mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Specifically before this PR, if a caller did not customize a specific callback of InstModCallbacks, we would store a static default std::function into InstModCallbacks. This means that we always would have an indirect jump. That is unfortunate since this code is often called in loops. In this PR, I eliminate this problem by: 1. I made all of the actual callback std::function in InstModCallback private and gave them a "Func" postfix (e.x.: deleteInst -> deleteInstFunc). 2. I created public methods with the old callback names to actually call the callbacks. This ensured that as long as we are not escaping callbacks from InstModCallback, this PR would not result in the need for any source changes since we are changing a call of a std::function field to a call to a method. 3. I changed all of the places that were escaping inst mod's callbacks to take an InstModCallback. We shouldn't be doing that anyway. 4. I changed the default value of each callback in InstModCallbacks to be a nullptr and changed the public helper methods to check if a callback is null. If the callback is not null, it is called, otherwise the getter falls back to an inline default implementation of the operation. All together this means that the cost of a plain InstModCallback is reduced and one pays an indirect function cost price as one customizes it further which is better scalability. P.S. as a little extra thing, I added a madeChange field onto the InstModCallback. Now that we have the helpers calling the callbacks, I can easily insert instrumentation like this, allowing for users to pass in InstModCallback and see if anything was RAUWed without needing to specify a callback.
4053 lines
137 KiB
C++
4053 lines
137 KiB
C++
//===--- SimplifyCFG.cpp - Clean up the SIL CFG ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-simplify-cfg"
|
|
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/TerminatorUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CastOptimizer.h"
|
|
#include "swift/SILOptimizer/Utils/ConstantFolding.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumBlocksDeleted, "Number of unreachable blocks removed");
|
|
STATISTIC(NumBlocksMerged, "Number of blocks merged together");
|
|
STATISTIC(NumJumpThreads, "Number of jumps threaded");
|
|
STATISTIC(NumTermBlockSimplified, "Number of programterm block simplified");
|
|
STATISTIC(NumConstantFolded, "Number of terminators constant folded");
|
|
STATISTIC(NumDeadArguments, "Number of unused arguments removed");
|
|
STATISTIC(NumSROAArguments, "Number of aggregate argument levels split by "
|
|
"SROA");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// dominatorBasedSimplify iterates between dominator based simplification of
|
|
/// terminator branch condition values and cfg simplification. This is the
|
|
/// maximum number of iterations we run. The number is the maximum number of
|
|
/// iterations encountered when compiling the stdlib on April 2 2015.
|
|
///
|
|
static unsigned MaxIterationsOfDominatorBasedSimplify = 10;
|
|
|
|
namespace {
|
|
|
|
struct ThreadInfo;
|
|
|
|
class SimplifyCFG {
|
|
SILOptFunctionBuilder FuncBuilder;
|
|
SILFunction &Fn;
|
|
SILPassManager *PM;
|
|
|
|
// WorklistList is the actual list that we iterate over (for determinism).
|
|
// Slots may be null, which should be ignored.
|
|
SmallVector<SILBasicBlock *, 32> WorklistList;
|
|
// WorklistMap keeps track of which slot a BB is in, allowing efficient
|
|
// containment query, and allows efficient removal.
|
|
llvm::SmallDenseMap<SILBasicBlock *, unsigned, 32> WorklistMap;
|
|
// Keep track of loop headers - we don't want to jump-thread through them.
|
|
SmallPtrSet<SILBasicBlock *, 32> LoopHeaders;
|
|
// The cost (~ number of copied instructions) of jump threading per basic
|
|
// block. Used to prevent infinite jump threading loops.
|
|
llvm::SmallDenseMap<SILBasicBlock *, int, 8> JumpThreadingCost;
|
|
|
|
// Dominance and post-dominance info for the current function
|
|
DominanceInfo *DT = nullptr;
|
|
|
|
ConstantFolder ConstFolder;
|
|
|
|
// True if the function has a large amount of blocks. In this case we turn off
|
|
// some expensive optimizations.
|
|
bool isVeryLargeFunction = false;
|
|
|
|
void constFoldingCallback(SILInstruction *I) {
|
|
// If a terminal instruction gets constant folded (like cond_br), it
|
|
// enables further simplify-CFG optimizations.
|
|
if (isa<TermInst>(I))
|
|
addToWorklist(I->getParent());
|
|
}
|
|
|
|
bool ShouldVerify;
|
|
bool EnableJumpThread;
|
|
|
|
public:
|
|
SimplifyCFG(SILFunction &Fn, SILTransform &T, bool Verify,
|
|
bool EnableJumpThread)
|
|
: FuncBuilder(T), Fn(Fn), PM(T.getPassManager()),
|
|
ConstFolder(FuncBuilder, PM->getOptions().AssertConfig,
|
|
/* EnableDiagnostics */ false,
|
|
[&](SILInstruction *I) { constFoldingCallback(I); }),
|
|
ShouldVerify(Verify), EnableJumpThread(EnableJumpThread) {}
|
|
|
|
bool run();
|
|
|
|
bool simplifyBlockArgs() {
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
|
|
DT = DA->get(&Fn);
|
|
bool Changed = false;
|
|
for (SILBasicBlock &BB : Fn) {
|
|
Changed |= simplifyArgs(&BB);
|
|
}
|
|
DT = nullptr;
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
void clearWorklist() {
|
|
WorklistMap.clear();
|
|
WorklistList.clear();
|
|
}
|
|
|
|
/// popWorklist - Return the next basic block to look at, or null if the
|
|
/// worklist is empty. This handles skipping over null entries in the
|
|
/// worklist.
|
|
SILBasicBlock *popWorklist() {
|
|
while (!WorklistList.empty())
|
|
if (auto *BB = WorklistList.pop_back_val()) {
|
|
WorklistMap.erase(BB);
|
|
return BB;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// addToWorklist - Add the specified block to the work list if it isn't
|
|
/// already present.
|
|
void addToWorklist(SILBasicBlock *BB) {
|
|
unsigned &Entry = WorklistMap[BB];
|
|
if (Entry != 0)
|
|
return;
|
|
WorklistList.push_back(BB);
|
|
Entry = WorklistList.size();
|
|
}
|
|
|
|
/// removeFromWorklist - Remove the specified block from the worklist if
|
|
/// present.
|
|
void removeFromWorklist(SILBasicBlock *BB) {
|
|
assert(BB && "Cannot add null pointer to the worklist");
|
|
auto It = WorklistMap.find(BB);
|
|
if (It == WorklistMap.end())
|
|
return;
|
|
|
|
// If the BB is in the worklist, null out its entry.
|
|
if (It->second) {
|
|
assert(WorklistList[It->second - 1] == BB && "Consistency error");
|
|
WorklistList[It->second - 1] = nullptr;
|
|
}
|
|
|
|
// Remove it from the map as well.
|
|
WorklistMap.erase(It);
|
|
|
|
if (LoopHeaders.count(BB))
|
|
LoopHeaders.erase(BB);
|
|
}
|
|
|
|
bool simplifyBlocks();
|
|
bool canonicalizeSwitchEnums();
|
|
bool simplifyThreadedTerminators();
|
|
bool dominatorBasedSimplifications(SILFunction &Fn, DominanceInfo *DT);
|
|
bool dominatorBasedSimplify(DominanceAnalysis *DA);
|
|
bool threadEdge(const ThreadInfo &ti);
|
|
|
|
/// Remove the basic block if it has no predecessors. Returns true
|
|
/// If the block was removed.
|
|
bool removeIfDead(SILBasicBlock *BB);
|
|
|
|
bool tryJumpThreading(BranchInst *BI);
|
|
bool tailDuplicateObjCMethodCallSuccessorBlocks();
|
|
bool simplifyAfterDroppingPredecessor(SILBasicBlock *BB);
|
|
bool addToWorklistAfterSplittingEdges(SILBasicBlock *BB);
|
|
|
|
bool simplifyBranchOperands(OperandValueArrayRef Operands);
|
|
bool simplifyBranchBlock(BranchInst *BI);
|
|
bool simplifyCondBrBlock(CondBranchInst *BI);
|
|
bool simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI);
|
|
bool simplifyCheckedCastValueBranchBlock(CheckedCastValueBranchInst *CCBI);
|
|
bool simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI);
|
|
bool simplifyTryApplyBlock(TryApplyInst *TAI);
|
|
bool simplifySwitchValueBlock(SwitchValueInst *SVI);
|
|
bool simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB);
|
|
bool simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI);
|
|
bool simplifySwitchEnumBlock(SwitchEnumInst *SEI);
|
|
bool simplifyUnreachableBlock(UnreachableInst *UI);
|
|
bool simplifyProgramTerminationBlock(SILBasicBlock *BB);
|
|
bool simplifyArgument(SILBasicBlock *BB, unsigned i);
|
|
bool simplifyArgs(SILBasicBlock *BB);
|
|
void findLoopHeaders();
|
|
bool simplifySwitchEnumOnObjcClassOptional(SwitchEnumInst *SEI);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static SILValue getTerminatorCondition(TermInst *Term) {
|
|
if (auto *CondBr = dyn_cast<CondBranchInst>(Term))
|
|
return stripExpectIntrinsic(CondBr->getCondition());
|
|
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term))
|
|
return SEI->getOperand();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Is this basic block jump threadable.
|
|
static bool isThreadableBlock(SILBasicBlock *BB,
|
|
SmallPtrSetImpl<SILBasicBlock *> &LoopHeaders) {
|
|
auto TI = BB->getTerminator();
|
|
|
|
// We know how to handle cond_br and switch_enum.
|
|
if (!isa<CondBranchInst>(TI) &&
|
|
!isa<SwitchEnumInst>(TI))
|
|
return false;
|
|
|
|
if (LoopHeaders.count(BB))
|
|
return false;
|
|
|
|
unsigned Cost = 0;
|
|
for (auto &Inst : *BB) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (FullApplySite::isa(&Inst))
|
|
return false;
|
|
|
|
// Only thread 'small blocks'.
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 4)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A description of an edge leading to a conditionally branching (or switching)
|
|
/// block and the successor block to thread to.
|
|
///
|
|
/// Src:
|
|
/// br Dest
|
|
/// \
|
|
/// \ Edge
|
|
/// v
|
|
/// Dest:
|
|
/// ...
|
|
/// switch/cond_br
|
|
/// / \
|
|
/// ... v
|
|
/// EnumCase/ThreadedSuccessorIdx
|
|
struct ThreadInfo {
|
|
SILBasicBlock *Src;
|
|
SILBasicBlock *Dest;
|
|
EnumElementDecl *EnumCase;
|
|
unsigned ThreadedSuccessorIdx;
|
|
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest,
|
|
unsigned ThreadedBlockSuccessorIdx)
|
|
: Src(Src), Dest(Dest), EnumCase(nullptr),
|
|
ThreadedSuccessorIdx(ThreadedBlockSuccessorIdx) {}
|
|
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest, EnumElementDecl *EnumCase)
|
|
: Src(Src), Dest(Dest), EnumCase(EnumCase), ThreadedSuccessorIdx(0) {}
|
|
|
|
ThreadInfo() = default;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// FIXME: It would be far more efficient to clone the jump-threaded region using
|
|
// a single invocation of the RegionCloner (see ArrayPropertyOpt) instead of a
|
|
// BasicBlockCloner. Cloning a single block at a time forces the cloner to
|
|
// create four extra blocks that immediately become dead after the conditional
|
|
// branch and its clone is converted to an unconditional branch.
|
|
bool SimplifyCFG::threadEdge(const ThreadInfo &ti) {
|
|
LLVM_DEBUG(llvm::dbgs() << "thread edge from bb" << ti.Src->getDebugID()
|
|
<< " to bb" << ti.Dest->getDebugID() << '\n');
|
|
auto *SrcTerm = cast<BranchInst>(ti.Src->getTerminator());
|
|
|
|
BasicBlockCloner Cloner(SrcTerm->getDestBB());
|
|
if (!Cloner.canCloneBlock())
|
|
return false;
|
|
|
|
Cloner.cloneBranchTarget(SrcTerm);
|
|
|
|
// We have copied the threaded block into the edge.
|
|
auto *clonedSrc = Cloner.getNewBB();
|
|
SmallVector<SILBasicBlock *, 4> clonedSuccessors(
|
|
clonedSrc->getSuccessorBlocks().begin(),
|
|
clonedSrc->getSuccessorBlocks().end());
|
|
SILBasicBlock *ThreadedSuccessorBlock = nullptr;
|
|
|
|
// Rewrite the cloned branch to eliminate the non-taken path.
|
|
if (auto *CondTerm = dyn_cast<CondBranchInst>(clonedSrc->getTerminator())) {
|
|
// We know the direction this conditional branch is going to take thread
|
|
// it.
|
|
assert(clonedSrc->getSuccessors().size() > ti.ThreadedSuccessorIdx
|
|
&& "Threaded terminator does not have enough successors");
|
|
|
|
ThreadedSuccessorBlock =
|
|
clonedSrc->getSuccessors()[ti.ThreadedSuccessorIdx].getBB();
|
|
auto Args = ti.ThreadedSuccessorIdx == 0 ? CondTerm->getTrueArgs()
|
|
: CondTerm->getFalseArgs();
|
|
|
|
SILBuilderWithScope(CondTerm).createBranch(CondTerm->getLoc(),
|
|
ThreadedSuccessorBlock, Args);
|
|
|
|
CondTerm->eraseFromParent();
|
|
|
|
} else {
|
|
// Get the enum element and the destination block of the block we jump
|
|
// thread.
|
|
auto *SEI = cast<SwitchEnumInst>(clonedSrc->getTerminator());
|
|
ThreadedSuccessorBlock = SEI->getCaseDestination(ti.EnumCase);
|
|
|
|
// Instantiate the payload if necessary.
|
|
SILBuilderWithScope Builder(SEI);
|
|
if (!ThreadedSuccessorBlock->args_empty()) {
|
|
auto EnumVal = SEI->getOperand();
|
|
auto EnumTy = EnumVal->getType();
|
|
auto Loc = SEI->getLoc();
|
|
auto Ty = EnumTy.getEnumElementType(ti.EnumCase, SEI->getModule(),
|
|
Builder.getTypeExpansionContext());
|
|
SILValue UED(
|
|
Builder.createUncheckedEnumData(Loc, EnumVal, ti.EnumCase, Ty));
|
|
assert(UED->getType()
|
|
== (*ThreadedSuccessorBlock->args_begin())->getType()
|
|
&& "Argument types must match");
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {UED});
|
|
|
|
} else {
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock,
|
|
ArrayRef<SILValue>());
|
|
}
|
|
SEI->eraseFromParent();
|
|
}
|
|
// If the jump-threading target "Dest" had multiple predecessors, then the
|
|
// cloner will have created unconditional branch predecessors, which can
|
|
// now be removed or folded after converting the source block "Src" to an
|
|
// unconditional branch.
|
|
for (auto *succBB : clonedSuccessors) {
|
|
removeIfDead(succBB);
|
|
}
|
|
if (auto *branchInst =
|
|
dyn_cast<BranchInst>(ThreadedSuccessorBlock->getTerminator())) {
|
|
simplifyBranchBlock(branchInst);
|
|
}
|
|
Cloner.updateSSAAfterCloning();
|
|
return true;
|
|
}
|
|
|
|
/// Give a cond_br or switch_enum instruction and one successor block return
|
|
/// true if we can infer the value of the condition/enum along the edge to this
|
|
/// successor blocks.
|
|
static bool isKnownEdgeValue(TermInst *Term, SILBasicBlock *SuccBB,
|
|
EnumElementDecl *&EnumCase) {
|
|
assert((isa<CondBranchInst>(Term) || isa<SwitchEnumInst>(Term)) &&
|
|
"Expect a cond_br or switch_enum");
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto Case = SEI->getUniqueCaseForDestination(SuccBB)) {
|
|
EnumCase = Case.get();
|
|
return SuccBB->getSinglePredecessorBlock() != nullptr;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return SuccBB->getSinglePredecessorBlock() != nullptr;
|
|
}
|
|
|
|
/// Create an enum element by extracting the operand of a switch_enum.
|
|
static SILValue createEnumElement(SILBuilder &Builder,
|
|
SwitchEnumInst *SEI,
|
|
EnumElementDecl *EnumElement) {
|
|
auto EnumVal = SEI->getOperand();
|
|
// Do we have a payload.
|
|
auto EnumTy = EnumVal->getType();
|
|
if (EnumElement->hasAssociatedValues()) {
|
|
auto Ty = EnumTy.getEnumElementType(EnumElement, SEI->getModule(),
|
|
Builder.getTypeExpansionContext());
|
|
SILValue UED(Builder.createUncheckedEnumData(SEI->getLoc(), EnumVal,
|
|
EnumElement, Ty));
|
|
return Builder.createEnum(SEI->getLoc(), UED, EnumElement, EnumTy);
|
|
}
|
|
return Builder.createEnum(SEI->getLoc(), SILValue(), EnumElement, EnumTy);
|
|
}
|
|
|
|
/// Create a value for the condition of the terminator that flows along the edge
|
|
/// with 'EdgeIdx'. Insert it before the 'UserInst'.
|
|
static SILValue createValueForEdge(SILInstruction *UserInst,
|
|
SILInstruction *DominatingTerminator,
|
|
unsigned EdgeIdx) {
|
|
SILBuilderWithScope Builder(UserInst);
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(DominatingTerminator))
|
|
return Builder.createIntegerLiteral(
|
|
CBI->getLoc(), CBI->getCondition()->getType(), EdgeIdx == 0 ? -1 : 0);
|
|
|
|
auto *SEI = cast<SwitchEnumInst>(DominatingTerminator);
|
|
auto *DstBlock = SEI->getSuccessors()[EdgeIdx].getBB();
|
|
auto Case = SEI->getUniqueCaseForDestination(DstBlock);
|
|
assert(Case && "No unique case found for destination block");
|
|
return createEnumElement(Builder, SEI, Case.get());
|
|
}
|
|
|
|
/// Perform dominator based value simplifications and jump threading on all users
|
|
/// of the operand of 'DominatingBB's terminator.
