPointArgumentsObjCMethodCC(*this, entry->first, params, funcTy);
break;
case AbstractCC::C:
emitEntryPointArgumentsCCC(*this, entry->first, params, funcTy);
break;
}
assert(params.empty() && "did not map all llvm params to SIL params?!");
// Emit the function body.
for (SILBasicBlock &bb : *CurSILFn)
visitSILBasicBlock(&bb);
}
void IRGenSILFunction::visitSILBasicBlock(SILBasicBlock *BB) {
// Insert into the lowered basic block.
llvm::BasicBlock *llBB = getLoweredBB(BB).bb;
Builder.SetInsertPoint(llBB);
// FIXME: emit a phi node to bind the bb arguments from all the predecessor
// branches.
// Generate the body.
for (auto &I : *BB)
visit(&I);
assert(Builder.hasPostTerminatorIP() && "SIL bb did not terminate block?!");
}
/// Find the entry point, natural curry level, and calling convention for a
/// SILConstant function.
llvm::Function *IRGenModule::getAddrOfSILFunction(SILFunction *f,
ExplosionKind level) {
// Check whether we've created the function already.
// FIXME: We should integrate this into the LinkEntity cache more cleanly.
if (llvm::Function *fn = Module.getFunction(f->getMangledName()))
return fn;
LinkEntity entity = LinkEntity::forSILFunction(f, level);
llvm::AttributeSet attrs;
llvm::FunctionType *fnType = getFunctionType(f->getLoweredType(),
level,
ExtraData::None,
attrs);
auto cc = expandAbstractCC(*this, f->getAbstractCC());
LinkInfo link = LinkInfo::get(*this, entity);
return link.createFunction(*this, fnType, cc, attrs);
}
void IRGenSILFunction::visitBuiltinFunctionRefInst(
swift::BuiltinFunctionRefInst *i) {
newLoweredBuiltinValue(SILValue(i, 0), cast<FuncDecl>(i->getFunction()),
/*substitutions*/ {});
return;
}
void IRGenSILFunction::visitFunctionRefInst(swift::FunctionRefInst *i) {
llvm::Function *fnptr = IGM.getAddrOfSILFunction(i->getFunction(),
CurExplosionLevel);
// Store the function constant and calling
// convention as a StaticFunction so we can avoid bitcasting or thunking if
// we don't need to.
newLoweredStaticFunction(SILValue(i, 0), fnptr,
i->getFunction()->getAbstractCC());
}
void IRGenSILFunction::visitGlobalAddrInst(GlobalAddrInst *i) {
VarDecl *global = i->getGlobal();
TypeInfo const &type = getFragileTypeInfo(global->getType());
Address addr;
// If the variable is empty, don't actually emit it; just return undef.
// FIXME: global destructors?
if (type.isKnownEmpty()) {
addr = type.getUndefAddress();
} else {
addr = IGM.getAddrOfGlobalVariable(global);
}
newLoweredAddress(SILValue(i, 0), addr);
return;
}
/// Determine whether a metatype value is used as a Swift metatype, ObjC class,
/// or both.
static void getMetatypeUses(ValueBase *i,
bool &isUsedAsSwiftMetatype,
bool &isUsedAsObjCClass) {
isUsedAsSwiftMetatype = isUsedAsObjCClass = false;
for (auto *use : i->getUses()) {
// Ignore retains or releases of metatypes.
if (isa<RetainInst>(use->getUser()) || isa<ReleaseInst>(use->getUser()))
continue;
// If a class_method lookup of an ObjC method is done on us, we'll need the
// objc class.
if (auto *cm = dyn_cast<ClassMethodInst>(use->getUser())) {
if (cm->getMember().getDecl()->isObjC()) {
isUsedAsObjCClass = true;
continue;
}
}
// If we're applied as the 'this' argument to a class_method of an objc
// method, we'll need the objc class.
// FIXME: Metatypes as other arguments should probably also pass the
// Class too.
if (auto *apply = dyn_cast<ApplyInst>(use->getUser())) {
if (auto *method = dyn_cast<ClassMethodInst>(apply->getCallee())) {
if (method->getMember().getDecl()->isObjC()
&& apply->getArguments().size() >= 1
&& apply->getArguments()[0].getDef() == i) {
isUsedAsObjCClass = true;
continue;
}
}
}
// All other uses are as Swift metatypes.
isUsedAsSwiftMetatype = true;
}
// If there were no uses, assume it's used as a Swift metatype.