|
|
static bool tryDominatorBasedSimplifications(
|
|
SILBasicBlock *DominatingBB, DominanceInfo *DT,
|
|
SmallPtrSetImpl<SILBasicBlock *> &LoopHeaders,
|
|
SmallVectorImpl<ThreadInfo> &JumpThreadableEdges,
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>>
|
|
&ThreadedEdgeSet,
|
|
bool TryJumpThreading,
|
|
llvm::DenseMap<SILBasicBlock *, bool> &CachedThreadable) {
|
|
auto *DominatingTerminator = DominatingBB->getTerminator();
|
|
|
|
// We handle value propagation from cond_br and switch_enum terminators.
|
|
bool IsEnumValue = isa<SwitchEnumInst>(DominatingTerminator);
|
|
if (!isa<CondBranchInst>(DominatingTerminator) && !IsEnumValue)
|
|
return false;
|
|
|
|
auto DominatingCondition = getTerminatorCondition(DominatingTerminator);
|
|
if (!DominatingCondition)
|
|
return false;
|
|
if (isa<SILUndef>(DominatingCondition))
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
// We will look at all the outgoing edges from the conditional branch to see
|
|
// whether any other uses of the condition or uses of the condition along an
|
|
// edge are dominated by said outgoing edges. The outgoing edge carries the
|
|
// value on which we switch/cond_branch.
|
|
auto Succs = DominatingBB->getSuccessors();
|
|
for (unsigned Idx = 0; Idx < Succs.size(); ++Idx) {
|
|
auto *DominatingSuccBB = Succs[Idx].getBB();
|
|
|
|
EnumElementDecl *EnumCase = nullptr;
|
|
if (!isKnownEdgeValue(DominatingTerminator, DominatingSuccBB, EnumCase))
|
|
continue;
|
|
|
|
// Look for other uses of DominatingCondition that are either:
|
|
// * dominated by the DominatingSuccBB
|
|
//
|
|
// cond_br %dominating_cond / switch_enum
|
|
// /
|
|
// /
|
|
// /
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// use %dominating_cond
|
|
//
|
|
// * are a conditional branch that has an incoming edge that is
|
|
// dominated by DominatingSuccBB.
|
|
//
|
|
// cond_br %dominating_cond
|
|
// /
|
|
// /
|
|
// /
|
|
//
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// br DestBB
|
|
//
|
|
// \
|
|
// \ E -> %dominating_cond = true
|
|
// \
|
|
// v
|
|
// DestBB
|
|
// cond_br %dominating_cond
|
|
SmallVector<SILInstruction *, 16> UsersToReplace;
|
|
for (auto *Op : ignore_expect_uses(DominatingCondition)) {
|
|
auto *CondUserInst = Op->getUser();
|
|
|
|
// Ignore the DominatingTerminator itself.
|
|
if (CondUserInst->getParent() == DominatingBB)
|
|
continue;
|
|
|
|
// For enum values we are only interested in switch_enum and select_enum
|
|
// users.
|
|
if (IsEnumValue && !isa<SwitchEnumInst>(CondUserInst) &&
|
|
!isa<SelectEnumInst>(CondUserInst))
|
|
continue;
|
|
|
|
// If the use is dominated we can replace this use by the value
|
|
// flowing to DominatingSuccBB.
|
|
if (DT->dominates(DominatingSuccBB, CondUserInst->getParent())) {
|
|
UsersToReplace.push_back(CondUserInst);
|
|
continue;
|
|
}
|
|
|
|
// Jump threading is expensive so we don't always do it.
|
|
if (!TryJumpThreading)
|
|
continue;
|
|
|
|
auto *DestBB = CondUserInst->getParent();
|
|
|
|
// The user must be the terminator we are trying to jump thread.
|
|
if (CondUserInst != DestBB->getTerminator())
|
|
continue;
|
|
|
|
// Check whether we have seen this destination block already.
|
|
auto CacheEntryIt = CachedThreadable.find(DestBB);
|
|
bool IsThreadable = CacheEntryIt != CachedThreadable.end()
|
|
? CacheEntryIt->second
|
|
: (CachedThreadable[DestBB] =
|
|
isThreadableBlock(DestBB, LoopHeaders));
|
|
|
|
// If the use is a conditional branch/switch then look for an incoming
|
|
// edge that is dominated by DominatingSuccBB.
|
|
if (IsThreadable) {
|
|
auto Preds = DestBB->getPredecessorBlocks();
|
|
|
|
for (SILBasicBlock *PredBB : Preds) {
|
|
if (!isa<BranchInst>(PredBB->getTerminator()))
|
|
continue;
|
|
if (!DT->dominates(DominatingSuccBB, PredBB))
|
|
continue;
|
|
|
|
// Don't jumpthread the same edge twice.
|
|
if (!ThreadedEdgeSet.insert(std::make_pair(PredBB, DestBB)).second)
|
|
continue;
|
|
|
|
if (isa<CondBranchInst>(DestBB->getTerminator()))
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, Idx));
|
|
else
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, EnumCase));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace dominated user instructions.
|
|
for (auto *UserInst : UsersToReplace) {
|
|
SILValue EdgeValue;
|
|
for (auto &Op : UserInst->getAllOperands()) {
|
|
if (stripExpectIntrinsic(Op.get()) == DominatingCondition) {
|
|
if (!EdgeValue)
|
|
EdgeValue = createValueForEdge(UserInst, DominatingTerminator, Idx);
|
|
Op.set(EdgeValue);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Propagate values of branched upon values along the outgoing edges down the
|
|
/// dominator tree.
|
|
bool SimplifyCFG::dominatorBasedSimplifications(SILFunction &Fn,
|
|
DominanceInfo *DT) {
|
|
bool Changed = false;
|
|
// Collect jump threadable edges and propagate outgoing edge values of
|
|
// conditional branches/switches.
|
|
SmallVector<ThreadInfo, 8> JumpThreadableEdges;
|
|
llvm::DenseMap<SILBasicBlock *, bool> CachedThreadable;
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>> ThreadedEdgeSet;
|
|
for (auto &BB : Fn)
|
|
if (DT->getNode(&BB)) // Only handle reachable blocks.
|
|
Changed |= tryDominatorBasedSimplifications(
|
|
&BB, DT, LoopHeaders, JumpThreadableEdges, ThreadedEdgeSet,
|
|
EnableJumpThread, CachedThreadable);
|
|
|
|
// Nothing to jump thread?
|
|
if (JumpThreadableEdges.empty())
|
|
return Changed;
|
|
|
|
for (auto &ThreadInfo : JumpThreadableEdges) {
|
|
if (threadEdge(ThreadInfo)) {
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Simplify terminators that could have been simplified by threading.
|
|
bool SimplifyCFG::simplifyThreadedTerminators() {
|
|
bool HaveChangedCFG = false;
|
|
for (auto &BB : Fn) {
|
|
auto *Term = BB.getTerminator();
|
|
// Simplify a switch_enum.
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto *EI = dyn_cast<EnumInst>(SEI->getOperand())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "simplify threaded " << *SEI);
|
|
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
|
|
if (EI->hasOperand() && !LiveBlock->args_empty())
|
|
SILBuilderWithScope(SEI)
|
|
.createBranch(SEI->getLoc(), LiveBlock, EI->getOperand());
|
|
else
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock);
|
|
SEI->eraseFromParent();
|
|
if (EI->use_empty())
|
|
EI->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
continue;
|
|
} else if (auto *CondBr = dyn_cast<CondBranchInst>(Term)) {
|
|
// If the condition is an integer literal, we can constant fold the
|
|
// branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(CondBr->getCondition())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "simplify threaded " << *CondBr);
|
|
SILBasicBlock *TrueSide = CondBr->getTrueBB();
|
|
SILBasicBlock *FalseSide = CondBr->getFalseBB();
|
|
auto TrueArgs = CondBr->getTrueArgs();
|
|
auto FalseArgs = CondBr->getFalseArgs();
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
SILBuilderWithScope(CondBr)
|
|
.createBranch(CondBr->getLoc(), LiveBlock, LiveArgs);
|
|
CondBr->eraseFromParent();
|
|
if (IL->use_empty())
|
|
IL->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
}
|
|
}
|
|
return HaveChangedCFG;
|
|
}
|
|
|
|
// Simplifications that walk the dominator tree to prove redundancy in
|
|
// conditional branching.
|
|
bool SimplifyCFG::dominatorBasedSimplify(DominanceAnalysis *DA) {
|
|
// Get the dominator tree.
|
|
DT = DA->get(&Fn);
|
|
|
|
// Split all critical edges such that we can move code onto edges. This is
|
|
// also required for SSA construction in dominatorBasedSimplifications' jump
|
|
// threading. It only splits new critical edges it creates by jump threading.
|
|
bool Changed =
|
|
EnableJumpThread ? splitAllCriticalEdges(Fn, DT, nullptr) : false;
|
|
|
|
unsigned MaxIter = MaxIterationsOfDominatorBasedSimplify;
|
|
SmallVector<SILBasicBlock *, 16> BlocksForWorklist;
|
|
|
|
bool HasChangedInCurrentIter;
|
|
do {
|
|
HasChangedInCurrentIter = false;
|
|
|
|
// Do dominator based simplification of terminator condition. This does not
|
|
// and MUST NOT change the CFG without updating the dominator tree to
|
|
// reflect such change.
|
|
if (tryCheckedCastBrJumpThreading(&Fn, DT, BlocksForWorklist)) {
|
|
for (auto BB: BlocksForWorklist)
|
|
addToWorklist(BB);
|
|
|
|
HasChangedInCurrentIter = true;
|
|
DT->recalculate(Fn);
|
|
}
|
|
BlocksForWorklist.clear();
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Simplify the block argument list. This is extremely subtle: simplifyArgs
|
|
// will not change the CFG iff the DT is null. Really we should move that
|
|
// one optimization out of simplifyArgs ... I am squinting at you
|
|
// simplifySwitchEnumToSelectEnum.
|
|
// simplifyArgs does use the dominator tree, though.
|
|
for (auto &BB : Fn)
|
|
HasChangedInCurrentIter |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Jump thread.
|
|
if (dominatorBasedSimplifications(Fn, DT)) {
|
|
DominanceInfo *InvalidDT = DT;
|
|
DT = nullptr;
|
|
HasChangedInCurrentIter = true;
|
|
// Simplify terminators.
|
|
simplifyThreadedTerminators();
|
|
DT = InvalidDT;
|
|
DT->recalculate(Fn);
|
|
}
|
|
|
|
Changed |= HasChangedInCurrentIter;
|
|
} while (HasChangedInCurrentIter && --MaxIter);
|
|
|
|
// Do the simplification that requires both the dom and postdom tree.
|
|
for (auto &BB : Fn)
|
|
Changed |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// The functions we used to simplify the CFG put things in the worklist. Clear
|
|
// it here.
|
|
clearWorklist();
|
|
return Changed;
|
|
}
|
|
|
|
// If BB is trivially unreachable, remove it from the worklist, add its
|
|
// successors to the worklist, and then remove the block.
|
|
bool SimplifyCFG::removeIfDead(SILBasicBlock *BB) {
|
|
if (!BB->pred_empty() || BB == &*Fn.begin())
|
|
return false;
|
|
|
|
removeFromWorklist(BB);
|
|
|
|
// Add successor blocks to the worklist since their predecessor list is about
|
|
// to change.
|
|
for (auto &S : BB->getSuccessors())
|
|
addToWorklist(S);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "remove dead bb" << BB->getDebugID() << '\n');
|
|
removeDeadBlock(BB);
|
|
++NumBlocksDeleted;
|
|
return true;
|
|
}
|
|
|
|
/// This is called when a predecessor of a block is dropped, to simplify the
|
|
/// block and add it to the worklist.
|
|
bool SimplifyCFG::simplifyAfterDroppingPredecessor(SILBasicBlock *BB) {
|
|
// TODO: If BB has only one predecessor and has bb args, fold them away, then
|
|
// use instsimplify on all the users of those values - even ones outside that
|
|
// block.
|
|
|
|
|
|
// Make sure that DestBB is in the worklist, as well as its remaining
|
|
// predecessors, since they may not be able to be simplified.
|
|
addToWorklist(BB);
|
|
for (auto *P : BB->getPredecessorBlocks())
|
|
addToWorklist(P);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// This is called after \p BB has been cloned during jump-threading
|
|
/// (tail-duplication) and the new critical edge on its successor has been
|
|
/// split. This is necessary to continue jump-threading through the split
|
|
/// critical edge (since we only jump-thread one block at a time).
|
|
bool SimplifyCFG::addToWorklistAfterSplittingEdges(SILBasicBlock *BB) {
|
|
addToWorklist(BB);
|
|
for (auto *succBB : BB->getSuccessorBlocks()) {
|
|
addToWorklist(succBB);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static NullablePtr<EnumElementDecl>
|
|
getEnumCaseRecursive(SILValue Val, SILBasicBlock *UsedInBB, int RecursionDepth,
|
|
llvm::SmallPtrSetImpl<SILArgument *> &HandledArgs) {
|
|
// Limit the number of recursions. This is an easy way to cope with cycles
|
|
// in the SSA graph.
|
|
if (RecursionDepth > 3)
|
|
return nullptr;
|
|
|
|
// Handle the obvious case.
|
|
if (auto *EI = dyn_cast<EnumInst>(Val))
|
|
return EI->getElement();
|
|
|
|
// Check if the value is dominated by a switch_enum, e.g.
|
|
// switch_enum %val, case A: bb1, case B: bb2
|
|
// bb1:
|
|
// use %val // We know that %val has case A
|
|
SILBasicBlock *Pred = UsedInBB->getSinglePredecessorBlock();
|
|
int Limit = 3;
|
|
// A very simple dominator check: just walk up the single predecessor chain.
|
|
// The limit is just there to not run into an infinite loop in case of an
|
|
// unreachable CFG cycle.
|
|
while (Pred && --Limit > 0) {
|
|
if (auto *PredSEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
|
|
if (PredSEI->getOperand() == Val)
|
|
return PredSEI->getUniqueCaseForDestination(UsedInBB);
|
|
}
|
|
UsedInBB = Pred;
|
|
Pred = UsedInBB->getSinglePredecessorBlock();
|
|
}
|
|
|
|
// In case of a block argument, recursively check the enum cases of all
|
|
// incoming predecessors.
|
|
if (auto *Arg = dyn_cast<SILArgument>(Val)) {
|
|
HandledArgs.insert(Arg);
|
|
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingVals;
|
|
if (!Arg->getIncomingPhiValues(IncomingVals))
|
|
return nullptr;
|
|
|
|
EnumElementDecl *CommonCase = nullptr;
|
|
for (std::pair<SILBasicBlock *, SILValue> Incoming : IncomingVals) {
|
|
SILBasicBlock *IncomingBlock = Incoming.first;
|
|
SILValue IncomingVal = Incoming.second;
|
|
|
|
auto *IncomingArg = dyn_cast<SILArgument>(IncomingVal);
|
|
if (IncomingArg && HandledArgs.count(IncomingArg) != 0)
|
|
continue;
|
|
|
|
NullablePtr<EnumElementDecl> IncomingCase =
|
|
getEnumCaseRecursive(Incoming.second, IncomingBlock, RecursionDepth + 1,
|
|
HandledArgs);
|
|
if (!IncomingCase)
|
|
return nullptr;
|
|
if (IncomingCase.get() != CommonCase) {
|
|
if (CommonCase)
|
|
return nullptr;
|
|
CommonCase = IncomingCase.get();
|
|
}
|
|
}
|
|
return CommonCase;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Tries to figure out the enum case of an enum value \p Val which is used in
|
|
/// block \p UsedInBB.
|
|
static NullablePtr<EnumElementDecl> getEnumCase(SILValue Val,
|
|
SILBasicBlock *UsedInBB) {
|
|
llvm::SmallPtrSet<SILArgument *, 8> HandledArgs;
|
|
return getEnumCaseRecursive(Val, UsedInBB, /*RecursionDepth*/ 0, HandledArgs);
|
|
}
|
|
|
|
static int getThreadingCost(SILInstruction *I) {
|
|
if (!I->isTriviallyDuplicatable())
|
|
return 1000;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (isa<ApplyInst>(I))
|
|
return 1000;
|
|
|
|
// This is a really trivial cost model, which is only intended as a starting
|
|
// point.
|
|
if (instructionInlineCost(*I) != InlineCost::Free)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int maxBranchRecursionDepth = 6;
|
|
/// couldSimplifyUsers - Check to see if any simplifications are possible if
|
|
/// "Val" is substituted for BBArg. If so, return true, if nothing obvious
|
|
/// is possible, return false.
|
|
static bool couldSimplifyEnumUsers(SILArgument *BBArg, int Budget,
|
|
int recursionDepth = 0) {
|
|
SILBasicBlock *BB = BBArg->getParent();
|
|
int BudgetForBranch = 100;
|
|
|
|
for (Operand *UI : BBArg->getUses()) {
|
|
auto *User = UI->getUser();
|
|
if (User->getParent() != BB)
|
|
continue;
|
|
|
|
// We only know we can simplify if the switch_enum user is in the block we
|
|
// are trying to jump thread.
|
|
// The value must not be define in the same basic block as the switch enum
|
|
// user. If this is the case we have a single block switch_enum loop.
|
|
if (isa<SwitchEnumInst>(User) || isa<SelectEnumInst>(User))
|
|
return true;
|
|
|
|
// Also allow enum of enum, which usually can be combined to a single
|
|
// instruction. This helps to simplify the creation of an enum from an
|
|
// integer raw value.
|
|
if (isa<EnumInst>(User))
|
|
return true;
|
|
|
|
if (auto *SWI = dyn_cast<SwitchValueInst>(User)) {
|
|
if (SWI->getOperand() == BBArg)
|
|
return true;
|
|
}
|
|
|
|
if (auto *BI = dyn_cast<BranchInst>(User)) {
|
|
if (recursionDepth >= maxBranchRecursionDepth) {
|
|
return false;
|
|
}
|
|
if (BudgetForBranch > Budget) {
|
|
BudgetForBranch = Budget;
|
|
for (SILInstruction &I : *BB) {
|
|
BudgetForBranch -= getThreadingCost(&I);
|
|
if (BudgetForBranch < 0)
|
|
break;
|
|
}
|
|
}
|
|
if (BudgetForBranch > 0) {
|
|
SILBasicBlock *DestBB = BI->getDestBB();
|
|
unsigned OpIdx = UI->getOperandNumber();
|
|
if (couldSimplifyEnumUsers(DestBB->getArgument(OpIdx), BudgetForBranch,
|
|
recursionDepth + 1))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SimplifyCFG::findLoopHeaders() {
|
|
/// Find back edges in the CFG. This performs a dfs search and identifies
|
|
/// back edges as edges going to an ancestor in the dfs search. If a basic
|
|
/// block is the target of such a back edge we will identify it as a header.
|
|
LoopHeaders.clear();
|
|
|
|
SmallPtrSet<SILBasicBlock *, 16> Visited;
|
|
SmallPtrSet<SILBasicBlock *, 16> InDFSStack;
|
|
SmallVector<std::pair<SILBasicBlock *, SILBasicBlock::succ_iterator>, 16>
|
|
DFSStack;
|
|
|
|
auto EntryBB = &Fn.front();
|
|
DFSStack.push_back(std::make_pair(EntryBB, EntryBB->succ_begin()));
|
|
Visited.insert(EntryBB);
|
|
InDFSStack.insert(EntryBB);
|
|
|
|
while (!DFSStack.empty()) {
|
|
auto &D = DFSStack.back();
|
|
// No successors.
|
|
if (D.second == D.first->succ_end()) {
|
|
// Retreat the dfs search.
|
|
DFSStack.pop_back();
|
|
InDFSStack.erase(D.first);
|
|
} else {
|
|
// Visit the next successor.
|
|
SILBasicBlock *NextSucc = *(D.second);
|
|
++D.second;
|
|
if (Visited.insert(NextSucc).second) {
|
|
InDFSStack.insert(NextSucc);
|
|
DFSStack.push_back(std::make_pair(NextSucc, NextSucc->succ_begin()));
|
|
} else if (InDFSStack.count(NextSucc)) {
|
|
// We have already visited this node and it is in our dfs search. This
|
|
// is a back-edge.
|
|
LoopHeaders.insert(NextSucc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool couldRemoveRelease(SILBasicBlock *SrcBB, SILValue SrcV,
|
|
SILBasicBlock *DestBB, SILValue DestV) {
|
|
bool IsRetainOfSrc = false;
|
|
for (auto *U: SrcV->getUses())
|
|
if (U->getUser()->getParent() == SrcBB &&
|
|
(isa<StrongRetainInst>(U->getUser()) ||
|
|
isa<RetainValueInst>(U->getUser()))) {
|
|
IsRetainOfSrc = true;
|
|
break;
|
|
}
|
|
if (!IsRetainOfSrc)
|
|
return false;
|
|
|
|
bool IsReleaseOfDest = false;
|
|
for (auto *U: DestV->getUses())
|
|
if (U->getUser()->getParent() == DestBB &&
|
|
(isa<StrongReleaseInst>(U->getUser()) ||
|
|
isa<ReleaseValueInst>(U->getUser()))) {
|
|
IsReleaseOfDest = true;
|
|
break;
|
|
}
|
|
|
|
return IsReleaseOfDest;
|
|
}
|
|
|
|
/// Returns true if any instruction in \p block may write memory.
|
|
static bool blockMayWriteMemory(SILBasicBlock *block) {
|
|
for (auto instAndIdx : llvm::enumerate(*block)) {
|
|
if (instAndIdx.value().mayWriteToMemory())
|
|
return true;
|
|
// Only look at the first 20 instructions to avoid compile time problems for
|
|
// corner cases of very large blocks without memory writes.
|
|
// 20 instructions is more than enough.
|
|
if (instAndIdx.index() > 50)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if \p block contains an injected an enum case into \p enumAddr
|
|
// which is valid at the end of the block.
|
|
static bool hasInjectedEnumAtEndOfBlock(SILBasicBlock *block, SILValue enumAddr) {
|
|
for (auto instAndIdx : llvm::enumerate(llvm::reverse(*block))) {
|
|
SILInstruction &inst = instAndIdx.value();
|
|
if (auto *injectInst = dyn_cast<InjectEnumAddrInst>(&inst)) {
|
|
return injectInst->getOperand() == enumAddr;
|
|
}
|
|
if (inst.mayWriteToMemory())
|
|
return false;
|
|
// Only look at the first 20 instructions to avoid compile time problems for
|
|
// corner cases of very large blocks without memory writes.
|
|
// 20 instructions is more than enough.
|
|
if (instAndIdx.index() > 50)
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// tryJumpThreading - Check to see if it looks profitable to duplicate the
|
|
/// destination of an unconditional jump into the bottom of this block.
|
|
bool SimplifyCFG::tryJumpThreading(BranchInst *BI) {
|
|
auto *DestBB = BI->getDestBB();
|
|
auto *SrcBB = BI->getParent();
|
|
TermInst *destTerminator = DestBB->getTerminator();
|
|
// If the destination block ends with a return, we don't want to duplicate it.
|
|
// We want to maintain the canonical form of a single return where possible.
|
|
if (destTerminator->isFunctionExiting())
|
|
return false;
|
|
|
|
// Jump threading only makes sense if there is an argument on the branch
|
|
// (which is reacted on in the DestBB), or if this goes through a memory
|
|
// location (switch_enum_addr is the only adress-instruction which we
|
|
// currently handle).
|
|
if (BI->getArgs().empty() && !isa<SwitchEnumAddrInst>(destTerminator))
|
|
return false;
|
|
|
|
// We don't have a great cost model at the SIL level, so we don't want to
|
|
// blissly duplicate tons of code with a goal of improved performance (we'll
|
|
// leave that to LLVM). However, doing limited code duplication can lead to
|
|
// major second order simplifications. Here we only do it if there are
|
|
// "constant" arguments to the branch or if we know how to fold something
|
|
// given the duplication.
|
|
int ThreadingBudget = 0;
|
|
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
|
|
// If the value being substituted on is release there is a chance we could
|
|
// remove the release after jump threading.
|
|
if (couldRemoveRelease(SrcBB, BI->getArg(i), DestBB,
|
|
DestBB->getArgument(i))) {
|
|
ThreadingBudget = 8;
|
|
break;
|
|
}
|
|
|
|
// If the value being substituted is an enum, check to see if there are any
|
|
// switches on it.
|
|
SILValue Arg = BI->getArg(i);
|
|
if (!getEnumCase(Arg, BI->getParent()) &&
|
|
!isa<IntegerLiteralInst>(Arg))
|
|
continue;
|
|
|
|
if (couldSimplifyEnumUsers(DestBB->getArgument(i), 8)) {
|
|
ThreadingBudget = 8;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ThreadingBudget == 0) {
|
|
if (isa<CondBranchInst>(destTerminator)) {
|
|
for (auto V : BI->getArgs()) {
|
|
if (isa<IntegerLiteralInst>(V) || isa<FloatLiteralInst>(V)) {
|
|
ThreadingBudget = 4;
|
|
break;
|
|
}
|
|
}
|
|
} else if (auto *SEA = dyn_cast<SwitchEnumAddrInst>(destTerminator)) {
|
|
// If the branch-block injects a certain enum case and the destination
|
|
// switches on that enum, it's worth jump threading. E.g.
|
|
//
|
|
// inject_enum_addr %enum : $*Optional<T>, #Optional.some
|
|
// ... // no memory writes here
|
|
// br DestBB
|
|
// DestBB:
|
|
// ... // no memory writes here
|
|
// switch_enum_addr %enum : $*Optional<T>, case #Optional.some ...
|
|
//
|
|
SILValue enumAddr = SEA->getOperand();
|
|
if (!blockMayWriteMemory(DestBB) &&
|
|
hasInjectedEnumAtEndOfBlock(SrcBB, enumAddr)) {
|
|
ThreadingBudget = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
ThreadingBudget -= JumpThreadingCost[SrcBB];
|
|
ThreadingBudget -= JumpThreadingCost[DestBB];
|
|
|
|
// If we don't have anything that we can simplify, don't do it.
|
|
if (ThreadingBudget <= 0)
|
|
return false;
|
|
|
|
// Don't jump thread through a potential header - this can produce irreducible
|
|
// control flow. Still, we make an exception for switch_enum.
|
|
bool DestIsLoopHeader = (LoopHeaders.count(DestBB) != 0);
|
|
if (DestIsLoopHeader) {
|
|
if (!isa<SwitchEnumInst>(destTerminator))
|
|
return false;
|
|
}
|
|
|
|
// If it looks potentially interesting, decide whether we *can* do the
|
|
// operation and whether the block is small enough to be worth duplicating.
|
|
int copyCosts = 0;
|
|
BasicBlockCloner Cloner(DestBB);
|
|
for (auto &inst : *DestBB) {
|
|
copyCosts += getThreadingCost(&inst);
|
|
if (ThreadingBudget <= copyCosts)
|
|
return false;
|
|
|
|
// If this is an address projection with outside uses, sink it before
|
|
// checking for SSA update.
|
|
if (!Cloner.canCloneInstruction(&inst))
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "jump thread from bb" << SrcBB->getDebugID()
|
|
<< " to bb" << DestBB->getDebugID() << '\n');
|
|
|
|
JumpThreadingCost[DestBB] += copyCosts;
|
|
|
|
// Duplicate the destination block into this one, rewriting uses of the BBArgs
|
|
// to use the branch arguments as we go.
|
|
Cloner.cloneBranchTarget(BI);
|
|
Cloner.updateSSAAfterCloning();
|
|
|
|
// Once all the instructions are copied, we can nuke BI itself. We also add
|
|
// the threaded and edge block to the worklist now that they (likely) can be
|
|
// simplified.
|
|
addToWorklist(SrcBB);
|
|
|
|
// Simplify the cloned block and continue jump-threading through its new
|
|
// successors edges.
|
|
addToWorklistAfterSplittingEdges(Cloner.getNewBB());
|
|
|
|
// We may be able to simplify DestBB now that it has one fewer predecessor.
|
|
simplifyAfterDroppingPredecessor(DestBB);
|
|
|
|
// If we jump-thread a switch_enum in the loop header, we have to recalculate
|
|
// the loop header info.
|
|
if (DestIsLoopHeader)
|
|
findLoopHeaders();
|
|
|
|
++NumJumpThreads;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// simplifyBranchOperands - Simplify operands of branches, since it can
|
|
/// result in exposing opportunities for CFG simplification.
|
|
bool SimplifyCFG::simplifyBranchOperands(OperandValueArrayRef Operands) {
|
|
bool Simplified = false;
|
|
InstModCallbacks callbacks;
|
|
for (auto O = Operands.begin(), E = Operands.end(); O != E; ++O) {
|
|
// All of our interesting simplifications are on single-value instructions
|
|
// for now.
|
|
if (auto *I = dyn_cast<SingleValueInstruction>(*O)) {
|
|
SILValue Result = simplifyInstruction(I);
|
|
|
|
// The Result can be the same instruction I in case it is in an
|
|
// unreachable block. In this case it can reference itself as operand.
|
|
if (Result && Result != I) {
|
|
LLVM_DEBUG(llvm::dbgs() << "simplify branch operand " << *I);
|
|
replaceAllSimplifiedUsesAndErase(I, Result, callbacks);
|
|
Simplified = true;
|
|
}
|
|
}
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
static bool onlyHasTerminatorAndDebugInsts(SILBasicBlock *BB) {
|
|
TermInst *Terminator = BB->getTerminator();
|
|
SILBasicBlock::iterator Iter = BB->begin();
|
|
while (&*Iter != Terminator) {
|
|
if (!(&*Iter)->isDebugInstruction())
|
|
return false;
|
|
++Iter;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Will be valid if the constructor's targetBB has a a single branch and all
|
|
/// its block arguments are only used by that branch.
|
|
struct TrampolineDest {
|
|
SILBasicBlock *destBB = nullptr;
|
|
// Source block's branch args after bypassing targetBB.
|
|
SmallVector<SILValue, 4> newSourceBranchArgs;
|
|
|
|
TrampolineDest() {}
|
|
TrampolineDest(SILBasicBlock *sourceBB, SILBasicBlock *targetBB);
|
|
TrampolineDest(const TrampolineDest &) = delete;
|
|
TrampolineDest &operator=(const TrampolineDest &) = delete;
|
|
TrampolineDest(TrampolineDest &&) = default;
|
|
TrampolineDest &operator=(TrampolineDest &&) = default;
|
|
|
|
bool operator==(const TrampolineDest &rhs) {
|
|
return destBB == rhs.destBB
|
|
&& newSourceBranchArgs == rhs.newSourceBranchArgs;
|
|
}
|
|
bool operator!=(const TrampolineDest &rhs) {
|
|
return !(*this == rhs);
|
|
}
|
|
|
|
operator bool() const { return destBB != nullptr; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
TrampolineDest::TrampolineDest(SILBasicBlock *sourceBB,
|
|
SILBasicBlock *targetBB) {
|
|
// Ignore blocks with more than one instruction.
|
|
if (!onlyHasTerminatorAndDebugInsts(targetBB))
|
|
return;
|
|
|
|
auto *targetBranch = dyn_cast<BranchInst>(targetBB->getTerminator());
|
|
if (!targetBranch)
|
|
return;
|
|
|
|
// Disallow infinite loops through targetBB.
|
|
llvm::SmallPtrSet<SILBasicBlock *, 8> VisitedBBs;
|
|
BranchInst *nextBI = targetBranch;
|
|
do {
|
|
SILBasicBlock *nextBB = nextBI->getDestBB();
|
|
// We don't care about infinite loops after SBB.
|
|
if (!VisitedBBs.insert(nextBB).second)
|
|
break;
|
|
// Only if the infinite loop goes through SBB directly we bail.
|
|
if (nextBB == targetBB)
|
|
return;
|
|
nextBI = dyn_cast<BranchInst>(nextBB->getTerminator());
|
|
} while (nextBI);
|
|
|
|
// Check that all the target block arguments are only used by the branch.
|
|
for (SILValue blockArg : targetBB->getArguments()) {
|
|
Operand *operand = blockArg->getSingleUse();
|
|
if (!operand || operand->getUser() != targetBranch) {
|
|
return;
|
|
}
|
|
}
|
|
newSourceBranchArgs.reserve(targetBranch->getArgs().size());
|
|
for (SILValue branchArg : targetBranch->getArgs()) {
|
|
if (branchArg->getParentBlock() == targetBB) {
|
|
auto *phi = dyn_cast<SILPhiArgument>(branchArg);
|
|
if (!phi || !phi->isPhiArgument()) {
|
|
return;
|
|
}
|
|
branchArg = phi->getIncomingPhiValue(sourceBB);
|
|
}
|
|
newSourceBranchArgs.push_back(branchArg);
|
|
}
|
|
// Setting destBB constructs a valid TrampolineDest.
|
|
destBB = targetBranch->getDestBB();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Is the block reachable from the entry.
|
|
static bool isReachable(SILBasicBlock *Block) {
|
|
SmallPtrSet<SILBasicBlock *, 16> Visited;
|
|
llvm::SmallVector<SILBasicBlock *, 16> Worklist;
|
|
SILBasicBlock *EntryBB = &*Block->getParent()->begin();
|
|
Worklist.push_back(EntryBB);
|
|
Visited.insert(EntryBB);
|
|
|
|
while (!Worklist.empty()) {
|
|
auto *CurBB = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (CurBB == Block)
|
|
return true;
|
|
|
|
for (auto &Succ : CurBB->getSuccessors())
|
|
// Second is true if the insertion took place.
|
|
if (Visited.insert(Succ).second)
|
|
Worklist.push_back(Succ);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static llvm::cl::opt<bool> SimplifyUnconditionalBranches(
|
|
"simplify-cfg-simplify-unconditional-branches", llvm::cl::init(true));
|
|
|
|
/// Returns true if \p block has less instructions than \p other.
|
|
static bool hasLessInstructions(SILBasicBlock *block, SILBasicBlock *other) {
|
|
auto blockIter = block->begin();
|
|
auto blockEnd = block->end();
|
|
auto otherIter = other->begin();
|
|
auto otherEnd = other->end();
|
|
while (true) {
|
|
if (otherIter == otherEnd)
|
|
return false;
|
|
if (blockIter == blockEnd)
|
|
return true;
|
|
++blockIter;
|
|
++otherIter;
|
|
}
|
|
}
|
|
|
|
/// simplifyBranchBlock - Simplify a basic block that ends with an unconditional
|
|
/// branch.
|
|
///
|
|
/// Performs trivial trampoline removal. May be called as a utility to cleanup
|
|
/// successors after removing conditional branches or predecessors after
|
|
/// deleting unreachable blocks.
|
|
bool SimplifyCFG::simplifyBranchBlock(BranchInst *BI) {
|
|
// If we are asked to not simplify unconditional branches (for testing
|
|
// purposes), exit early.
|
|
if (!SimplifyUnconditionalBranches)
|
|
return false;
|
|
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
bool Simplified = simplifyBranchOperands(BI->getArgs());
|
|
|
|
auto *BB = BI->getParent(), *DestBB = BI->getDestBB();
|
|
|
|
// If this block branches to a block with a single predecessor, then
|
|
// merge the DestBB into this BB.
|
|
if (BB != DestBB && DestBB->getSinglePredecessorBlock()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "merge bb" << BB->getDebugID() << " with bb"
|
|
<< DestBB->getDebugID() << '\n');
|
|
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
|
|
if (DestBB->getArgument(i) == BI->getArg(i)) {
|
|
// We must be processing an unreachable part of the cfg with a cycle.
|
|
// bb1(arg1): // preds: bb3
|
|
// br bb2
|
|
//
|
|
// bb2: // preds: bb1
|
|
// br bb3
|
|
//
|
|
// bb3: // preds: bb2
|
|
// br bb1(arg1)
|
|
assert(!isReachable(BB) && "Should only occur in unreachable block");
|
|
return Simplified;
|
|
}
|
|
}
|
|
|
|
// If there are any BB arguments in the destination, replace them with the
|
|
// branch operands, since they must dominate the dest block.