isUsedAsSwiftMetatype = true;
}
static void emitMetatypeInst(IRGenSILFunction &IGF,
SILInstruction *i, CanType instanceType) {
llvm::Value *swiftMetatype = nullptr, *objcClass = nullptr;
bool isUsedAsSwiftMetatype, isUsedAsObjCClass;
getMetatypeUses(i, isUsedAsSwiftMetatype, isUsedAsObjCClass);
if (isUsedAsSwiftMetatype) {
Explosion e(IGF.CurExplosionLevel);
emitMetaTypeRef(IGF, instanceType, e);
if (!isUsedAsObjCClass) {
IGF.newLoweredExplosion(SILValue(i, 0), e);
return;
}
swiftMetatype = e.claimNext();
}
if (isUsedAsObjCClass) {
Explosion e(IGF.CurExplosionLevel);
objcClass = emitClassHeapMetadataRef(IGF, instanceType);
}
IGF.newLoweredMetatypeValue(SILValue(i,0), swiftMetatype, objcClass);
}
void IRGenSILFunction::visitMetatypeInst(swift::MetatypeInst *i) {
CanType instanceType(i->getType().castTo<MetaTypeType>()->getInstanceType());
emitMetatypeInst(*this, i, instanceType);
}
void IRGenSILFunction::visitClassMetatypeInst(swift::ClassMetatypeInst *i) {
Explosion base = getLoweredExplosion(i->getOperand());
auto baseValue = base.claimNext();
bool isUsedAsSwiftMetatype, isUsedAsObjCClass;
getMetatypeUses(i, isUsedAsSwiftMetatype, isUsedAsObjCClass);
SILType instanceType = i->getOperand().getType();
llvm::Value *swiftMetatype = nullptr, *objcClass = nullptr;
if (isUsedAsSwiftMetatype)
swiftMetatype = emitTypeMetadataRefForHeapObject(*this, baseValue,
instanceType);
if (isUsedAsObjCClass)
objcClass = emitHeapMetadataRefForHeapObject(*this, baseValue, instanceType);
newLoweredMetatypeValue(SILValue(i,0), swiftMetatype, objcClass);
}
void IRGenSILFunction::visitArchetypeMetatypeInst(
swift::ArchetypeMetatypeInst *i) {
Address base = getLoweredAddress(i->getOperand());
llvm::Value *metatype = emitTypeMetadataRefForArchetype(*this, base,
i->getOperand().getType());
Explosion result(CurExplosionLevel);
result.add(metatype);
newLoweredExplosion(SILValue(i, 0), result);
}
void IRGenSILFunction::visitProtocolMetatypeInst(
swift::ProtocolMetatypeInst *i) {
Address existential = getLoweredAddress(i->getOperand());
llvm::Value *metatype = emitTypeMetadataRefForExistential(*this, existential,
i->getOperand().getType());
Explosion result(CurExplosionLevel);
result.add(metatype);
newLoweredExplosion(SILValue(i, 0), result);
}
void IRGenSILFunction::visitAssociatedMetatypeInst(
swift::AssociatedMetatypeInst *i) {
CanType instanceType(i->getType().castTo<MetaTypeType>()->getInstanceType());
emitMetatypeInst(*this, i, instanceType);
}
static void emitApplyArgument(IRGenSILFunction &IGF,
Explosion &args,
SILValue newArg) {
if (newArg.getType().isAddress()) {
args.add(IGF.getLoweredAddress(newArg).getAddress());
} else {
IGF.getLoweredExplosion(newArg, args);
}
}
static CallEmission getCallEmissionForLoweredValue(IRGenSILFunction &IGF,
SILType calleeTy,
SILType resultTy,
LoweredValue const &lv,
ArrayRef<Substitution> substitutions) {
llvm::Value *calleeFn, *calleeData;
ExtraData extraData;
AbstractCC cc;
switch (lv.kind) {
case LoweredValue::Kind::StaticFunction:
calleeFn = lv.getStaticFunction().getFunction();
cc = lv.getStaticFunction().getAbstractCC();
calleeData = nullptr;
extraData = ExtraData::None;
break;
case LoweredValue::Kind::ObjCMethod: {
auto &objcMethod = lv.getObjCMethod();
return prepareObjCMethodRootCall(IGF, objcMethod.getMethod(),
calleeTy,
resultTy,
substitutions,
IGF.CurExplosionLevel,
bool(objcMethod.getSuperSearchType()));
}
case LoweredValue::Kind::Explosion: {
Explosion calleeValues = lv.getExplosion(IGF);
calleeFn = calleeValues.claimNext();
if (!calleeTy.castTo<AnyFunctionType>()->isThin())
calleeData = calleeValues.claimNext();
else
calleeData = nullptr;
cc = AbstractCC::Freestanding;
// Guess the "ExtraData" kind from the type of CalleeData.
// FIXME: Should these be typed differently by SIL?
if (!calleeData)
extraData = ExtraData::None;
else if (calleeData->getType() == IGF.IGM.RefCountedPtrTy)
extraData = ExtraData::Retainable;
else if (calleeData->getType() == IGF.IGM.TypeMetadataPtrTy)
extraData = ExtraData::Metatype;
else
llvm_unreachable("unexpected extra data for function value");
// Cast the callee pointer to the right function type.
llvm::AttributeSet attrs;
auto fnPtrTy = IGF.IGM.getFunctionType(calleeTy, IGF.CurExplosionLevel,
extraData, attrs)->getPointerTo();
calleeFn = IGF.Builder.CreateBitCast(calleeFn, fnPtrTy);
break;
}
case LoweredValue::Kind::MetatypeValue:
llvm_unreachable("metatype isn't a valid callee");
case LoweredValue::Kind::Address:
llvm_unreachable("sil address isn't a valid callee");
case LoweredValue::Kind::SpecializedValue:
llvm_unreachable("specialized value should be handled before reaching here");
case LoweredValue::Kind::BuiltinValue:
llvm_unreachable("builtins should be handled before reaching here");
}
Callee callee = Callee::forKnownFunction(calleeTy,
resultTy,
substitutions, calleeFn, calleeData,
IGF.CurExplosionLevel);
return CallEmission(IGF, callee);
}
static CallEmission getCallEmissionForLoweredValue(IRGenSILFunction &IGF,
SILType calleeTy,
SILType resultTy,
LoweredValue const &lv) {
switch (lv.kind) {
case LoweredValue::Kind::SpecializedValue: {
LoweredValue const &unspecializedValue
= IGF.getLoweredValue(lv.getSpecializedValue().getUnspecializedValue());
return getCallEmissionForLoweredValue(IGF,
lv.getSpecializedValue().getUnspecializedType(),
resultTy,
unspecializedValue,
lv.getSpecializedValue().getSubstitutions());
}
case LoweredValue::Kind::ObjCMethod:
case LoweredValue::Kind::StaticFunction:
case LoweredValue::Kind::Explosion:
// No substitutions.