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
|
|
assert(DestBB->getArgument(i) != BI->getArg(i));
|
|
SILValue Val = BI->getArg(i);
|
|
DestBB->getArgument(i)->replaceAllUsesWith(Val);
|
|
if (!isVeryLargeFunction) {
|
|
if (auto *I = dyn_cast<SingleValueInstruction>(Val)) {
|
|
// Replacing operands may trigger constant folding which then could
|
|
// trigger other simplify-CFG optimizations.
|
|
ConstFolder.addToWorklist(I);
|
|
ConstFolder.processWorkList();
|
|
}
|
|
}
|
|
}
|
|
|
|
BI->eraseFromParent();
|
|
|
|
// Move instruction from the smaller block to the larger block.
|
|
// The order is essential because if many blocks are merged and this is done
|
|
// in the wrong order, we end up with quadratic complexity.
|
|
//
|
|
SILBasicBlock *remainingBlock = nullptr, *deletedBlock = nullptr;
|
|
if (BB != Fn.getEntryBlock() && hasLessInstructions(BB, DestBB)) {
|
|
while (!BB->pred_empty()) {
|
|
SILBasicBlock *pred = *BB->pred_begin();
|
|
replaceBranchTarget(pred->getTerminator(), BB, DestBB, true);
|
|
}
|
|
DestBB->spliceAtBegin(BB);
|
|
DestBB->dropAllArguments();
|
|
DestBB->moveArgumentList(BB);
|
|
remainingBlock = DestBB;
|
|
deletedBlock = BB;
|
|
} else {
|
|
BB->spliceAtEnd(DestBB);
|
|
remainingBlock = BB;
|
|
deletedBlock = DestBB;
|
|
}
|
|
|
|
// Revisit this block now that we've changed it.
|
|
addToWorklist(remainingBlock);
|
|
|
|
// This can also expose opportunities in the successors of
|
|
// the merged block.
|
|
for (auto &Succ : remainingBlock->getSuccessors())
|
|
addToWorklist(Succ);
|
|
|
|
if (LoopHeaders.count(deletedBlock))
|
|
LoopHeaders.insert(remainingBlock);
|
|
|
|
auto Iter = JumpThreadingCost.find(deletedBlock);
|
|
if (Iter != JumpThreadingCost.end()) {
|
|
int costs = Iter->second;
|
|
JumpThreadingCost[remainingBlock] += costs;
|
|
}
|
|
|
|
removeFromWorklist(deletedBlock);
|
|
deletedBlock->eraseFromParent();
|
|
++NumBlocksMerged;
|
|
return true;
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
if (auto trampolineDest = TrampolineDest(BB, DestBB)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "jump to trampoline from bb" << BB->getDebugID() << " to bb"
|
|
<< trampolineDest.destBB->getDebugID() << '\n');
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), trampolineDest.destBB,
|
|
trampolineDest.newSourceBranchArgs);
|
|
// Eliminating the trampoline can expose opportunities to improve the
|
|
// new block we branch to.
|
|
if (LoopHeaders.count(DestBB))
|
|
LoopHeaders.insert(BB);
|
|
|
|
addToWorklist(trampolineDest.destBB);
|
|
BI->eraseFromParent();
|
|
removeIfDead(DestBB);
|
|
addToWorklist(BB);
|
|
|
|
return true;
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
/// Returns the original boolean value, looking through possible invert
|
|
/// builtins. The parameter \p Inverted is inverted if the returned original
|
|
/// value is the inverted value of the passed \p Cond.
|
|
/// If \p onlyAcceptSingleUse is true and the operand of an invert builtin has
|
|
/// more than one use, an invalid SILValue() is returned.
|
|
static SILValue skipInvert(SILValue Cond, bool &Inverted,
|
|
bool onlyAcceptSingleUse) {
|
|
while (auto *BI = dyn_cast<BuiltinInst>(Cond)) {
|
|
|
|
if (onlyAcceptSingleUse && !BI->hasOneUse())
|
|
return SILValue();
|
|
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
|
|
if (BI->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean inversion of the condition.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
Cond = Args[0];
|
|
Inverted = !Inverted;
|
|
continue;
|
|
}
|
|
} else if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[0])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
Cond = Args[1];
|
|
Inverted = !Inverted;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return Cond;
|
|
}
|
|
|
|
/// Returns the first cond_fail if it is the first side-effect
|
|
/// instruction in this block.
|
|
static CondFailInst *getFirstCondFail(SILBasicBlock *BB) {
|
|
auto It = BB->begin();
|
|
CondFailInst *CondFail = nullptr;
|
|
// Skip instructions that don't have side-effects.
|
|
while (It != BB->end() && !(CondFail = dyn_cast<CondFailInst>(It))) {
|
|
if (It->mayHaveSideEffects())
|
|
return nullptr;
|
|
++It;
|
|
}
|
|
return CondFail;
|
|
}
|
|
|
|
/// If the first side-effect instruction in this block is a cond_fail that
|
|
/// is guaranteed to fail, it is returned.
|
|
/// The \p Cond is the condition from a cond_br in the predecessor block. The
|
|
/// cond_fail must only fail if \p BB is entered through this predecessor block.
|
|
/// If \p Inverted is true, \p BB is on the false-edge of the cond_br.
|
|
static CondFailInst *getUnConditionalFail(SILBasicBlock *BB, SILValue Cond,
|
|
bool Inverted) {
|
|
CondFailInst *CondFail = getFirstCondFail(BB);
|
|
if (!CondFail)
|
|
return nullptr;
|
|
|
|
// The simple case: check if it is a "cond_fail 1".
|
|
auto *IL = dyn_cast<IntegerLiteralInst>(CondFail->getOperand());
|
|
if (IL && IL->getValue() != 0)
|
|
return CondFail;
|
|
|
|
// Check if the cond_fail has the same condition as the cond_br in the
|
|
// predecessor block.
|
|
Cond = skipInvert(Cond, Inverted, false);
|
|
SILValue CondFailCond = skipInvert(CondFail->getOperand(), Inverted, false);
|
|
if (Cond == CondFailCond && !Inverted)
|
|
return CondFail;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Creates a new cond_fail instruction, optionally with an xor inverted
|
|
/// condition.
|
|
static void createCondFail(CondFailInst *Orig, SILValue Cond, StringRef Message,
|
|
bool inverted, SILBuilder &Builder) {
|
|
Builder.createCondFail(Orig->getLoc(), Cond, Message, inverted);
|
|
}
|
|
|
|
/// Inverts the expected value of 'PotentialExpect' (if it is an expect
|
|
/// intrinsic) and returns this expected value apply to 'V'.
|
|
static SILValue invertExpectAndApplyTo(SILBuilder &Builder,
|
|
SILValue PotentialExpect, SILValue V) {
|
|
auto *BI = dyn_cast<BuiltinInst>(PotentialExpect);
|
|
if (!BI)
|
|
return V;
|
|
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
|
|
return V;
|
|
auto Args = BI->getArguments();
|
|
auto *IL = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (!IL)
|
|
return V;
|
|
SILValue NegatedExpectedValue = Builder.createIntegerLiteral(
|
|
IL->getLoc(), Args[1]->getType(), IL->getValue() == 0 ? -1 : 0);
|
|
return Builder.createBuiltin(BI->getLoc(), BI->getName(), BI->getType(), {},
|
|
{V, NegatedExpectedValue});
|
|
}
|
|
|
|
/// simplifyCondBrBlock - Simplify a basic block that ends with a conditional
|
|
/// branch.
|
|
bool SimplifyCFG::simplifyCondBrBlock(CondBranchInst *BI) {
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
simplifyBranchOperands(OperandValueArrayRef(BI->getAllOperands()));
|
|
auto *ThisBB = BI->getParent();
|
|
SILBasicBlock *TrueSide = BI->getTrueBB();
|
|
SILBasicBlock *FalseSide = BI->getFalseBB();
|
|
auto TrueArgs = BI->getTrueArgs();
|
|
auto FalseArgs = BI->getFalseArgs();
|
|
|
|
// If the condition is an integer literal, we can constant fold the branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(BI->getCondition())) {
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
auto *DeadBlock = !isFalse ? FalseSide : TrueSide;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "replace cond_br with br: " << *BI);
|
|
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
|
|
BI->eraseFromParent();
|
|
if (IL->use_empty()) IL->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(DeadBlock);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
// Canonicalize "cond_br (not %cond), BB1, BB2" to "cond_br %cond, BB2, BB1".
|
|
// This looks through expect intrinsic calls and applies the ultimate expect
|
|
// call inverted to the condition.
|
|
if (auto *Xor =
|
|
dyn_cast<BuiltinInst>(stripExpectIntrinsic(BI->getCondition()))) {
|
|
if (Xor->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean inversion of the condition.
|
|
OperandValueArrayRef Args = Xor->getArguments();
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "canonicalize cond_br: " << *BI);
|
|
auto Cond = Args[0];
|
|
SILBuilderWithScope Builder(BI);
|
|
Builder.createCondBranch(
|
|
BI->getLoc(),
|
|
invertExpectAndApplyTo(Builder, BI->getCondition(), Cond),
|
|
FalseSide, FalseArgs, TrueSide, TrueArgs, BI->getFalseBBCount(),
|
|
BI->getTrueBBCount());
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
auto trueTrampolineDest = TrampolineDest(ThisBB, TrueSide);
|
|
if (trueTrampolineDest
|
|
&& trueTrampolineDest.destBB->getSinglePredecessorBlock()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "true-trampoline from bb" << ThisBB->getDebugID() << " to bb"
|
|
<< trueTrampolineDest.destBB->getDebugID() << '\n');
|
|
SmallVector<SILValue, 4> falseArgsCopy(FalseArgs.begin(), FalseArgs.end());
|
|
SILBuilderWithScope(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(), trueTrampolineDest.destBB,
|
|
trueTrampolineDest.newSourceBranchArgs, FalseSide, falseArgsCopy,
|
|
BI->getTrueBBCount(), BI->getFalseBBCount());
|
|
BI->eraseFromParent();
|
|
|
|
if (LoopHeaders.count(TrueSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(TrueSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
auto falseTrampolineDest = TrampolineDest(ThisBB, FalseSide);
|
|
if (falseTrampolineDest
|
|
&& falseTrampolineDest.destBB->getSinglePredecessorBlock()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "false-trampoline from bb" << ThisBB->getDebugID() << " to bb"
|
|
<< falseTrampolineDest.destBB->getDebugID() << '\n');
|
|
SmallVector<SILValue, 4> trueArgsCopy(TrueArgs.begin(), TrueArgs.end());
|
|
SILBuilderWithScope(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(), TrueSide, trueArgsCopy,
|
|
falseTrampolineDest.destBB, falseTrampolineDest.newSourceBranchArgs,
|
|
BI->getTrueBBCount(), BI->getFalseBBCount());
|
|
BI->eraseFromParent();
|
|
if (LoopHeaders.count(FalseSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(FalseSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
// Simplify cond_br where both sides jump to the same blocks with the same
|
|
// args.
|
|
auto condBrToBr = [&](ArrayRef<SILValue> branchArgs, SILBasicBlock *newDest) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "replace cond_br with same dests with br: " << *BI);
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), newDest, branchArgs);
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
++NumConstantFolded;
|
|
};
|
|
if (trueTrampolineDest.destBB == FalseSide
|
|
&& trueTrampolineDest.newSourceBranchArgs == FalseArgs) {
|
|
condBrToBr(trueTrampolineDest.newSourceBranchArgs, FalseSide);
|
|
removeIfDead(TrueSide);
|
|
return true;
|
|
}
|
|
if (falseTrampolineDest.destBB == TrueSide) {
|
|
condBrToBr(falseTrampolineDest.newSourceBranchArgs, TrueSide);
|
|
removeIfDead(FalseSide);
|
|
return true;
|
|
}
|
|
if (trueTrampolineDest && (trueTrampolineDest == falseTrampolineDest)) {
|
|
condBrToBr(trueTrampolineDest.newSourceBranchArgs,
|
|
trueTrampolineDest.destBB);
|
|
removeIfDead(TrueSide);
|
|
removeIfDead(FalseSide);
|
|
return true;
|
|
}
|
|
// If we have a (cond (select_enum)) on a two element enum, always have the
|
|
// first case as our checked tag. If we have the second, create a new
|
|
// select_enum with the first case and swap our operands. This simplifies
|
|
// later dominance based processing.
|
|
if (auto *SEI = dyn_cast<SelectEnumInst>(BI->getCondition())) {
|
|
EnumDecl *E = SEI->getEnumOperand()->getType().getEnumOrBoundGenericEnum();
|
|
|
|
auto AllElts = E->getAllElements();
|
|
auto Iter = AllElts.begin();
|
|
EnumElementDecl *FirstElt = *Iter;
|
|
|
|
// We can't do this optimization on non-exhaustive enums.
|
|
bool IsExhaustive =
|
|
E->isEffectivelyExhaustive(Fn.getModule().getSwiftModule(),
|
|
Fn.getResilienceExpansion());
|
|
|
|
if (IsExhaustive
|
|
&& SEI->getNumCases() >= 1
|
|
&& SEI->getCase(0).first != FirstElt) {
|
|
++Iter;
|
|
|
|
if (Iter != AllElts.end() &&
|
|
std::next(Iter) == AllElts.end() &&
|
|
*Iter == SEI->getCase(0).first) {
|
|
EnumElementDecl *SecondElt = *Iter;
|
|
|
|
SILValue FirstValue;
|
|
// SelectEnum must be exhaustive, so the second case must be handled
|
|
// either by a case or the default.
|
|
if (SEI->getNumCases() >= 2) {
|
|
assert(FirstElt == SEI->getCase(1).first
|
|
&& "select_enum missing a case?!");
|
|
FirstValue = SEI->getCase(1).second;
|
|
} else {
|
|
FirstValue = SEI->getDefaultResult();
|
|
}
|
|
|
|
|
|
std::pair<EnumElementDecl*, SILValue> SwappedCases[2] = {
|
|
{FirstElt, SEI->getCase(0).second},
|
|
{SecondElt, FirstValue},
|
|
};
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "canonicalize " << *SEI);
|
|
auto *NewSEI = SILBuilderWithScope(SEI)
|
|
.createSelectEnum(SEI->getLoc(),
|
|
SEI->getEnumOperand(),
|
|
SEI->getType(),
|
|
SILValue(),
|
|
SwappedCases);
|
|
|
|
// We only change the condition to be NewEITI instead of all uses since
|
|
// EITI may have other uses besides this one that need to be updated.
|
|
BI->setCondition(NewSEI);
|
|
BI->swapSuccessors();
|
|
addToWorklist(BI->getParent());
|
|
addToWorklist(TrueSide);
|
|
addToWorklist(FalseSide);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplify a condition branch to a block starting with "cond_fail 1".
|
|
//
|
|
// cond_br %cond, TrueSide, FalseSide
|
|
// TrueSide:
|
|
// cond_fail 1
|
|
//
|
|
auto CFCondition = BI->getCondition();
|
|
if (auto *TrueCFI = getUnConditionalFail(TrueSide, CFCondition, false)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "replace with cond_fail:" << *BI);
|
|
SILBuilderWithScope Builder(BI);
|
|
createCondFail(TrueCFI, CFCondition, TrueCFI->getMessage(), false, Builder);
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), FalseSide, FalseArgs);
|
|
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(TrueSide);
|
|
addToWorklist(FalseSide);
|
|
return true;
|
|
}
|
|
if (auto *FalseCFI = getUnConditionalFail(FalseSide, CFCondition, true)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "replace with inverted cond_fail:" << *BI);
|
|
SILBuilderWithScope Builder(BI);
|
|
createCondFail(FalseCFI, CFCondition, FalseCFI->getMessage(), true, Builder);
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), TrueSide, TrueArgs);
|
|
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(FalseSide);
|
|
addToWorklist(TrueSide);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Does this basic block consist of only an "unreachable" instruction?
|
|
static bool isOnlyUnreachable(SILBasicBlock *BB) {
|
|
auto *Term = BB->getTerminator();
|
|
if (!isa<UnreachableInst>(Term))
|
|
return false;
|
|
|
|
return (&*BB->begin() == BB->getTerminator());
|
|
}
|
|
|
|
|
|
/// simplifySwitchEnumUnreachableBlocks - Attempt to replace a
|
|
/// switch_enum where all but one block consists of just an
|
|
/// "unreachable" with an unchecked_enum_data and branch.
|
|
bool SimplifyCFG::simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI) {
|
|
auto Count = SEI->getNumCases();
|
|
|
|
SILBasicBlock *Dest = nullptr;
|
|
EnumElementDecl *Element = nullptr;
|
|
|
|
if (SEI->hasDefault())
|
|
if (!isOnlyUnreachable(SEI->getDefaultBB()))
|
|
Dest = SEI->getDefaultBB();
|
|
|
|
for (unsigned i = 0; i < Count; ++i) {
|
|
auto EnumCase = SEI->getCase(i);
|
|
|
|
if (isOnlyUnreachable(EnumCase.second))
|
|
continue;
|
|
|
|
if (Dest)
|
|
return false;
|
|
|
|
assert(!Element && "Did not expect to have an element without a block!");
|
|
Element = EnumCase.first;
|
|
Dest = EnumCase.second;
|
|
}
|
|
|
|
if (!Dest) {
|
|
addToWorklist(SEI->getParent());
|
|
SILBuilderWithScope(SEI).createUnreachable(SEI->getLoc());
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (!Element || !Element->hasAssociatedValues() || Dest->args_empty()) {
|
|
assert(Dest->args_empty() && "Unexpected argument at destination!");
|
|
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "remove " << *SEI);
|
|
|
|
auto &Mod = SEI->getModule();
|
|
auto OpndTy = SEI->getOperand()->getType();
|
|
auto Ty = OpndTy.getEnumElementType(
|
|
Element, Mod, TypeExpansionContext(*SEI->getFunction()));
|
|
auto *UED = SILBuilderWithScope(SEI)
|
|
.createUncheckedEnumData(SEI->getLoc(), SEI->getOperand(), Element, Ty);
|
|
|
|
assert(Dest->args_size() == 1 && "Expected only one argument!");
|
|
SmallVector<SILValue, 1> Args;
|
|
Args.push_back(UED);
|
|
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest, Args);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Checks that the someBB only contains obj_method calls (possibly chained) on
|
|
/// the optional value.
|
|
///
|
|
/// switch_enum %optionalValue, case #Optional.some!enumelt: someBB
|
|
///
|
|
/// someBB(%optionalPayload):
|
|
/// %1 = objc_method %optionalPayload
|
|
/// %2 = apply %1(..., %optionalPayload) // self position
|
|
/// %3 = unchecked_ref_cast %2
|
|
/// %4 = objc_method %3
|
|
/// %... = apply %4(..., %3)
|
|
/// br mergeBB(%...)