return getCallEmissionForLoweredValue(IGF, calleeTy, resultTy, lv,
/*substitutions=*/ {});
case LoweredValue::Kind::MetatypeValue:
llvm_unreachable("metatype isn't a valid callee");
case LoweredValue::Kind::Address:
llvm_unreachable("sil address isn't a valid callee");
case LoweredValue::Kind::BuiltinValue:
llvm_unreachable("builtins should be handled before reaching here");
}
}
static llvm::Value *getObjCClassForValue(IRGenSILFunction &IGF,
SILValue v) {
LoweredValue const &lv = IGF.getLoweredValue(v);
switch (lv.kind) {
case LoweredValue::Kind::Address:
llvm_unreachable("address isn't a valid metatype");
case LoweredValue::Kind::ObjCMethod:
case LoweredValue::Kind::StaticFunction:
case LoweredValue::Kind::SpecializedValue:
case LoweredValue::Kind::BuiltinValue:
llvm_unreachable("function isn't a valid metatype");
case LoweredValue::Kind::MetatypeValue:
return lv.getMetatypeValue().getObjCClass();
// Map a Swift metatype value back to the heap metadata, which will be the
// Class for an ObjC type.
case LoweredValue::Kind::Explosion: {
Explosion e = lv.getExplosion(IGF);
llvm::Value *swiftMeta = e.claimNext();
CanType instanceType(v.getType().castTo<MetaTypeType>()->getInstanceType());
return emitClassHeapMetadataRefForMetatype(IGF, swiftMeta, instanceType);
}
}
}
static void emitBuiltinApplyInst(IRGenSILFunction &IGF,
FuncDecl *builtin,
ApplyInst *i,
ArrayRef<Substitution> substitutions) {
Explosion args(IGF.CurExplosionLevel);
auto argValues = i->getArguments();
Address indirectResult;
if (i->hasIndirectReturn(*IGF.IGM.SILMod)) {
indirectResult =IGF.getLoweredAddress(i->getIndirectReturn(*IGF.IGM.SILMod));
argValues = argValues.slice(0, argValues.size() - 1);
}
for (SILValue arg : argValues)
emitApplyArgument(IGF, args, arg);
if (indirectResult.isValid()) {
emitBuiltinCall(IGF, builtin, args, nullptr, indirectResult, substitutions);
} else {
Explosion result(IGF.CurExplosionLevel);
emitBuiltinCall(IGF, builtin, args, &result, Address(), substitutions);
IGF.newLoweredExplosion(SILValue(i,0), result);
}
}
void IRGenSILFunction::visitApplyInst(swift::ApplyInst *i) {
SILValue v(i, 0);
LoweredValue const &calleeLV = getLoweredValue(i->getCallee());
// Handle builtin calls separately.
if (calleeLV.kind == LoweredValue::Kind::BuiltinValue) {
auto &builtin = calleeLV.getBuiltinValue();
return emitBuiltinApplyInst(*this, builtin.getDecl(), i,
builtin.getSubstitutions());
}
SILType calleeTy = i->getCallee().getType();
SILType resultTy
= calleeTy.getFunctionTypeInfo(*IGM.SILMod)->getSemanticResultType();
CallEmission emission = getCallEmissionForLoweredValue(*this,
i->getCallee().getType(),
resultTy, calleeLV);
// Lower the SIL arguments to IR arguments.
Explosion llArgs(CurExplosionLevel);
// Save off the indirect return argument, if any.
OperandValueArrayRef args = i->getArgumentsWithoutIndirectReturn(*IGM.SILMod);
SILValue indirectReturn;
if (i->hasIndirectReturn(*IGM.SILMod)) {
indirectReturn = i->getIndirectReturn(*IGM.SILMod);
}
// ObjC message sends need special handling for the 'this' argument. It may
// need to be wrapped in an objc_super struct, and the '_cmd' argument needs
// to be passed alongside it.
if (calleeLV.kind == LoweredValue::Kind::ObjCMethod) {
SILValue thisValue = i->getArguments()[0];
llvm::Value *selfArg;
// Convert a metatype 'this' argument to the ObjC Class pointer.
if (thisValue.getType().is<MetaTypeType>()) {
selfArg = getObjCClassForValue(*this, thisValue);
} else {
Explosion selfExplosion(getExplosionKind(thisValue));
getLoweredExplosion(thisValue, selfExplosion);
selfArg = selfExplosion.claimNext();
}
addObjCMethodCallImplicitArguments(*this, llArgs,
calleeLV.getObjCMethod().getMethod(),
selfArg,
calleeLV.getObjCMethod().getSuperSearchType());
args = args.slice(1);
}
for (SILValue arg : args)
emitApplyArgument(*this, llArgs, arg);
emission.addSubstitutedArg(CanType(calleeTy.castTo<FunctionType>()->getInput()),
llArgs);
// If the function takes an indirect return argument, emit into it.
if (indirectReturn) {
Address a = getLoweredAddress(indirectReturn);
TypeInfo const &ti = getFragileTypeInfo(indirectReturn.getType());
emission.emitToMemory(a, ti);
return;
}
// FIXME: handle the result being an address. This doesn't happen normally
// in Swift but is how SIL currently models global accessors, and could also
// be how we model "address" properties in the future.