|
|
static bool containsOnlyObjMethodCallOnOptional(SILValue optionalValue,
|
|
SILBasicBlock *someBB,
|
|
SILValue &outBranchArg,
|
|
SILValue &outOptionalPayload) {
|
|
SILValue optionalPayload;
|
|
SmallVector<SILValue, 4> optionalPayloads;
|
|
if (someBB->getNumArguments() == 1) {
|
|
optionalPayload = someBB->getArgument(0);
|
|
optionalPayloads.push_back(optionalPayload);
|
|
} else if (someBB->getNumArguments() != 0)
|
|
return false;
|
|
|
|
SmallVector<SILValue, 4> objCApplies;
|
|
for (auto &i : *someBB) {
|
|
SILInstruction *inst = &i;
|
|
if (onlyAffectsRefCount(inst))
|
|
continue;
|
|
if (inst->isDebugInstruction())
|
|
continue;
|
|
// An objc_method has no sideffects.
|
|
if (isa<ObjCMethodInst>(inst))
|
|
continue;
|
|
|
|
// An uncheckedEnumData has no sideeffects.
|
|
if (auto *uncheckedEnumData = dyn_cast<UncheckedEnumDataInst>(inst)) {
|
|
if (uncheckedEnumData->getOperand() != optionalValue)
|
|
continue;
|
|
optionalPayload = uncheckedEnumData;
|
|
optionalPayloads.push_back(uncheckedEnumData);
|
|
continue;
|
|
}
|
|
|
|
// An unchecked_ref_cast is safe.
|
|
if (auto *refCast = dyn_cast<UncheckedRefCastInst>(inst)) {
|
|
// An unchecked_ref_cast on a safe objc_method apply behaves like the
|
|
// optional (it is null if the optional was null).
|
|
if (refCast->getType().getClassOrBoundGenericClass() &&
|
|
std::find(objCApplies.begin(), objCApplies.end(),
|
|
refCast->getOperand()) != objCApplies.end())
|
|
optionalPayloads.push_back(refCast);
|
|
continue;
|
|
}
|
|
|
|
// Applies on objc_methods where self is either the optional payload or the
|
|
// result of another 'safe' apply are safe.
|
|
if (auto *objcMethod = dyn_cast<ApplyInst>(inst)) {
|
|
if (!isa<ObjCMethodInst>(objcMethod->getCallee()))
|
|
return false;
|
|
if (std::find(optionalPayloads.begin(), optionalPayloads.end(),
|
|
objcMethod->getSelfArgument()) == optionalPayloads.end())
|
|
return false;
|
|
objCApplies.push_back(objcMethod);
|
|
continue;
|
|
}
|
|
|
|
// The branch should forward one of the objc_method call.
|
|
if (auto *br = dyn_cast<BranchInst>(inst)) {
|
|
if (br->getNumArgs() == 0 || br->getNumArgs() > 1)
|
|
return false;
|
|
auto branchArg = br->getArg(0);
|
|
if (std::find(objCApplies.begin(), objCApplies.end(), branchArg) ==
|
|
objCApplies.end())
|
|
return false;
|
|
outBranchArg = branchArg;
|
|
continue;
|
|
}
|
|
// Unexpected instruction.
|
|
return false;
|
|
}
|
|
if (!optionalPayload)
|
|
return false;
|
|
outOptionalPayload = optionalPayload;
|
|
return true;
|
|
}
|
|
|
|
/// Check that all that noneBB does is forwarding none.
|
|
/// The only other allowed operation are ref count operations.
|
|
static bool onlyForwardsNone(SILBasicBlock *noneBB, SILBasicBlock *someBB,
|
|
SwitchEnumInst *SEI) {
|
|
// It all the basic blocks leading up to the ultimate block we only expect
|
|
// reference count instructions.
|
|
while (noneBB->getSingleSuccessorBlock() != someBB->getSingleSuccessorBlock()) {
|
|
for (auto &i : *noneBB) {
|
|
auto *inst = &i;
|
|
if (isa<BranchInst>(inst) || onlyAffectsRefCount(inst) ||
|
|
inst->isDebugInstruction())
|
|
continue;
|
|
return false;
|
|
}
|
|
noneBB = noneBB->getSingleSuccessorBlock();
|
|
}
|
|
// The ultimate block forwards the Optional<...>.none value.
|
|
SILValue optionalNone;
|
|
for (auto &i : *noneBB) {
|
|
auto *inst = &i;
|
|
if (onlyAffectsRefCount(inst) || inst->isDebugInstruction())
|
|
continue;
|
|
if (auto *none = dyn_cast<EnumInst>(inst)) {
|
|
if (none->getElement() !=
|
|
SEI->getModule().getASTContext().getOptionalNoneDecl())
|
|
return false;
|
|
optionalNone = none;
|
|
continue;
|
|
}
|
|
if (auto *noneBranch = dyn_cast<BranchInst>(inst)) {
|
|
if (noneBranch->getNumArgs() != 1 ||
|
|
(noneBranch->getArg(0) != SEI->getOperand() &&
|
|
noneBranch->getArg(0) != optionalNone))
|
|
return false;
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check whether the \p someBB has only one single successor and that successor
|
|
/// post-dominates \p noneBB.
|
|
///
|
|
/// (maybe otherNoneBB)
|
|
/// someBB noneBB /
|
|
/// \ | v
|
|
/// \ ... more bbs? (A)
|
|
/// \ /
|
|
/// ulimateBB
|
|
///
|
|
/// This routine does not support diverging control flow in (A). This means that
|
|
/// there must not be any loops or diamonds beginning in that region. We do
|
|
/// support side-entrances from blocks not reachable from noneBB in order to
|
|
/// ensure that we properly handle other failure cases where the failure case
|
|
/// merges into .noneBB before ultimate BB.
|
|
///
|
|
/// DISCUSSION: We allow this side-entrance pattern to handle iterative
|
|
/// conditional checks which all feed the failing case through the .none
|
|
/// path. This is a common pattern in swift code. As an example consider a
|
|
/// switch statement with multiple pattern binding matching that use the same
|
|
/// cleanup code upon failure.
|
|
static bool hasSameUltimateSuccessor(SILBasicBlock *noneBB, SILBasicBlock *someBB) {
|
|
// Make sure that both our some, none blocks both have single successors that
|
|
// are not themselves (which can happen due to single block loops).
|
|
auto *someSuccessorBB = someBB->getSingleSuccessorBlock();
|
|
if (!someSuccessorBB || someSuccessorBB == someBB)
|
|
return false;
|
|
|
|
auto *noneSuccessorBB = noneBB->getSingleSuccessorBlock();
|
|
if (!noneSuccessorBB || noneSuccessorBB == noneBB)
|
|
return false;
|
|
|
|
// If we immediately find a simple diamond, return true. We are done.
|
|
if (noneSuccessorBB == someSuccessorBB)
|
|
return true;
|
|
|
|
// Otherwise, lets begin a traversal along the successors of noneSuccessorBB,
|
|
// searching for someSuccessorBB, being careful to only allow for blocks to be
|
|
// visited once. This enables us to guarantee that there are not any loops or
|
|
// any sub-diamonds in the part of the CFG we are traversing. This /does/
|
|
// allow for side-entrances to the region from blocks not reachable from
|
|
// noneSuccessorBB. See function level comment above.
|
|
SILBasicBlock *iter = noneSuccessorBB;
|
|
SmallPtrSet<SILBasicBlock *, 8> visitedBlocks;
|
|
visitedBlocks.insert(iter);
|
|
|
|
do {
|
|
// First try to grab our single successor if we have only one. If we have no
|
|
// successor or more than one successor, bail and do not optimize.
|
|
//
|
|
// DISCUSSION: Trivially, if we do not have a successor, then we have
|
|
// reached either a return/unreachable and this path will never merge with
|
|
// the ultimate block. If we have more than one successor, then for our
|
|
// condition to pass, we must have that both successors eventually join into
|
|
// someSuccessorBB. But this would imply that either someSuccessorBB has
|
|
// more than two predecessors and or that we merge the two paths before we
|
|
// visit someSuccessorBB.
|
|
auto *succBlock = iter->getSingleSuccessorBlock();
|
|
if (!succBlock)
|
|
return false;
|
|
|
|
// Then check if our single successor block has been visited already. If so,
|
|
// we have some sort of loop or have some sort of merge point that is not
|
|
// the final merge point.
|
|
//
|
|
// NOTE: We do not need to worry about someSuccessorBB being in
|
|
// visitedBlocks since before we begin the loop, we check that
|
|
// someSuccessorBB != iter and also check that in the do-while condition. So
|
|
// we can never have visited someSuccessorBB on any previous iteration
|
|
// meaning that the only time we can have succBlock equal to someSuccessorBB
|
|
// is on the last iteration before we exit the loop.
|
|
if (!visitedBlocks.insert(succBlock).second)
|
|
return false;
|
|
|
|
// Otherwise, set iter to succBlock.
|
|
iter = succBlock;
|
|
|
|
// And then check if this new successor block is someSuccessorBB. If so, we
|
|
// break and then return true since we have found our target. Otherwise, we
|
|
// need to visit further successors, so go back around the loop.
|
|
} while (iter != someSuccessorBB);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Simplify switch_enums on class enums that branch to objc_method calls on
|
|
/// that optional on the #Optional.some side to always branch to the some side.
|
|
///
|
|
/// switch_enum %optionalValue, case #Optional.some!enumelt: someBB,
|
|
/// case #Optional.none: noneBB
|
|
///
|
|
/// someBB(%optionalPayload):
|
|
/// %1 = objc_method %optionalPayload
|
|
/// %2 = apply %1(..., %optionalPayload) // self position
|
|
/// br mergeBB(%2)
|
|
///
|
|
/// noneBB:
|
|
/// %4 = enum #Optional.none
|
|
/// br mergeBB(%4)
|
|
bool SimplifyCFG::simplifySwitchEnumOnObjcClassOptional(SwitchEnumInst *SEI) {
|
|
auto optional = SEI->getOperand();
|
|
auto optionalPayloadType = optional->getType().getOptionalObjectType();
|
|
if (!optionalPayloadType ||
|
|
!optionalPayloadType.getClassOrBoundGenericClass())
|
|
return false;
|
|
|
|
if (SEI->getNumCases() != 2)
|
|
return false;
|
|
|
|
auto *noneBB = SEI->getCase(0).second;
|
|
auto *someBB = SEI->getCase(1).second;
|
|
if (noneBB == someBB)
|
|
return false;
|
|
auto someDecl = SEI->getModule().getASTContext().getOptionalSomeDecl();
|
|
if (SEI->getCaseDestination(someDecl) != someBB)
|
|
std::swap(someBB, noneBB);
|
|
|
|
if (!hasSameUltimateSuccessor(noneBB, someBB))
|
|
return false;
|
|
|
|
if (!onlyForwardsNone(noneBB, someBB, SEI))
|
|
return false;
|
|
|
|
SILValue branchArg;
|
|
SILValue optionalPayload;
|
|
if (!containsOnlyObjMethodCallOnOptional(optional, someBB, branchArg,
|
|
optionalPayload))
|
|
return false;
|
|
|
|
SILBuilderWithScope Builder(SEI);
|
|
auto *payloadCast = Builder.createUncheckedRefCast(SEI->getLoc(), optional,
|
|
optionalPayloadType);
|
|
optionalPayload->replaceAllUsesWith(payloadCast);
|
|
auto *switchBB = SEI->getParent();
|
|
if (someBB->getNumArguments())
|
|
Builder.createBranch(SEI->getLoc(), someBB, SILValue(payloadCast));
|
|
else
|
|
Builder.createBranch(SEI->getLoc(), someBB);
|
|
|
|
SEI->eraseFromParent();
|
|
addToWorklist(switchBB);
|
|
simplifyAfterDroppingPredecessor(noneBB);
|
|
addToWorklist(someBB);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchEnumBlock - Simplify a basic block that ends with a
|
|
/// switch_enum instruction that gets its operand from an enum
|
|
/// instruction.
|
|
bool SimplifyCFG::simplifySwitchEnumBlock(SwitchEnumInst *SEI) {
|
|
auto EnumCase = getEnumCase(SEI->getOperand(), SEI->getParent());
|
|
if (!EnumCase)
|
|
return false;
|
|
|
|
auto *LiveBlock = SEI->getCaseDestination(EnumCase.get());
|
|
auto *ThisBB = SEI->getParent();
|
|
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the liveblock.
|
|
SmallVector<SILBasicBlock*, 4> Dests;
|
|
for (auto &S : SEI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "remove " << *SEI);
|
|
|
|
auto *EI = dyn_cast<EnumInst>(SEI->getOperand());
|
|
SILBuilderWithScope Builder(SEI);
|
|
if (!LiveBlock->args_empty()) {
|
|
SILValue PayLoad;
|
|
if (EI) {
|
|
PayLoad = EI->getOperand();
|
|
} else {
|
|
PayLoad = Builder.createUncheckedEnumData(SEI->getLoc(),
|
|
SEI->getOperand(), EnumCase.get());
|
|
}
|
|
Builder.createBranch(SEI->getLoc(), LiveBlock, PayLoad);
|
|
} else {
|
|
Builder.createBranch(SEI->getLoc(), LiveBlock);
|
|
}
|
|
SEI->eraseFromParent();
|
|
if (EI && EI->use_empty()) EI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchValueBlock - Simplify a basic block that ends with a
|
|
/// switch_value instruction that gets its operand from an integer
|
|
/// literal instruction.
|
|
bool SimplifyCFG::simplifySwitchValueBlock(SwitchValueInst *SVI) {
|
|
auto *ThisBB = SVI->getParent();
|
|
if (auto *ILI = dyn_cast<IntegerLiteralInst>(SVI->getOperand())) {
|
|
SILBasicBlock *LiveBlock = nullptr;
|
|
|
|
auto Value = ILI->getValue();
|
|
// Find a case corresponding to this value
|
|
int i, e;
|
|
for (i = 0, e = SVI->getNumCases(); i < e; ++i) {
|
|
auto Pair = SVI->getCase(i);
|
|
auto *CaseIL = dyn_cast<IntegerLiteralInst>(Pair.first);
|
|
if (!CaseIL)
|
|
break;
|
|
auto CaseValue = CaseIL->getValue();
|
|
if (Value == CaseValue) {
|
|
LiveBlock = Pair.second;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == e && !LiveBlock) {
|
|
if (SVI->hasDefault()) {
|
|
LiveBlock = SVI->getDefaultBB();
|
|
}
|
|
}
|
|
|
|
if (LiveBlock) {
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the
|
|
// liveblock.
|
|
SmallVector<SILBasicBlock *, 4> Dests;
|
|
for (auto &S : SVI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "remove " << *SVI);
|
|
|
|
SILBuilderWithScope(SVI).createBranch(SVI->getLoc(), LiveBlock);
|
|
SVI->eraseFromParent();
|
|
if (ILI->use_empty())
|
|
ILI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return simplifyTermWithIdenticalDestBlocks(ThisBB);
|
|
}
|
|
|
|
bool onlyContainsRefcountAndDeallocStackInst(
|
|
SILBasicBlock::reverse_iterator I, SILBasicBlock::reverse_iterator End) {
|
|
while (I != End) {
|
|
auto MaybeDead = I++;
|
|
switch (MaybeDead->getKind()) {
|
|
// These technically have side effects, but not ones that matter
|
|
// in a block that we shouldn't really reach...
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::RetainValueInst:
|
|
case SILInstructionKind::ReleaseValueInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
/// simplifyUnreachableBlock - Simplify blocks ending with unreachable by
|
|
/// removing instructions that are safe to delete backwards until we
|
|
/// hit an instruction we cannot delete.
|
|
bool SimplifyCFG::simplifyUnreachableBlock(UnreachableInst *UI) {
|
|
bool Changed = false;
|
|
auto BB = UI->getParent();
|
|
auto I = std::next(BB->rbegin());
|
|
auto End = BB->rend();
|
|
SmallVector<SILInstruction *, 8> DeadInstrs;
|
|
|
|
bool canIgnoreRestOfBlock = false;
|
|
|
|
// Walk backwards deleting instructions that should be safe to delete
|
|
// in a block that ends with unreachable.
|
|
while (I != End) {
|
|
auto MaybeDead = I++;
|
|
|
|
switch (MaybeDead->getKind()) {
|
|
// These technically have side effects, but not ones that matter
|
|
// in a block that we shouldn't really reach...
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::RetainValueInst:
|
|
case SILInstructionKind::ReleaseValueInst:
|
|
break;
|
|
// We can only ignore a dealloc_stack instruction if we can ignore all
|
|
// instructions in the block.
|
|
case SILInstructionKind::DeallocStackInst: {
|
|
if (canIgnoreRestOfBlock ||
|
|
onlyContainsRefcountAndDeallocStackInst(MaybeDead, End)) {
|
|
canIgnoreRestOfBlock = true;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
if (MaybeDead->mayHaveSideEffects()) {
|
|
if (Changed)
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
MaybeDead->replaceAllUsesOfAllResultsWithUndef();
|
|
DeadInstrs.push_back(&*MaybeDead);
|
|
Changed = true;
|
|
}
|
|
|
|
// If this block was changed and it now consists of only the unreachable,
|
|
// make sure we process its predecessors.
|
|
if (Changed) {
|
|
LLVM_DEBUG(llvm::dbgs() << "remove dead insts in unreachable bb"
|
|
<< BB->getDebugID() << '\n');
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
|
|
if (isOnlyUnreachable(BB))
|
|
for (auto *P : BB->getPredecessorBlocks())
|
|
addToWorklist(P);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI) {
|
|
auto SuccessBB = CCBI->getSuccessBB();
|
|
auto FailureBB = CCBI->getFailureBB();
|
|
auto ThisBB = CCBI->getParent();
|
|
|
|
bool MadeChange = false;
|
|
CastOptimizer CastOpt(
|
|
FuncBuilder, nullptr /*SILBuilderContext*/,
|
|
/* replaceValueUsesAction */
|
|
[&MadeChange](SILValue oldValue, SILValue newValue) {
|
|
MadeChange = true;
|
|
},
|
|
/* replaceInstUsesAction */
|
|
[&MadeChange](SILInstruction *I, ValueBase *V) { MadeChange = true; },
|
|
/* eraseInstAction */
|
|
[&MadeChange](SILInstruction *I) {
|
|
MadeChange = true;
|
|
I->eraseFromParent();
|
|
},
|
|
/* willSucceedAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
/* willFailAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
MadeChange |= bool(CastOpt.simplifyCheckedCastBranchInst(CCBI));
|
|
return MadeChange;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyCheckedCastValueBranchBlock(
|
|
CheckedCastValueBranchInst *CCBI) {
|
|
auto SuccessBB = CCBI->getSuccessBB();
|
|
auto FailureBB = CCBI->getFailureBB();
|
|
auto ThisBB = CCBI->getParent();
|
|
|
|
bool MadeChange = false;
|
|
CastOptimizer CastOpt(
|
|
FuncBuilder, nullptr /*SILBuilderContext*/,
|
|
/* replaceValueUsesAction */
|
|
[&MadeChange](SILValue oldValue, SILValue newValue) {
|
|
MadeChange = true;
|
|
},
|
|
/* replaceInstUsesAction */
|
|
[&MadeChange](SILInstruction *I, ValueBase *V) { MadeChange = true; },
|
|
/* eraseInstAction */
|
|
[&MadeChange](SILInstruction *I) {
|
|
MadeChange = true;
|
|
I->eraseFromParent();
|
|
},
|
|
/* willSucceedAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
/* willFailAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
MadeChange |= bool(CastOpt.simplifyCheckedCastValueBranchInst(CCBI));
|
|
return MadeChange;
|
|
}
|
|
|
|
bool
|
|
SimplifyCFG::
|
|
simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI) {
|
|
auto SuccessBB = CCABI->getSuccessBB();
|
|
auto FailureBB = CCABI->getFailureBB();
|
|
auto ThisBB = CCABI->getParent();
|
|
|
|
bool MadeChange = false;
|
|
CastOptimizer CastOpt(
|
|
FuncBuilder, nullptr /*SILBuilderContext*/,
|
|
/* replaceValueUsesAction */
|
|
[&MadeChange](SILValue, SILValue) { MadeChange = true; },
|
|
/* replaceInstUsesAction */
|
|
[&MadeChange](SILInstruction *I, ValueBase *V) { MadeChange = true; },
|
|
/* eraseInstAction */
|
|
[&MadeChange](SILInstruction *I) {
|
|
MadeChange = true;
|
|
I->eraseFromParent();
|
|
},
|
|
/* willSucceedAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
/* willFailAction */
|
|
[&]() {
|
|
MadeChange |= removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
MadeChange |= bool(CastOpt.simplifyCheckedCastAddrBranchInst(CCABI));
|
|
return MadeChange;
|
|
}
|
|
|
|
static SILValue getActualCallee(SILValue Callee) {
|
|
while (!isa<FunctionRefInst>(Callee)) {
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Callee)) {
|
|
Callee = CFI->getConverted();
|
|
continue;
|
|
}
|
|
if (auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Callee)) {
|
|
Callee = Cvt->getConverted();
|
|
continue;
|
|
}
|
|
if (auto *TTI = dyn_cast<ThinToThickFunctionInst>(Callee)) {
|
|
Callee = TTI->getConverted();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return Callee;
|
|
}
|
|
|
|
/// Checks if the callee of \p TAI is a convert from a function without
|
|
/// error result.
|
|
static bool isTryApplyOfConvertFunction(TryApplyInst *TAI,
|
|
SILValue &Callee,
|
|
SILType &CalleeType) {
|
|
auto CalleeOperand = TAI->getCallee();
|
|
|
|
// Look through a @noescape conversion.
|
|
auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(CalleeOperand);
|
|
if (Cvt)
|
|
CalleeOperand = Cvt->getConverted();
|
|
|
|
auto *CFI = dyn_cast<ConvertFunctionInst>(CalleeOperand);
|
|
if (!CFI)
|
|
return false;
|
|
|
|
// Check if it is a conversion of a non-throwing function into
|
|
// a throwing function. If this is the case, replace by a
|
|
// simple apply.
|
|
auto OrigFnTy = CFI->getConverted()->getType().getAs<SILFunctionType>();
|
|
if (!OrigFnTy || OrigFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
auto TargetFnTy = CFI->getType().getAs<SILFunctionType>();
|
|
if (!TargetFnTy || !TargetFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
// Look through the conversions and find the real callee.
|
|
Callee = getActualCallee(CFI->getConverted());
|
|
CalleeType = Callee->getType();
|
|
|
|
// If it a call of a throwing callee, bail.
|
|
auto CalleeFnTy = CalleeType.getAs<SILFunctionType>();
|
|
if (!CalleeFnTy || CalleeFnTy->hasErrorResult())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the error block of \p TAI has just an unreachable instruction.
|
|
/// In this case we know that the callee cannot throw.
|
|
static bool isTryApplyWithUnreachableError(TryApplyInst *TAI,
|
|
SILValue &Callee,
|
|
SILType &CalleeType) {
|
|
SILBasicBlock *ErrorBlock = TAI->getErrorBB();
|
|
TermInst *Term = ErrorBlock->getTerminator();
|
|
if (!isa<UnreachableInst>(Term))
|
|
return false;
|
|
|
|
if (&*ErrorBlock->begin() != Term)
|
|
return false;
|
|
|
|
Callee = TAI->getCallee();
|
|
CalleeType = TAI->getSubstCalleeSILType();
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyTryApplyBlock(TryApplyInst *TAI) {
|
|
|
|
SILValue Callee;
|
|
SILType CalleeType;
|
|
|
|
// Two reasons for converting a try_apply to an apply.
|
|
if (isTryApplyOfConvertFunction(TAI, Callee, CalleeType) ||
|
|
isTryApplyWithUnreachableError(TAI, Callee, CalleeType)) {
|
|
|
|
auto CalleeFnTy = CalleeType.castTo<SILFunctionType>();
|
|
SILFunctionConventions calleeConv(CalleeFnTy, TAI->getModule());
|
|
auto ResultTy = calleeConv.getSILResultType(
|
|
TAI->getFunction()->getTypeExpansionContext());
|
|
auto OrigResultTy = TAI->getNormalBB()->getArgument(0)->getType();
|
|
|
|
SILBuilderWithScope Builder(TAI);
|
|
|
|
auto TargetFnTy = CalleeFnTy;
|
|
if (TargetFnTy->isPolymorphic()) {
|
|
TargetFnTy = TargetFnTy->substGenericArgs(
|
|
TAI->getModule(), TAI->getSubstitutionMap(),
|
|
Builder.getTypeExpansionContext());
|
|
}
|
|
SILFunctionConventions targetConv(TargetFnTy, TAI->getModule());
|
|
|
|
auto OrigFnTy = TAI->getCallee()->getType().getAs<SILFunctionType>();
|
|
if (OrigFnTy->isPolymorphic()) {
|
|
OrigFnTy = OrigFnTy->substGenericArgs(TAI->getModule(),
|
|
TAI->getSubstitutionMap(),
|
|
Builder.getTypeExpansionContext());
|
|
}
|
|
SILFunctionConventions origConv(OrigFnTy, TAI->getModule());
|
|
auto context = TAI->getFunction()->getTypeExpansionContext();
|
|
SmallVector<SILValue, 8> Args;
|
|
unsigned numArgs = TAI->getNumArguments();
|
|
for (unsigned i = 0; i < numArgs; ++i) {
|
|
auto Arg = TAI->getArgument(i);
|
|
// Cast argument if required.
|
|
std::tie(Arg, std::ignore) = castValueToABICompatibleType(
|
|
&Builder, TAI->getLoc(), Arg, origConv.getSILArgumentType(i, context),
|
|
targetConv.getSILArgumentType(i, context));
|
|
Args.push_back(Arg);
|
|
}
|
|
|
|
assert(calleeConv.getNumSILArguments() == Args.size()
|
|
&& "The number of arguments should match");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "replace with apply: " << *TAI);
|
|
ApplyInst *NewAI = Builder.createApply(TAI->getLoc(), Callee,
|
|
TAI->getSubstitutionMap(),
|
|
Args, CalleeFnTy->hasErrorResult());
|
|
|
|
auto Loc = TAI->getLoc();
|
|
auto *NormalBB = TAI->getNormalBB();
|
|
|
|
SILValue CastedResult;
|
|
std::tie(CastedResult, std::ignore) = castValueToABICompatibleType(
|
|
&Builder, Loc, NewAI, ResultTy, OrigResultTy);
|
|
|
|
Builder.createBranch(Loc, NormalBB, { CastedResult });
|
|
TAI->eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Replace the terminator of BB with a simple branch if all successors go
|
|
// to trampoline jumps to the same destination block. The successor blocks
|
|
// and the destination blocks may have no arguments.
|
|
bool SimplifyCFG::simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB) {
|
|
TrampolineDest commonDest;
|
|
for (auto *SuccBlock : BB->getSuccessorBlocks()) {
|
|
if (SuccBlock->getNumArguments() != 0)
|
|
return false;
|
|
auto trampolineDest = TrampolineDest(BB, SuccBlock);
|
|
if (!trampolineDest) {
|
|
return false;
|
|
}
|
|
// The branch must have the same destination and same branch arguments.
|
|
if (!commonDest) {
|
|
commonDest = std::move(trampolineDest);
|
|
} else if (trampolineDest != commonDest) {
|
|
return false;
|
|
}
|
|
}
|
|
if (!commonDest) {
|
|
return false;
|
|
}
|
|
TermInst *Term = BB->getTerminator();
|
|
LLVM_DEBUG(llvm::dbgs() << "replace term with identical dests: " << *Term);
|
|
SILBuilderWithScope(Term).createBranch(Term->getLoc(), commonDest.destBB,
|
|
commonDest.newSourceBranchArgs);
|
|
Term->eraseFromParent();
|
|
addToWorklist(BB);
|
|
addToWorklist(commonDest.destBB);
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the block contains a cond_fail as first side-effect instruction
|
|
/// and tries to move it to the predecessors (if beneficial). A sequence
|
|
///
|
|
/// bb1:
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// br bb3(%i) // at least one input argument must be constant
|
|
/// bb3(%a) // = BB
|
|
/// cond_fail %a // %a must not have other uses
|
|
///
|
|
/// is replaced with
|
|
///
|
|
/// bb1:
|
|
/// cond_fail %c
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// cond_fail %i
|
|
/// br bb3(%i)
|
|
/// bb3(%a) // %a is dead
|
|
///
|
|
static bool tryMoveCondFailToPreds(SILBasicBlock *BB) {
|
|
|
|
CondFailInst *CFI = getFirstCondFail(BB);
|
|
if (!CFI)
|
|
return false;
|
|
|
|
// Find the underlying condition value of the cond_fail.
|
|
// We only accept single uses. This is not a correctness check, but we only
|
|
// want to the optimization if the condition gets dead after moving the
|
|
// cond_fail.
|
|
bool inverted = false;
|
|
SILValue cond = skipInvert(CFI->getOperand(), inverted, true);
|
|
if (!cond)
|
|
return false;
|
|
|
|
// Check if the condition is a single-used argument in the current block.
|
|
auto *condArg = dyn_cast<SILArgument>(cond);
|
|
if (!condArg || !condArg->hasOneUse())
|
|
return false;
|
|
|
|
if (condArg->getParent() != BB)
|
|
return false;
|
|
|
|
// Check if some of the predecessor blocks provide a constant for the
|
|
// cond_fail condition. So that the optimization has a positive effect.
|
|
bool somePredsAreConst = false;
|
|
for (auto *Pred : BB->getPredecessorBlocks()) {
|
|
|
|
// The cond_fail must post-dominate the predecessor block. We may not
|
|
// execute the cond_fail speculatively.
|
|
if (!Pred->getSingleSuccessorBlock())
|
|
return false;
|
|
|
|
// If we already found a constant pred, we do not need to check the incoming
|
|
// value to see if it is constant. We are already going to perform the
|
|
// optimization.
|
|
if (somePredsAreConst)
|
|
continue;
|
|
|
|
SILValue incoming = condArg->getIncomingPhiValue(Pred);
|
|
somePredsAreConst |= isa<IntegerLiteralInst>(incoming);
|
|
}
|
|
|
|
if (!somePredsAreConst)
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "move to predecessors: " << *CFI);
|
|
|
|
// Move the cond_fail to the predecessor blocks.
|
|
for (auto *Pred : BB->getPredecessorBlocks()) {
|
|
SILValue incoming = condArg->getIncomingPhiValue(Pred);
|
|
SILBuilderWithScope Builder(Pred->getTerminator());
|
|
|
|
createCondFail(CFI, incoming, CFI->getMessage(), inverted, Builder);
|
|
}
|
|
CFI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyBlocks() {
|
|
bool Changed = false;
|
|
|
|
// Add all of the blocks to the function.
|
|
for (auto &BB : Fn)
|
|
addToWorklist(&BB);
|
|
|
|
// Iteratively simplify while there is still work to do.
|
|
while (SILBasicBlock *BB = popWorklist()) {
|
|
// If the block is dead, remove it.
|
|
if (removeIfDead(BB)) {
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, try to simplify the terminator.
|
|
TermInst *TI = BB->getTerminator();
|
|
|
|
switch (TI->getTermKind()) {
|
|
case TermKind::BranchInst:
|
|
if (simplifyBranchBlock(cast<BranchInst>(TI))) {
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
// If this unconditional branch has BBArgs, check to see if duplicating
|
|
// the destination would allow it to be simplified. This is a simple form
|
|
// of jump threading.
|
|
if (!isVeryLargeFunction && tryJumpThreading(cast<BranchInst>(TI))) {
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
break;
|
|
case TermKind::CondBranchInst:
|
|
Changed |= simplifyCondBrBlock(cast<CondBranchInst>(TI));
|
|
break;
|
|
case TermKind::SwitchValueInst:
|
|
// FIXME: Optimize for known switch values.
|
|
Changed |= simplifySwitchValueBlock(cast<SwitchValueInst>(TI));
|
|
break;
|
|
case TermKind::SwitchEnumInst: {
|
|
auto *SEI = cast<SwitchEnumInst>(TI);
|
|
if (simplifySwitchEnumBlock(SEI)) {
|
|
Changed = true;
|
|
} else if (simplifySwitchEnumOnObjcClassOptional(SEI)) {
|
|
Changed = true;
|
|
} else {
|
|
Changed |= simplifySwitchEnumUnreachableBlocks(SEI);
|
|
}
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
}
|
|
case TermKind::UnreachableInst:
|
|
Changed |= simplifyUnreachableBlock(cast<UnreachableInst>(TI));
|
|
break;
|
|
case TermKind::CheckedCastBranchInst:
|
|
Changed |= simplifyCheckedCastBranchBlock(cast<CheckedCastBranchInst>(TI));
|
|
break;
|
|
case TermKind::CheckedCastValueBranchInst:
|
|
Changed |= simplifyCheckedCastValueBranchBlock(
|
|
cast<CheckedCastValueBranchInst>(TI));
|
|
break;
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
Changed |= simplifyCheckedCastAddrBranchBlock(cast<CheckedCastAddrBranchInst>(TI));
|
|
break;
|
|
case TermKind::TryApplyInst:
|
|
Changed |= simplifyTryApplyBlock(cast<TryApplyInst>(TI));
|
|
break;
|
|
case TermKind::SwitchEnumAddrInst:
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
case TermKind::ThrowInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::ReturnInst:
|
|
case TermKind::UnwindInst:
|
|
case TermKind::YieldInst:
|
|
break;
|
|
case TermKind::AwaitAsyncContinuationInst:
|
|
// TODO(async): Simplify AwaitAsyncContinuationInst
|
|
break;
|
|
}
|
|
// If the block has a cond_fail, try to move it to the predecessors.
|
|
Changed |= tryMoveCondFailToPreds(BB);
|
|
|
|
// Simplify the block argument list.
|
|
Changed |= simplifyArgs(BB);
|
|
|
|
// Simplify the program termination block.
|
|
Changed |= simplifyProgramTerminationBlock(BB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Canonicalize all switch_enum and switch_enum_addr instructions.
|
|
/// If possible, replace the default with the corresponding unique case.
|
|
bool SimplifyCFG::canonicalizeSwitchEnums() {
|
|
bool Changed = false;
|
|
for (auto &BB : Fn) {
|
|
TermInst *TI = BB.getTerminator();
|
|
|
|
SwitchEnumTermInst SWI(TI);
|
|
if (!SWI)
|
|
continue;
|
|
|
|
if (!SWI.hasDefault())
|
|
continue;
|
|
|
|
NullablePtr<EnumElementDecl> elementDecl = SWI.getUniqueCaseForDefault();
|
|
if (!elementDecl)
|
|
continue;
|
|
|
|
// Construct a new instruction by copying all the case entries.
|
|
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
|
|
for (int idx = 0, numIdcs = SWI.getNumCases(); idx < numIdcs; ++idx) {
|
|
CaseBBs.push_back(SWI.getCase(idx));
|
|
}
|
|
// Add the default-entry of the original instruction as case-entry.
|
|
CaseBBs.push_back(std::make_pair(elementDecl.get(), SWI.getDefaultBB()));
|
|
|
|
if (isa<SwitchEnumInst>(*SWI)) {
|
|
SILBuilderWithScope(SWI).createSwitchEnum(SWI->getLoc(), SWI.getOperand(),
|
|
nullptr, CaseBBs);
|
|
} else {
|
|
assert(isa<SwitchEnumAddrInst>(*SWI) &&
|
|
"unknown switch_enum instruction");
|
|
SILBuilderWithScope(SWI).createSwitchEnumAddr(
|
|
SWI->getLoc(), SWI.getOperand(), nullptr, CaseBBs);
|
|
}
|
|
SWI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static SILBasicBlock *isObjCMethodCallBlock(SILBasicBlock &Block) {
|
|
auto *Branch = dyn_cast<BranchInst>(Block.getTerminator());
|
|
if (!Branch)
|
|
return nullptr;
|
|
|
|
for (auto &Inst : Block) {
|
|
// Look for an objc method call.
|
|
auto *Apply = dyn_cast<ApplyInst>(&Inst);
|
|
if (!Apply)
|
|
continue;
|
|
auto *Callee = dyn_cast<ObjCMethodInst>(Apply->getCallee());
|
|
if (!Callee)
|
|
continue;
|
|
|
|
return Branch->getDestBB();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to duplicate small blocks that contain a least on release and have
|
|
/// multiple predecessor.
|
|
static bool shouldTailDuplicate(SILBasicBlock &Block) {
|
|
unsigned Cost = 0;
|
|
bool SawRelease = false;
|
|
|
|
if (Block.getTerminator()->isFunctionExiting())
|
|
return false;
|
|
|
|
if (Block.getSinglePredecessorBlock())
|
|
return false;
|
|
|
|
for (auto &Inst : Block) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
if (FullApplySite::isa(&Inst))
|
|
return false;
|
|
|
|
if (isa<ReleaseValueInst>(&Inst) ||
|
|
isa<StrongReleaseInst>(&Inst))
|
|
SawRelease = true;
|
|
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 12)
|
|
return false;
|
|
}
|
|
|
|
return SawRelease;
|
|
}
|
|
|
|
|
|
/// Tail duplicate successor blocks of blocks that perform an objc method call
|
|
/// and who contain releases. Cloning such blocks can allow ARC to sink retain
|
|
/// releases onto the ObjC path.