// If the result is a non-address value, emit to an explosion.
Explosion result(CurExplosionLevel);
emission.emitToExplosion(result);
newLoweredExplosion(SILValue(i, 0), result);
}
void IRGenSILFunction::visitPartialApplyInst(swift::PartialApplyInst *i) {
SILValue v(i, 0);
// Get the static function value.
// FIXME: We'll need to be able to close over runtime function values
// too, by including the function pointer and context data into the new
// closure context.
LoweredValue &lv = getLoweredValue(i->getCallee());
assert(lv.kind == LoweredValue::Kind::StaticFunction &&
"partial application of non-static functions not yet implemented");
auto *calleeFn = lv.getStaticFunction().getFunction();
switch (lv.getStaticFunction().getAbstractCC()) {
case AbstractCC::C:
case AbstractCC::ObjCMethod:
assert(false && "partial_apply of foreign functions not implemented");
break;
case AbstractCC::Freestanding:
case AbstractCC::Method:
break;
}
// Apply the closure up to the next-to-last uncurry level to gather the
// context arguments.
// FIXME: We may need to close over fat function values to be able to curry
// specialized
assert(i->getCallee().getType().castTo<FunctionType>()->isThin() &&
"can't closure a function that already has context");
Explosion llArgs(CurExplosionLevel);
SmallVector<SILType, 8> argTypes;
for (SILValue arg : i->getArguments()) {
emitApplyArgument(*this, llArgs, arg);
// FIXME: Need to carry the address-ness of each argument alongside
// the object type's TypeInfo.
argTypes.push_back(arg.getType());
}
// Create the thunk and function value.
Explosion function(CurExplosionLevel);
emitFunctionPartialApplication(*this, calleeFn, llArgs, argTypes,
i->getType(), function);
newLoweredExplosion(v, function);
}
void IRGenSILFunction::visitIntegerLiteralInst(swift::IntegerLiteralInst *i) {
llvm::Value *constant = llvm::ConstantInt::get(IGM.LLVMContext,
i->getValue());
Explosion e(CurExplosionLevel);
e.add(constant);
newLoweredExplosion(SILValue(i, 0), e);
}
void IRGenSILFunction::visitFloatLiteralInst(swift::FloatLiteralInst *i) {
llvm::Value *constant = llvm::ConstantFP::get(IGM.LLVMContext,
i->getValue());
Explosion e(CurExplosionLevel);
e.add(constant);
newLoweredExplosion(SILValue(i, 0), e);
}
void IRGenSILFunction::visitStringLiteralInst(swift::StringLiteralInst *i) {
Explosion e(CurExplosionLevel);
TupleType *resultTy = i->getType().getAs<TupleType>();
bool includeSize = resultTy && resultTy->getFields().size() >= 2;
emitStringLiteral(*this, i->getValue(), includeSize, e);
newLoweredExplosion(SILValue(i, 0), e);
}
void IRGenSILFunction::visitUnreachableInst(swift::UnreachableInst *i) {
Builder.CreateUnreachable();
}
static void emitReturnInst(IRGenSILFunction &IGF,
SILType resultTy,
Explosion &result) {
// Even if SIL has a direct return, the IR-level calling convention may
// require an indirect return.
if (IGF.IndirectReturn.isValid()) {
TypeInfo const &retType = IGF.getFragileTypeInfo(resultTy);
retType.initialize(IGF, result, IGF.IndirectReturn);
IGF.Builder.CreateRetVoid();
} else {
IGF.emitScalarReturn(result);
}
}
void IRGenSILFunction::visitReturnInst(swift::ReturnInst *i) {
Explosion result = getLoweredExplosion(i->getOperand());
emitReturnInst(*this, i->getOperand().getType(), result);
}
void IRGenSILFunction::visitAutoreleaseReturnInst(AutoreleaseReturnInst *i) {
Explosion result = getLoweredExplosion(i->getOperand());
assert(result.size() == 1 &&
"should have one objc pointer value for autorelease_return");
emitObjCAutoreleaseReturnValue(*this, result.getAll()[0]);
emitReturnInst(*this, i->getOperand().getType(), result);
}
// Add branch arguments to destination phi nodes.
static void addIncomingSILArgumentsToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
OperandValueArrayRef args) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
ArrayRef<llvm::PHINode*> phis = lbb.phis;
size_t phiIndex = 0;
for (SILValue arg : args) {
Explosion argValue = IGF.getLoweredExplosion(arg);
while (!argValue.empty())
phis[phiIndex++]->addIncoming(argValue.claimNext(), curBB);
}
}
void IRGenSILFunction::visitBranchInst(swift::BranchInst *i) {
LoweredBB &lbb = getLoweredBB(i->getDestBB());
addIncomingSILArgumentsToPHINodes(*this, lbb, i->getArgs());
Builder.CreateBr(lbb.bb);
}
void IRGenSILFunction::visitCondBranchInst(swift::CondBranchInst *i) {
LoweredBB &trueBB = getLoweredBB(i->getTrueBB());
LoweredBB &falseBB = getLoweredBB(i->getFalseBB());
llvm::Value *condValue =
getLoweredExplosion(i->getCondition()).claimNext();
addIncomingSILArgumentsToPHINodes(*this, trueBB, i->getTrueArgs());
addIncomingSILArgumentsToPHINodes(*this, falseBB, i->getFalseArgs());
Builder.CreateCondBr(condValue, trueBB.bb, falseBB.bb);
}
void IRGenSILFunction::visitStructInst(swift::StructInst *i) {
Explosion out(CurExplosionLevel);
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
newLoweredExplosion(SILValue(i, 0), out);
}
void IRGenSILFunction::visitTupleInst(swift::TupleInst *i) {
Explosion out(CurExplosionLevel);
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
newLoweredExplosion(SILValue(i, 0), out);
}
void IRGenSILFunction::visitBuiltinZeroInst(swift::BuiltinZeroInst *i) {
auto &ti = getFragileTypeInfo(i->getType());
llvm::Value *zeroValue = llvm::Constant::getNullValue(ti.getStorageType());
Explosion out(CurExplosionLevel);
out.add(zeroValue);
newLoweredExplosion(SILValue(i, 0), out);
}
void IRGenSILFunction::visitTupleExtractInst(swift::TupleExtractInst *i) {
SILValue v(i, 0);
Explosion lowered(CurExplosionLevel);
Explosion operand = getLoweredExplosion(i->getOperand());
SILType baseType = i->getOperand().getType();
projectTupleElementFromExplosion(*this,
baseType,
operand,
i->getFieldNo(),
lowered);
operand.claimAll();
newLoweredExplosion(v, lowered);
}
void IRGenSILFunction::visitTupleElementAddrInst(swift::TupleElementAddrInst *i)
{
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand().getType();
Address field = projectTupleElementAddress(*this,
OwnedAddress(base, nullptr),
baseType,
i->getFieldNo()).getAddress();
newLoweredAddress(SILValue(i, 0), field);
}
void IRGenSILFunction::visitStructExtractInst(swift::StructExtractInst *i) {
SILValue v(i, 0);
Explosion lowered(CurExplosionLevel);
Explosion operand = getLoweredExplosion(i->getOperand());
SILType baseType = i->getOperand().getType();
projectPhysicalStructMemberFromExplosion(*this,
baseType,
operand,
i->getField(),
lowered);
operand.claimAll();
newLoweredExplosion(v, lowered);
}
void IRGenSILFunction::visitStructElementAddrInst(
swift::StructElementAddrInst *i) {
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand().getType();
Address field = projectPhysicalStructMemberAddress(*this,
OwnedAddress(base, nullptr),
baseType,
i->getField()).getAddress();
newLoweredAddress(SILValue(i, 0), field);
}
void IRGenSILFunction::visitRefElementAddrInst(swift::RefElementAddrInst *i) {
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *value = base.claimNext();
SILType baseTy = i->getOperand().getType();
Address field = projectPhysicalClassMemberAddress(*this,
value,
baseTy,
i->getField())
.getAddress();
newLoweredAddress(SILValue(i, 0), field);
}
void IRGenSILFunction::visitModuleInst(swift::ModuleInst *i) {
// Currently, module values are always empty.
Explosion empty(CurExplosionLevel);
newLoweredExplosion(SILValue(i, 0), empty);
}
void IRGenSILFunction::visitLoadInst(swift::LoadInst *i) {
Explosion lowered(CurExplosionLevel);
Address source = getLoweredAddress(i->getOperand());
const TypeInfo &type = getFragileTypeInfo(i->getType().getObjectType());
type.loadAsTake(*this, source, lowered);
newLoweredExplosion(SILValue(i, 0), lowered);
}
void IRGenSILFunction::visitStoreInst(swift::StoreInst *i) {
Explosion source = getLoweredExplosion(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
const TypeInfo &type = getFragileTypeInfo(
i->getSrc().getType().getObjectType());
type.initialize(*this, source, dest);
}
void IRGenSILFunction::visitRetainInst(swift::RetainInst *i) {
// FIXME: Specialization thunks may eventually require retaining. For now,
// since we don't yet thunk specialized function values, ignore retains
// of lowered SpecializedValues.
if (getLoweredValue(i->getOperand()).kind
== LoweredValue::Kind::SpecializedValue) {
return;
}
Explosion lowered = getLoweredExplosion(i->getOperand());
TypeInfo const &ti = getFragileTypeInfo(i->getOperand().getType());
ti.retain(*this, lowered);
}
void IRGenSILFunction::visitReleaseInst(swift::ReleaseInst *i) {
// FIXME: Specialization thunks may eventually require retaining. For now,
// since we don't yet thunk specialized function values, ignore retains
// of lowered SpecializedValues.