|
|
bool SimplifyCFG::tailDuplicateObjCMethodCallSuccessorBlocks() {
|
|
SmallVector<SILBasicBlock *, 16> ObjCBlocks;
|
|
|
|
// Collect blocks to tail duplicate.
|
|
for (auto &BB : Fn) {
|
|
SILBasicBlock *DestBB;
|
|
if ((DestBB = isObjCMethodCallBlock(BB)) && !LoopHeaders.count(DestBB) &&
|
|
shouldTailDuplicate(*DestBB))
|
|
ObjCBlocks.push_back(&BB);
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (auto *BB : ObjCBlocks) {
|
|
auto *Branch = cast<BranchInst>(BB->getTerminator());
|
|
auto *DestBB = Branch->getDestBB();
|
|
|
|
// Okay, it looks like we want to do this and we can. Duplicate the
|
|
// destination block into this one, rewriting uses of the BBArgs to use the
|
|
// branch arguments as we go.
|
|
BasicBlockCloner Cloner(DestBB);
|
|
if (!Cloner.canCloneBlock())
|
|
continue;
|
|
|
|
Cloner.cloneBranchTarget(Branch);
|
|
Cloner.updateSSAAfterCloning();
|
|
|
|
Changed = true;
|
|
// Simplify the cloned block and continue tail duplicating through its new
|
|
// successors edges.
|
|
addToWorklistAfterSplittingEdges(Cloner.getNewBB());
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ArgumentSplitter {
|
|
/// The argument we are splitting.
|
|
SILArgument *Arg;
|
|
|
|
/// The worklist of arguments that we still need to visit. We
|
|
/// simplify each argument recursively one step at a time.
|
|
std::vector<SILArgument *> &Worklist;
|
|
|
|
/// The values incoming into Arg.
|
|
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingValues;
|
|
|
|
/// The list of first level projections that Arg can be split into.
|
|
llvm::SmallVector<Projection, 4> Projections;
|
|
|
|
llvm::Optional<int> FirstNewArgIndex;
|
|
|
|
public:
|
|
ArgumentSplitter(SILArgument *A, std::vector<SILArgument *> &W)
|
|
: Arg(A), Worklist(W), IncomingValues() {}
|
|
bool split();
|
|
|
|
private:
|
|
bool createNewArguments();
|
|
void replaceIncomingArgs(SILBuilder &B, BranchInst *BI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
|
|
void replaceIncomingArgs(SILBuilder &B, CondBranchInst *CBI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void ArgumentSplitter::replaceIncomingArgs(
|
|
SILBuilder &B, BranchInst *BI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
|
|
for (unsigned i : llvm::reverse(indices(BI->getAllOperands()))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(BI->getArg(i));
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
B.createBranch(BI->getLoc(), BI->getDestBB(), NewIncomingValues);
|
|
}
|
|
|
|
void ArgumentSplitter::replaceIncomingArgs(
|
|
SILBuilder &B, CondBranchInst *CBI,
|
|
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
|
|
llvm::SmallVector<SILValue, 4> OldIncomingValues;
|
|
ArrayRef<SILValue> NewTrueValues, NewFalseValues;
|
|
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
if (Arg->getParent() == CBI->getTrueBB()) {
|
|
ArrayRef<Operand> TrueArgs = CBI->getTrueOperands();
|
|
for (unsigned i : llvm::reverse(indices(TrueArgs))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(TrueArgs[i].get());
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
for (SILValue V : CBI->getFalseArgs())
|
|
OldIncomingValues.push_back(V);
|
|
NewTrueValues = NewIncomingValues;
|
|
NewFalseValues = OldIncomingValues;
|
|
} else {
|
|
ArrayRef<Operand> FalseArgs = CBI->getFalseOperands();
|
|
for (unsigned i : llvm::reverse(indices(FalseArgs))) {
|
|
// Skip this argument.
|
|
if (i == ArgIndex)
|
|
continue;
|
|
NewIncomingValues.push_back(FalseArgs[i].get());
|
|
}
|
|
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
|
|
for (SILValue V : CBI->getTrueArgs())
|
|
OldIncomingValues.push_back(V);
|
|
NewTrueValues = OldIncomingValues;
|
|
NewFalseValues = NewIncomingValues;
|
|
}
|
|
|
|
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(),
|
|
NewTrueValues, CBI->getFalseBB(), NewFalseValues,
|
|
CBI->getTrueBBCount(), CBI->getFalseBBCount());
|
|
}
|
|
|
|
bool ArgumentSplitter::createNewArguments() {
|
|
auto *F = Arg->getFunction();
|
|
SILModule &Mod = F->getModule();
|
|
SILBasicBlock *ParentBB = Arg->getParent();
|
|
|
|
// Grab the incoming values. Return false if we can't find them.
|
|
if (!Arg->getIncomingPhiValues(IncomingValues))
|
|
return false;
|
|
|
|
// Only handle struct and tuple type.
|
|
SILType Ty = Arg->getType();
|
|
if (!Ty.getStructOrBoundGenericStruct() && !Ty.is<TupleType>())
|
|
return false;
|
|
|
|
// Get the first level projection for the struct or tuple type.
|
|
Projection::getFirstLevelProjections(Arg->getType(), Mod,
|
|
TypeExpansionContext(*F), Projections);
|
|
|
|
// We do not want to split arguments with less than 2 projections.
|
|
if (Projections.size() < 2)
|
|
return false;
|
|
|
|
// We do not want to split arguments that have less than 2 non-trivial
|
|
// projections.
|
|
if (count_if(Projections, [&](const Projection &P) {
|
|
return !P.getType(Ty, Mod, TypeExpansionContext(*F)).isTrivial(*F);
|
|
}) < 2)
|
|
return false;
|
|
|
|
// We subtract one since this will be the number of the first new argument
|
|
// *AFTER* we remove the old argument.
|
|
FirstNewArgIndex = ParentBB->getNumArguments() - 1;
|
|
|
|
// For now for simplicity, we put all new arguments on the end and delete the
|
|
// old one.
|
|
llvm::SmallVector<SILValue, 4> NewArgumentValues;
|
|
for (auto &P : Projections) {
|
|
auto *NewArg = ParentBB->createPhiArgument(
|
|
P.getType(Ty, Mod, TypeExpansionContext(*F)), OwnershipKind::Owned);
|
|
// This is unfortunate, but it feels wrong to put in an API into SILBuilder
|
|
// that only takes in arguments.
|
|
//
|
|
// TODO: We really need some sort of entry point that is more flexible in
|
|
// these apis than a ArrayRef<SILValue>.
|
|
NewArgumentValues.push_back(NewArg);
|
|
}
|
|
|
|
SingleValueInstruction *Agg;
|
|
|
|
{
|
|
SILBuilder B(ParentBB->begin());
|
|
B.setCurrentDebugScope(ParentBB->getParent()->getDebugScope());
|
|
|
|
// Reform the original structure
|
|
//
|
|
// TODO: What is the right location to use here.
|
|
auto Loc = RegularLocation::getAutoGeneratedLocation();
|
|
Agg = Projection::createAggFromFirstLevelProjections(
|
|
B, Loc, Arg->getType(), NewArgumentValues).get();
|
|
}
|
|
|
|
Arg->replaceAllUsesWith(Agg);
|
|
|
|
// Replace any references to Arg in IncomingValues with Agg. These
|
|
// references are used in generating new instructions that extract
|
|
// from the aggregate.
|
|
for (auto &P : IncomingValues)
|
|
if (P.second == Arg)
|
|
P.second = Agg;
|
|
|
|
// Look at all users of agg and see if we can simplify any of them. This will
|
|
// eliminate struct_extracts/tuple_extracts from the newly created aggregate
|
|
// and have them point directly at the argument.
|
|
simplifyUsers(Agg);
|
|
|
|
// If we only had such users of Agg and Agg is dead now (ignoring debug
|
|
// instructions), remove it.
|
|
if (onlyHaveDebugUses(Agg))
|
|
eraseFromParentWithDebugInsts(Agg);
|
|
|
|
return true;
|
|
}
|
|
|
|
static llvm::cl::opt<bool>
|
|
RemoveDeadArgsWhenSplitting("sroa-args-remove-dead-args-after",
|
|
llvm::cl::init(true));
|
|
|
|
bool ArgumentSplitter::split() {
|
|
SILBasicBlock *ParentBB = Arg->getParent();
|
|
|
|
if (!createNewArguments())
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "split argument " << *Arg);
|
|
|
|
unsigned ArgIndex = Arg->getIndex();
|
|
llvm::SmallVector<SILValue, 4> NewIncomingValues;
|
|
// Then for each incoming value, fixup the branch, cond_branch instructions.
|
|
for (auto P : IncomingValues) {
|
|
SILBasicBlock *Pred = P.first;
|
|
SILValue Base = P.second;
|
|
auto *OldTerm = Pred->getTerminator();
|
|
SILBuilderWithScope B(OldTerm->getParent(), OldTerm);
|
|
|
|
auto Loc = RegularLocation::getAutoGeneratedLocation();
|
|
assert(NewIncomingValues.empty() && "NewIncomingValues was not cleared?");
|
|
for (auto &P : llvm::reverse(Projections)) {
|
|
auto *ProjInst = P.createProjection(B, Loc, Base).get();
|
|
NewIncomingValues.push_back(ProjInst);
|
|
}
|
|
|
|
if (auto *Br = dyn_cast<BranchInst>(OldTerm)) {
|
|
replaceIncomingArgs(B, Br, NewIncomingValues);
|
|
} else {
|
|
auto *CondBr = cast<CondBranchInst>(OldTerm);
|
|
replaceIncomingArgs(B, CondBr, NewIncomingValues);
|
|
}
|
|
|
|
OldTerm->eraseFromParent();
|
|
NewIncomingValues.clear();
|
|
}
|
|
|
|
// Delete the old argument. We need to do this before trying to remove any
|
|
// dead arguments that we added since otherwise the number of incoming values
|
|
// to the phi nodes will differ from the number of values coming
|
|
ParentBB->eraseArgument(ArgIndex);
|
|
++NumSROAArguments;
|
|
|
|
// This is here for testing purposes via sil-opt
|
|
if (!RemoveDeadArgsWhenSplitting)
|
|
return true;
|
|
|
|
// Perform some cleanups such as:
|
|
//
|
|
// 1. Removing any newly inserted arguments that are actually dead.
|
|
// 2. As a result of removing these arguments, remove any newly dead object
|
|
// projections.
|
|
|
|
// Do a quick pass over the new arguments to see if any of them are dead. We
|
|
// can do this unconditionally in a safe way since we are only dealing with
|
|
// cond_br, br.
|
|
for (int i = ParentBB->getNumArguments() - 1, e = *FirstNewArgIndex; i >= e;
|
|
--i) {
|
|
SILArgument *A = ParentBB->getArgument(i);
|
|
if (!A->use_empty()) {
|
|
// We know that the argument is not dead, so add it to the worklist for
|
|
// recursive processing.
|
|
Worklist.push_back(A);
|
|
continue;
|
|
}
|
|
erasePhiArgument(ParentBB, i);
|
|
++NumDeadArguments;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// This currently invalidates the CFG since parts of PHI nodes are stored in
|
|
/// branch instructions and we replace the branch instructions as part of this
|
|
/// operation. If/when PHI nodes can be updated without invalidating the CFG,
|
|
/// this should be moved to the SROA pass.
|
|
static bool splitBBArguments(SILFunction &Fn) {
|
|
bool Changed = false;
|
|
std::vector<SILArgument *> Worklist;
|
|
|
|
// We know that we have at least one BB, so this is safe since in such a case
|
|
// std::next(Fn->begin()) == Fn->end(), the exit case of iteration on a range.
|
|
for (auto &BB : make_range(std::next(Fn.begin()), Fn.end())) {
|
|
for (auto *Arg : BB.getArguments()) {
|
|
SILType ArgTy = Arg->getType();
|
|
|
|
if (!ArgTy.isObject() ||
|
|
(!ArgTy.is<TupleType>() && !ArgTy.getStructOrBoundGenericStruct())) {
|
|
continue;
|
|
}
|
|
|
|
// Make sure that all predecessors of our BB have either a br or cond_br
|
|
// terminator. We only handle those cases.
|
|
if (std::any_of(BB.pred_begin(), BB.pred_end(),
|
|
[](SILBasicBlock *Pred) -> bool {
|
|
auto *TI = Pred->getTerminator();
|
|
return !isa<BranchInst>(TI) && !isa<CondBranchInst>(TI);
|
|
})) {
|
|
continue;
|
|
}
|
|
|
|
Worklist.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
SILArgument *Arg = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
Changed |= ArgumentSplitter(Arg, Worklist).split();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::run() {
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "### Run SimplifyCFG on " << Fn.getName() << '\n');
|
|
|
|
// Disable some expensive optimizations if the function is huge.
|
|
isVeryLargeFunction = (Fn.size() > 10000);
|
|
|
|
// First remove any block not reachable from the entry.
|
|
bool Changed = removeUnreachableBlocks(Fn);
|
|
|
|
// Find the set of loop headers. We don't want to jump-thread through headers.
|
|
findLoopHeaders();
|
|
|
|
DT = nullptr;
|
|
|
|
// Perform SROA on BB arguments.
|
|
Changed |= splitBBArguments(Fn);
|
|
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
removeUnreachableBlocks(Fn);
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
// Do simplifications that require the dominator tree to be accurate.
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
|
|
if (Changed) {
|
|
// Force dominator recomputation since we modified the cfg.
|
|
DA->invalidate(&Fn, SILAnalysis::InvalidationKind::Everything);
|
|
}
|
|
|
|
Changed |= dominatorBasedSimplify(DA);
|
|
|
|
DT = nullptr;
|
|
// Now attempt to simplify the remaining blocks.
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
removeUnreachableBlocks(Fn);
|
|
Changed = true;
|
|
}
|
|
|
|
if (tailDuplicateObjCMethodCallSuccessorBlocks()) {
|
|
Changed = true;
|
|
if (simplifyBlocks())
|
|
removeUnreachableBlocks(Fn);
|
|
}
|
|
Fn.verifyCriticalEdges();
|
|
|
|
// Canonicalize switch_enum instructions.
|
|
Changed |= canonicalizeSwitchEnums();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Is an argument from this terminator considered mandatory?
|
|
static bool hasMandatoryArgument(TermInst *term) {
|
|
// It's more maintainable to just explicitly list the instructions that
|
|
// *do* have mandatory arguments.
|
|
return (!isa<BranchInst>(term) && !isa<CondBranchInst>(term));
|
|
}
|
|
|
|
|
|
// Get the element of Aggregate corresponding to the one extracted by
|
|
// Extract.
|
|
static SILValue getInsertedValue(SILInstruction *Aggregate,
|
|
SILInstruction *Extract) {
|
|
if (auto *Struct = dyn_cast<StructInst>(Aggregate)) {
|
|
auto *SEI = cast<StructExtractInst>(Extract);
|
|
return Struct->getFieldValue(SEI->getField());
|
|
}
|
|
if (auto *Enum = dyn_cast<EnumInst>(Aggregate)) {
|
|
assert(Enum->getElement() ==
|
|
cast<UncheckedEnumDataInst>(Extract)->getElement());
|
|
return Enum->getOperand();
|
|
}
|
|
auto *Tuple = cast<TupleInst>(Aggregate);
|
|
auto *TEI = cast<TupleExtractInst>(Extract);
|
|
return Tuple->getElement(TEI->getFieldIndex());
|
|
}
|
|
|
|
/// Find a parent SwitchEnumInst of the block \p BB. The block \p BB is a
|
|
/// predecessor of the merge-block \p PostBB which should post-dominate the
|
|
/// switch_enum. Any successors of the switch_enum which reach \p BB (and are
|
|
/// post-dominated by \p BB) are added to \p Blocks.
|
|
static SwitchEnumInst *
|
|
getSwitchEnumPred(SILBasicBlock *BB, SILBasicBlock *PostBB,
|
|
SmallVectorImpl<SILBasicBlock *> &Blocks) {
|
|
|
|
if (BB->pred_empty())
|
|
return nullptr;
|
|
|
|
// Check that this block only produces the value, but does not
|
|
// have any side effects.
|
|
auto First = BB->begin();
|
|
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
assert(BI->getDestBB() == PostBB && "BB not a predecessor of PostBB");
|
|
|
|
if (BI != &*First) {
|
|
// There may be only one instruction before the branch.
|
|
if (BI != &*std::next(First))
|
|
return nullptr;
|
|
|
|
// There are some instructions besides the branch.
|
|
// It should be only an integer literal instruction.
|
|
// Handle only integer values for now.
|
|
auto *ILI = dyn_cast<IntegerLiteralInst>(First);
|
|
if (!ILI)
|
|
return nullptr;
|
|
|
|
// Check that this literal is only used by the terminator.
|
|
for (auto U : ILI->getUses())
|
|
if (U->getUser() != BI)
|
|
return nullptr;
|
|
}
|
|
|
|
// Check if BB is reachable from a single enum case, which means that the
|
|
// immediate predecessor of BB is the switch_enum itself.
|
|
if (SILBasicBlock *PredBB = BB->getSinglePredecessorBlock()) {
|
|
// Check if a predecessor BB terminates with a switch_enum instruction
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(PredBB->getTerminator())) {
|
|
Blocks.push_back(BB);
|
|
return SEI;
|
|
}
|
|
}
|
|
|
|
// Check if BB is reachable from multiple enum cases. This means that there is
|
|
// a single-branch block for each enum case which branch to BB.
|
|
// Usually in this case BB has no arguments. If there are any arguments, bail,
|
|
// because the argument may be used by other instructions.
|
|
if (BB->getNumArguments() != 0)
|
|
return nullptr;
|
|
|
|
SILBasicBlock *CommonPredPredBB = nullptr;
|
|
for (auto PredBB : BB->getPredecessorBlocks()) {
|
|
TermInst *PredTerm = PredBB->getTerminator();
|
|
if (!isa<BranchInst>(PredTerm) || PredTerm != &*PredBB->begin())
|
|
return nullptr;
|
|
|
|
auto *PredPredBB = PredBB->getSinglePredecessorBlock();
|
|
if (!PredPredBB)
|
|
return nullptr;
|
|
|
|
// Check if all predecessors of BB have a single common predecessor (which
|
|
// should be the block with the switch_enum).