if (getLoweredValue(i->getOperand()).kind
== LoweredValue::Kind::SpecializedValue) {
return;
}
Explosion lowered = getLoweredExplosion(i->getOperand());
TypeInfo const &ti = getFragileTypeInfo(i->getOperand().getType());
ti.release(*this, lowered);
}
void IRGenSILFunction::visitRetainAutoreleasedInst(
swift::RetainAutoreleasedInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
llvm::Value *value = lowered.claimNext();
emitObjCRetainAutoreleasedReturnValue(*this, value);
}
void IRGenSILFunction::visitAllocVarInst(swift::AllocVarInst *i) {
const TypeInfo &type = getFragileTypeInfo(i->getElementType());
SILValue v(i, 0);
OnHeap_t isOnHeap = NotOnHeap;
switch (i->getAllocKind()) {
case AllocKind::Heap:
llvm_unreachable("heap alloc_var not implemented");
case AllocKind::Stack:
isOnHeap = NotOnHeap;
break;
case AllocKind::Pseudo:
llvm_unreachable("pseudo allocation not implemented");
}
OwnedAddress addr = type.allocate(*this,
isOnHeap,
// FIXME: derive name from SIL location
"");
newLoweredAddress(v, addr.getAddress());
}
void IRGenSILFunction::visitAllocRefInst(swift::AllocRefInst *i) {
llvm::Value *alloced = emitClassAllocation(*this, i->getType());
Explosion e(CurExplosionLevel);
e.add(alloced);
newLoweredExplosion(SILValue(i, 0), e);
}
void IRGenSILFunction::visitDeallocVarInst(swift::DeallocVarInst *i) {
switch (i->getAllocKind()) {
case AllocKind::Heap:
llvm_unreachable("FIXME: heap dealloc_var not implemented");
case AllocKind::Stack:
// Nothing to do. We could emit a lifetime.end here maybe.
break;
case AllocKind::Pseudo:
llvm_unreachable("pseudo allocation not implemented");
}
}
void IRGenSILFunction::visitAllocBoxInst(swift::AllocBoxInst *i) {
SILValue boxValue(i, 0);
SILValue ptrValue(i, 1);
const TypeInfo &type = getFragileTypeInfo(i->getElementType());
OwnedAddress addr = type.allocate(*this,
OnHeap,
// FIXME: derive name from SIL location
"");
Explosion box(CurExplosionLevel);
box.add(addr.getOwner());
newLoweredExplosion(boxValue, box);
newLoweredAddress(ptrValue, addr.getAddress());
}
void IRGenSILFunction::visitAllocArrayInst(swift::AllocArrayInst *i) {
SILValue boxValue(i, 0);
SILValue ptrValue(i, 1);
Explosion lengthEx = getLoweredExplosion(i->getNumElements());
llvm::Value *lengthValue = lengthEx.claimNext();
HeapArrayInfo arrayInfo(*this, i->getElementType()->getCanonicalType());
Address ptr;
llvm::Value *box = arrayInfo.emitUnmanagedAlloc(*this, lengthValue, ptr, "");
Explosion boxEx(CurExplosionLevel);
boxEx.add(box);
newLoweredExplosion(boxValue, boxEx);
newLoweredAddress(ptrValue, ptr);
}
void IRGenSILFunction::visitConvertFunctionInst(swift::ConvertFunctionInst *i) {
Explosion to(CurExplosionLevel);
Explosion from = getLoweredExplosion(i->getOperand());
// FIXME: could change explosion level here?
assert(to.getKind() == from.getKind());
to.add(from.claimAll());
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitAddressToPointerInst(swift::AddressToPointerInst *i)
{
Explosion to(CurExplosionLevel);
llvm::Value *addrValue = getLoweredAddress(i->getOperand()).getAddress();
if (addrValue->getType() != IGM.Int8PtrTy)
addrValue = Builder.CreateBitCast(addrValue, IGM.Int8PtrTy);
to.add(addrValue);
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitPointerToAddressInst(swift::PointerToAddressInst *i)
{
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *ptrValue = from.claimNext();
auto &ti = getFragileTypeInfo(i->getType());
llvm::Type *destType = ti.getStorageType()->getPointerTo();
ptrValue = Builder.CreateBitCast(ptrValue, destType);
newLoweredAddress(SILValue(i, 0),
ti.getAddressForPointer(ptrValue));
}
static void emitPointerCastInst(IRGenSILFunction &IGF,
SILValue src,
SILValue dest,
llvm::Type *castToType) {
Explosion from = IGF.getLoweredExplosion(src);
llvm::Value *ptrValue = from.claimNext();
ptrValue = IGF.Builder.CreateBitCast(ptrValue, castToType);
Explosion to(IGF.CurExplosionLevel);
to.add(ptrValue);
IGF.newLoweredExplosion(dest, to);
}
void IRGenSILFunction::visitRefToObjectPointerInst(
swift::RefToObjectPointerInst *i) {
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0),
IGM.RefCountedPtrTy);
}
void IRGenSILFunction::visitObjectPointerToRefInst(
swift::ObjectPointerToRefInst *i) {
auto &ti = getFragileTypeInfo(i->getType());
llvm::Type *destType = ti.getStorageType();
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0),
destType);
}
void IRGenSILFunction::visitRefToRawPointerInst(
swift::RefToRawPointerInst *i) {
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0),
IGM.Int8PtrTy);
}
void IRGenSILFunction::visitRawPointerToRefInst(swift::RawPointerToRefInst *i) {
auto &ti = getFragileTypeInfo(i->getType());
llvm::Type *destType = ti.getStorageType();
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0),
destType);
}
void IRGenSILFunction::visitThinToThickFunctionInst(
swift::ThinToThickFunctionInst *i) {
// Take the incoming function pointer and add a null context pointer to it.
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to(CurExplosionLevel);
to.add(from.claimNext());
to.add(IGM.RefCountedNull);
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitBridgeToBlockInst(swift::BridgeToBlockInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to(CurExplosionLevel);
emitBridgeToBlock(*this, i->getType(), from, to);
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitArchetypeToSuperInst(swift::ArchetypeToSuperInst *i)
{
// Get the archetype address.
Address archetype = getLoweredAddress(i->getOperand());
// The data associated with the archetype is simply a pointer; grab it
// and cast it to the superclass type.
Explosion out(CurExplosionLevel);
const TypeInfo &baseTypeInfo = getFragileTypeInfo(i->getType());
llvm::Type *baseTy = baseTypeInfo.StorageType;
llvm::Type *basePtrTy = baseTy->getPointerTo();
llvm::Value *castPtrVal = Builder.CreateBitCast(archetype.getAddress(),
basePtrTy);
llvm::Value *castVal
= Builder.CreateLoad(castPtrVal, IGM.getPointerAlignment());
out.add(castVal);
newLoweredExplosion(SILValue(i, 0), out);
}
void IRGenSILFunction::visitSuperToArchetypeInst(swift::SuperToArchetypeInst *i)
{
Address archetype = getLoweredAddress(i->getDestArchetypeAddress());
Explosion super = getLoweredExplosion(i->getSrcBase());
emitSupertoArchetypeConversion(super, i->getDestArchetypeAddress().getType(),
archetype);
}
void IRGenSILFunction::visitIsaInst(swift::IsaInst *i) {
// Emit the value we're testing.
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *fromValue = from.claimNext();
fromValue = Builder.CreateBitCast(fromValue, IGM.Int8PtrTy);
// Emit the metadata of the type we're testing against.
CanType toType = i->getTestType().getSwiftRValueType();
Explosion metadata(ExplosionKind::Minimal);
emitMetaTypeRef(*this, toType, metadata);
llvm::Value *metadataValue = metadata.claimNext();
metadataValue = Builder.CreateBitCast(metadataValue, IGM.Int8PtrTy);
// Perform a checked cast.
auto call = Builder.CreateCall2(IGM.getDynamicCastClassFn(),
fromValue, metadataValue);
call->setDoesNotThrow();
// Check that the result isn't null.
llvm::Value *result = Builder.CreateICmp(llvm::CmpInst::ICMP_NE,
call, llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
Explosion out(CurExplosionLevel);
out.add(result);
newLoweredExplosion(SILValue(i, 0), out);
}
void IRGenSILFunction::visitCoerceInst(swift::CoerceInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
newLoweredExplosion(SILValue(i, 0), from);
}
void IRGenSILFunction::visitUpcastInst(swift::UpcastInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to(from.getKind());
assert(from.size() == 1 && "class should explode to single value");
const TypeInfo &toTI = getFragileTypeInfo(i->getType());
llvm::Value *fromValue = from.claimNext();
to.add(Builder.CreateBitCast(fromValue, toTI.getStorageType()));
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitDowncastInst(swift::DowncastInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to(from.getKind());
llvm::Value *fromValue = from.claimNext();
llvm::Value *castValue = emitUnconditionalDowncast(
fromValue,
i->getType());
to.add(castValue);
newLoweredExplosion(SILValue(i, 0), to);
}
void IRGenSILFunction::visitIndexAddrInst(swift::IndexAddrInst *i) {
Address base = getLoweredAddress(i->getOperand());
llvm::Value *index = Builder.getInt64(i->getIndex());
llvm::Value *destValue = Builder.CreateGEP(base.getAddress(),
index);
newLoweredAddress(SILValue(i, 0), Address(destValue, base.getAlignment()));
}
void IRGenSILFunction::visitInitExistentialInst(swift::InitExistentialInst *i) {
Address container = getLoweredAddress(i->getOperand());
SILType destType = i->getOperand().getType();
SILType srcType = i->getConcreteType();
Address buffer = emitExistentialContainerInit(*this,
container,
destType, srcType,
i->getConformances());
newLoweredAddress(SILValue(i, 0), buffer);
}
void IRGenSILFunction::visitUpcastExistentialInst(
swift::UpcastExistentialInst *i) {
Address src = getLoweredAddress(i->getSrcExistential());
Address dest = getLoweredAddress(i->getDestExistential());
SILType srcType = i->getSrcExistential().getType();
SILType destType = i->getDestExistential().getType();
emitExistentialContainerUpcast(*this, dest, destType, src, srcType,
i->isTakeOfSrc(),
i->getConformances());
}
void IRGenSILFunction::visitProjectExistentialInst(
swift::ProjectExistentialInst *i) {
SILType baseTy = i->getOperand().getType();
Address base = getLoweredAddress(i->getOperand());
Address object = emitExistentialProjection(*this, base, baseTy);
Explosion lowered(CurExplosionLevel);
lowered.add(object.getAddress());
newLoweredExplosion(SILValue(i, 0), lowered);
}
void IRGenSILFunction::visitProtocolMethodInst(swift::ProtocolMethodInst *i) {
Address base = getLoweredAddress(i->getOperand());
SILType baseTy = i->getOperand().getType();
SILConstant member = i->getMember();
Explosion lowered(CurExplosionLevel);
emitProtocolMethodValue(*this, base, baseTy, member, lowered);
newLoweredExplosion(SILValue(i, 0), lowered);
}
void IRGenSILFunction::visitArchetypeMethodInst(swift::ArchetypeMethodInst *i) {
SILType baseTy = i->getLookupArchetype();
SILConstant member = i->getMember();
Explosion lowered(CurExplosionLevel);
emitArchetypeMethodValue(*this, baseTy, member, lowered);
newLoweredExplosion(SILValue(i, 0), lowered);
}
void IRGenSILFunction::visitInitializeVarInst(swift::InitializeVarInst *i) {
SILType ty = i->getOperand().getType();
TypeInfo const &ti = getFragileTypeInfo(ty);
Address dest = getLoweredAddress(i->getOperand());
Builder.CreateMemSet(Builder.CreateBitCast(dest.getAddress(),
IGM.Int8PtrTy),
Builder.getInt8(0),
ti.getSize(*this),
dest.getAlignment().getValue(),
/*isVolatile=*/ false);
}
void IRGenSILFunction::visitCopyAddrInst(swift::CopyAddrInst *i) {
SILType addrTy = i->getSrc().getType();
Address src = getLoweredAddress(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
TypeInfo const &addrTI = getFragileTypeInfo(addrTy);
unsigned takeAndOrInitialize =
(i->isTakeOfSrc() << 1U) | i->isInitializationOfDest();
static const unsigned COPY = 0, TAKE = 2, ASSIGN = 0, INITIALIZE = 1;
switch (takeAndOrInitialize) {
case ASSIGN | COPY:
addrTI.assignWithCopy(*this, dest, src);
break;
case INITIALIZE | COPY:
addrTI.initializeWithCopy(*this, dest, src);
break;
case ASSIGN | TAKE:
addrTI.assignWithTake(*this, dest, src);
break;
case INITIALIZE | TAKE:
addrTI.initializeWithTake(*this, dest, src);
break;
default:
llvm_unreachable("unexpected take/initialize attribute combination?!");
}
}
void IRGenSILFunction::visitDestroyAddrInst(swift::DestroyAddrInst *i) {
SILType addrTy = i->getOperand().getType();
Address base = getLoweredAddress(i->getOperand());
TypeInfo const &addrTI = getFragileTypeInfo(addrTy);
addrTI.destroy(*this, base);
}
static bool silMethodIsObjC(SILConstant t) {
if (t.kind == SILConstant::Kind::Initializer)
return cast<ConstructorDecl>(t.getDecl())->getDeclContext()
->getDeclaredTypeInContext()->getClassOrBoundGenericClass()->isObjC();
return t.hasDecl() && t.getDecl()->isObjC();
}
void IRGenSILFunction::visitSuperMethodInst(swift::SuperMethodInst *i) {
// For Objective-C classes we need to arrange for a msgSendSuper2
// to happen when the method is called.
if (silMethodIsObjC(i->getMember())) {
newLoweredObjCMethod(SILValue(i, 0), i->getMember(),
i->getOperand().getType());
return;
}
llvm_unreachable("super_method to non-objc callee");
}
void IRGenSILFunction::visitClassMethodInst(swift::ClassMethodInst *i) {
// For Objective-C classes we need to arrange for a msgSend
// to happen when the method is called.
if (silMethodIsObjC(i->getMember())) {
newLoweredObjCMethod(SILValue(i, 0), i->getMember());
return;
}
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *baseValue = base.claimNext();
SILConstant method = i->getMember();
// For Swift classes, get the method implementation from the vtable.
llvm::Value *fnValue = emitVirtualMethodValue(*this, baseValue,
i->getOperand().getType(),
method, i->getType(),
CurExplosionLevel);
fnValue = Builder.CreateBitCast(fnValue, IGM.Int8PtrTy);
Explosion e(CurExplosionLevel);
e.add(fnValue);
newLoweredExplosion(SILValue(i, 0), e);
}
void IRGenSILFunction::visitSpecializeInst(swift::SpecializeInst *i) {
// If we're specializing a builtin, store the substitutions directly with the
// builtin.
LoweredValue const &operand = getLoweredValue(i->getOperand());
if (operand.kind == LoweredValue::Kind::BuiltinValue) {
assert(operand.getBuiltinValue().getSubstitutions().empty() &&
"builtin already specialized");
return newLoweredBuiltinValue(SILValue(i, 0),
operand.getBuiltinValue().getDecl(),
i->getSubstitutions());
}
// If the specialization is used as a value and not just called, we need to
// emit the thunk.
for (auto *use : i->getUses())
if (!isa<ApplyInst>(use->getUser())) {
assert(operand.kind == LoweredValue::Kind::StaticFunction &&
"specialization thunks for dynamic function values not yet supported");
llvm::Function *thunk = emitFunctionSpecialization(IGM,
operand.getStaticFunction().getFunction(),
i->getOperand().getType(),
i->getType(),
i->getSubstitutions(),
CurExplosionLevel);
Explosion result(CurExplosionLevel);
result.add(Builder.CreateBitCast(thunk, IGM.Int8PtrTy));
return newLoweredExplosion(SILValue(i, 0), result);
}
// If it's only called, we can just emit calls to the generic inline.
return newLoweredSpecializedValue(SILValue(i, 0),
i->getOperand(),
i->getSubstitutions());
}