|
|
if (CommonPredPredBB && PredPredBB != CommonPredPredBB)
|
|
return nullptr;
|
|
|
|
CommonPredPredBB = PredPredBB;
|
|
Blocks.push_back(PredBB);
|
|
}
|
|
// Check if the common predecessor block has a switch_enum.
|
|
return dyn_cast<SwitchEnumInst>(CommonPredPredBB->getTerminator());
|
|
}
|
|
|
|
/// Helper function to produce a SILValue from a result value
|
|
/// produced by a basic block responsible for handling a
|
|
/// specific enum tag.
|
|
static SILValue
|
|
getSILValueFromCaseResult(SILBuilder &B, SILLocation Loc,
|
|
SILType Type, IntegerLiteralInst *ValInst) {
|
|
auto Value = ValInst->getValue();
|
|
if (Value.getBitWidth() != 1)
|
|
return B.createIntegerLiteral(Loc, Type, Value);
|
|
else
|
|
// This is a boolean value
|
|
return B.createIntegerLiteral(Loc, Type, Value.getBoolValue());
|
|
}
|
|
|
|
/// Given an integer argument, see if it is ultimately matching whether
|
|
/// a given enum is of a given tag. If so, create a new select_enum instruction
|
|
/// This is used to simplify arbitrary simple switch_enum diamonds into
|
|
/// select_enums.
|
|
static bool simplifySwitchEnumToSelectEnum(SILBasicBlock *BB, unsigned ArgNum,
|
|
SILArgument *IntArg) {
|
|
|
|
// Don't know which values should be passed if there is more
|
|
// than one basic block argument.
|
|
if (BB->args_size() > 1)
|
|
return false;
|
|
|
|
// Mapping from case values to the results corresponding to this case value.
|
|
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseToValue;
|
|
|
|
// Mapping from BB responsible for a specific case value to the result it
|
|
// produces.
|
|
llvm::DenseMap<SILBasicBlock *, IntegerLiteralInst *> BBToValue;
|
|
|
|
// switch_enum instruction to be replaced.
|
|
SwitchEnumInst *SEI = nullptr;
|
|
|
|
// Iterate over all immediate predecessors of the target basic block.
|
|
// - Check that each one stems directly or indirectly from the same
|
|
// switch_enum instruction.
|
|
// - Remember for each case tag of the switch_enum instruction which
|
|
// integer value it produces.
|
|
// - Check that each block handling a given case tag of a switch_enum
|
|
// only produces an integer value and does not have any side-effects.
|
|
// Predecessors which do not satisfy these conditions are not included in the
|
|
// BBToValue map (but we don't bail in this case).
|
|
for (auto P : BB->getPredecessorBlocks()) {
|
|
// Only handle branch instructions.
|
|
auto *TI = P->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return false;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
// Only handle integer values
|
|
auto *IntLit = dyn_cast<IntegerLiteralInst>(Arg);
|
|
if (!IntLit)
|
|
continue;
|
|
|
|
// Set of blocks that branch to/reach this basic block P and are immediate
|
|
// successors of a switch_enum instruction.
|
|
SmallVector<SILBasicBlock *, 8> Blocks;
|
|
|
|
// Try to find a parent SwitchEnumInst for the current predecessor of BB.
|
|
auto *PredSEI = getSwitchEnumPred(P, BB, Blocks);
|
|
|
|
// Check if the predecessor is not produced by a switch_enum instruction.
|
|
if (!PredSEI)
|
|
continue;
|
|
|
|
// Check if all predecessors stem from the same switch_enum instruction.
|
|
if (SEI && SEI != PredSEI)
|
|
continue;
|
|
SEI = PredSEI;
|
|
|
|
// Remember the result value used to branch to this instruction.
|
|
for (auto B : Blocks)
|
|
BBToValue[B] = IntLit;
|
|
}
|
|
|
|
if (!SEI)
|
|
return false;
|
|
|
|
// Check if all enum cases and the default case go to one of our collected
|
|
// blocks. This check ensures that the target block BB post-dominates the
|
|
// switch_enum block.
|
|
for (SILBasicBlock *Succ : SEI->getSuccessors()) {
|
|
if (!BBToValue.count(Succ))
|
|
return false;
|
|
}
|
|
|
|
// Insert the new enum_select instruction right after enum_switch
|
|
SILBuilder B(SEI);
|
|
|
|
// Form a set of case_tag:result pairs for select_enum
|
|
for (unsigned i = 0, e = SEI->getNumCases(); i != e; ++i) {
|
|
std::pair<EnumElementDecl *, SILBasicBlock *> Pair = SEI->getCase(i);
|
|
auto CaseValue = BBToValue[Pair.second];
|
|
auto CaseSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
CaseValue);
|
|
CaseToValue.push_back(std::make_pair(Pair.first, CaseSILValue));
|
|
}
|
|
|
|
// Default value for select_enum.
|
|
SILValue DefaultSILValue = SILValue();
|
|
|
|
if (SEI->hasDefault()) {
|
|
// Try to define a default case for enum_select based
|
|
// on the default case of enum_switch.
|
|
auto DefaultValue = BBToValue[SEI->getDefaultBB()];
|
|
DefaultSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
DefaultValue);
|
|
} else {
|
|
// Try to see if enum_switch covers all possible cases.
|
|
// If it does, then pick one of those cases as a default.
|
|
|
|
// Count the number of possible case tags for a given enum type
|
|
auto *Enum = SEI->getOperand()->getType().getEnumOrBoundGenericEnum();
|
|
unsigned ElemCount = 0;
|
|
for (auto E : Enum->getAllElements()) {
|
|
if (E)
|
|
++ElemCount;
|
|
}
|
|
|
|
// Check if all possible cases are covered.
|
|
if (ElemCount == SEI->getNumCases()) {
|
|
// This enum_switch instruction is exhaustive.
|
|
// Make the last case a default.
|
|
auto Pair = CaseToValue.pop_back_val();
|
|
DefaultSILValue = Pair.second;
|
|
}
|
|
}
|
|
|
|
// We don't need to have explicit cases for any case tags which produce the
|
|
// same result as the default branch.
|
|
if (DefaultSILValue != SILValue()) {
|
|
auto DefaultValue = DefaultSILValue;
|
|
auto *DefaultSI = dyn_cast<IntegerLiteralInst>(DefaultValue);
|
|
for (auto I = CaseToValue.begin(); I != CaseToValue.end();) {
|
|
auto CaseValue = I->second;
|
|
if (CaseValue == DefaultValue) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
|
|
if (DefaultSI) {
|
|
if (auto CaseSI = dyn_cast<IntegerLiteralInst>(CaseValue)) {
|
|
if (DefaultSI->getValue() == CaseSI->getValue()) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "convert to select_enum: " << *SEI);
|
|
|
|
// Create a new select_enum instruction
|
|
auto SelectInst = B.createSelectEnum(SEI->getLoc(), SEI->getOperand(),
|
|
IntArg->getType(),
|
|
DefaultSILValue, CaseToValue);
|
|
// Do not replace the bbarg
|
|
SmallVector<SILValue, 4> Args;
|
|
Args.push_back(SelectInst);
|
|
B.setInsertionPoint(&*std::next(SelectInst->getIterator()));
|
|
B.createBranch(SEI->getLoc(), BB, Args);
|
|
// Remove switch_enum instruction
|
|
SEI->getParent()->getTerminator()->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Collected information for a select_value case or default case.
|
|
struct CaseInfo {
|
|
/// The input value or null if it is the default case.
|
|
IntegerLiteralInst *Literal = nullptr;
|
|
|
|
/// The result value.
|
|
SingleValueInstruction *Result = nullptr;
|
|
|
|
/// The block which contains the cond_br of the input value comparison
|
|
/// or the block which assigns the default value.
|
|
SILBasicBlock *CmpOrDefault = nullptr;
|
|
};
|
|
|
|
/// Get information about a potential select_value case (or default).
|
|
/// \p Input is set to the common input value.
|
|
/// \p Pred is the predecessor block of the last merge block of the CFG pattern.
|
|
/// \p ArgNum is the index of the argument passed to the merge block.
|
|
CaseInfo getCaseInfo(SILValue &Input, SILBasicBlock *Pred, unsigned ArgNum) {
|
|
|
|
CaseInfo CaseInfo;
|
|
|
|
auto *TI = Pred->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return CaseInfo;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
|
|
// Currently we only accept enums as result values.
|
|
auto *EI2 = dyn_cast<EnumInst>(Arg);
|
|
if (!EI2)
|
|
return CaseInfo;
|
|
|
|
if (EI2->hasOperand()) {
|
|
// ... or enums with enum data. This is exactly the pattern for an enum
|
|
// with integer raw value initialization.
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
if (!EI1)
|
|
return CaseInfo;
|
|
|
|
// But not enums with enums with data.
|
|
if (EI1->hasOperand())
|
|
return CaseInfo;
|
|
}
|
|
|
|
// Check if we come to the Pred block by comparing the input value to a
|
|
// constant.
|
|
SILBasicBlock *CmpBlock = Pred->getSinglePredecessorBlock();
|
|
if (!CmpBlock)
|
|
return CaseInfo;
|
|
|
|
auto *CmpInst = dyn_cast<CondBranchInst>(CmpBlock->getTerminator());
|
|
if (!CmpInst)
|
|
return CaseInfo;
|
|
|
|
auto *CondInst = dyn_cast<BuiltinInst>(CmpInst->getCondition());
|
|
if (!CondInst)
|
|
return CaseInfo;
|
|
|
|
if (!CondInst->getName().str().startswith("cmp_eq"))
|
|
return CaseInfo;
|
|
|
|
auto CondArgs = CondInst->getArguments();
|
|
assert(CondArgs.size() == 2);
|
|
|
|
SILValue Arg1 = CondArgs[0];
|
|
SILValue Arg2 = CondArgs[1];
|
|
|
|
if (isa<IntegerLiteralInst>(Arg1))
|
|
std::swap(Arg1, Arg2);
|
|
|
|
auto *CmpVal = dyn_cast<IntegerLiteralInst>(Arg2);
|
|
if (!CmpVal)
|
|
return CaseInfo;
|
|
|
|
SILBasicBlock *FalseBB = CmpInst->getFalseBB();
|
|
if (!FalseBB)
|
|
return CaseInfo;
|
|
|
|
// Check for a common input value.
|
|
if (Input && Input != Arg1)
|
|
return CaseInfo;
|
|
|
|
Input = Arg1;
|
|
CaseInfo.Result = EI2;
|
|
if (CmpInst->getTrueBB() == Pred) {
|
|
// This is a case for the select_value.
|
|
CaseInfo.Literal = CmpVal;
|
|
CaseInfo.CmpOrDefault = CmpBlock;
|
|
} else {
|
|
// This is the default for the select_value.
|
|
CaseInfo.CmpOrDefault = Pred;
|
|
}
|
|
|
|
return CaseInfo;
|
|
}
|
|
|
|
/// Move an instruction which is an operand to the new SelectValueInst to its
|
|
/// correct place.
|
|
/// Either the instruction is somewhere inside the CFG pattern, then we move it
|
|
/// up, immediately before the SelectValueInst in the pattern's dominating
|
|
/// entry block. Or it is somewhere above the entry block, then we can leave the
|
|
/// instruction there.
|
|
void moveIfNotDominating(SILInstruction *I, SILInstruction *InsertPos,
|
|
DominanceInfo *DT) {
|
|
SILBasicBlock *InstBlock = I->getParent();
|
|
SILBasicBlock *InsertBlock = InsertPos->getParent();
|
|
if (!DT->dominates(InstBlock, InsertBlock)) {
|
|
assert(DT->dominates(InsertBlock, InstBlock));
|
|
LLVM_DEBUG(llvm::dbgs() << " move " << *I);
|
|
I->moveBefore(InsertPos);
|
|
}
|
|
}
|
|
|
|
/// Simplify a pattern of integer compares to a select_value.
|
|
/// \code
|
|
/// if input == 1 {
|
|
/// result = Enum.A
|
|
/// } else if input == 2 {
|
|
/// result = Enum.B
|
|
/// ...
|
|
/// } else {
|
|
/// result = Enum.X
|
|
/// }
|
|
/// \endcode
|
|
/// Currently this only works if the input value is an integer and the result
|
|
/// value is an enum.
|
|
/// \p MergeBlock The "last" block which contains an argument in which all
|
|
/// result values are merged.
|
|
/// \p ArgNum The index of the block argument which is the result value.
|
|
/// \p DT The dominance info.
|
|
/// \return Returns true if a select_value is generated.
|
|
bool simplifyToSelectValue(SILBasicBlock *MergeBlock, unsigned ArgNum,
|
|
DominanceInfo *DT) {
|
|
if (!DT)
|
|
return false;
|
|
|
|
// Collect all case infos from the merge block's predecessors.
|
|
SmallPtrSet<SILBasicBlock *, 8> FoundCmpBlocks;
|
|
SmallVector<CaseInfo, 8> CaseInfos;
|
|
SILValue Input;
|
|
for (auto *Pred : MergeBlock->getPredecessorBlocks()) {
|
|
CaseInfo CaseInfo = getCaseInfo(Input, Pred, ArgNum);
|
|
if (!CaseInfo.Result)
|
|
return false;
|
|
|
|
FoundCmpBlocks.insert(CaseInfo.CmpOrDefault);
|
|
CaseInfos.push_back(CaseInfo);
|
|
}
|
|
|
|
SmallVector<std::pair<SILValue, SILValue>, 8> Cases;
|
|
llvm::SmallDenseMap<SILValue, SILValue> CaseLiteralsToResultMap;
|
|
SILValue defaultResult;
|
|
|
|
// The block of the first input value compare. It dominates all other blocks
|
|
// in this CFG pattern.
|
|
SILBasicBlock *dominatingBlock = nullptr;
|
|
|
|
// Build the cases for the SelectValueInst and find the first dominatingBlock.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal) {
|
|
auto *BrInst = cast<CondBranchInst>(CaseInfo.CmpOrDefault->getTerminator());
|
|
if (FoundCmpBlocks.count(BrInst->getFalseBB()) != 1)
|
|
return false;
|
|
// Ignore duplicate cases
|
|
if (CaseLiteralsToResultMap.find(CaseInfo.Literal) ==
|
|
CaseLiteralsToResultMap.end()) {
|
|
CaseLiteralsToResultMap.insert({CaseInfo.Literal, CaseInfo.Result});
|
|
Cases.push_back({CaseInfo.Literal, CaseInfo.Result});
|
|
} else {
|
|
// Check if the result value matches
|
|
EnumInst *PrevResult =
|
|
dyn_cast<EnumInst>(CaseLiteralsToResultMap[CaseInfo.Literal]);
|
|
assert(PrevResult && "Prev. case result is not an EnumInst");
|
|
auto *CurrResult = dyn_cast<EnumInst>(CaseInfo.Result);
|
|
assert(CurrResult && "Curr. case result is not an EnumInst");
|
|
if (PrevResult->getElement() != CurrResult->getElement()) {
|
|
// result value does not match - bail
|
|
return false;
|
|
}
|
|
}
|
|
SILBasicBlock *Pred = CaseInfo.CmpOrDefault->getSinglePredecessorBlock();
|
|
if (!Pred || FoundCmpBlocks.count(Pred) == 0) {
|
|
// There may be only a single block whose predecessor we didn't see. And
|
|
// this is the entry block to the CFG pattern.
|
|
if (dominatingBlock)
|
|
return false;
|
|
dominatingBlock = CaseInfo.CmpOrDefault;
|
|
}
|
|
} else {
|
|
if (defaultResult)
|
|
return false;
|
|
defaultResult = CaseInfo.Result;
|
|
}
|
|
}
|
|
if (!defaultResult)
|
|
return false;
|
|
|
|
if (!dominatingBlock)
|
|
return false;
|
|
|
|
// Generate the select_value right before the first cond_br of the pattern.
|
|
SILInstruction *insertPos = dominatingBlock->getTerminator();
|
|
SILBuilder B(insertPos);
|
|
|
|
// Move all needed operands to a place where they dominate the select_value.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal)
|
|
moveIfNotDominating(CaseInfo.Literal, insertPos, DT);
|
|
auto *EI2 = dyn_cast<EnumInst>(CaseInfo.Result);
|
|
assert(EI2);
|
|
|
|
if (EI2->hasOperand()) {
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
assert(EI1);
|
|
assert(!EI1->hasOperand());
|
|
|
|
moveIfNotDominating(EI1, insertPos, DT);
|
|
}
|
|
moveIfNotDominating(EI2, insertPos, DT);
|
|
}
|
|
|
|
SILArgument *bbArg = MergeBlock->getArgument(ArgNum);
|
|
auto SelectInst = B.createSelectValue(dominatingBlock->getTerminator()->getLoc(),
|
|
Input, bbArg->getType(),
|
|
defaultResult, Cases);
|
|
|
|
bbArg->replaceAllUsesWith(SelectInst);
|
|
LLVM_DEBUG(llvm::dbgs() << "convert if-structure to " << *SelectInst);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to simplify the ith argument of BB. We simplify cases
|
|
// where there is a single use of the argument that is an extract from
|
|
// a struct, tuple or enum and where the predecessors all build the struct,
|
|
// tuple or enum and pass it directly.
|
|
bool SimplifyCFG::simplifyArgument(SILBasicBlock *BB, unsigned i) {
|
|
auto *A = BB->getArgument(i);
|
|
|
|
// Try to create a select_value.
|
|
if (simplifyToSelectValue(BB, i, DT))
|
|
return true;
|
|
|
|
// If we are reading an i1, then check to see if it comes from
|
|
// a switch_enum. If so, we may be able to lower this sequence to
|
|
// a select_enum.
|
|
if (!DT && A->getType().is<BuiltinIntegerType>())
|
|
return simplifySwitchEnumToSelectEnum(BB, i, A);
|
|
|
|
// For now, just focus on cases where there is a single use.
|
|
if (!A->hasOneUse())
|
|
return false;
|
|
|
|
auto *Use = *A->use_begin();
|
|
auto *User = Use->getUser();
|
|
|
|
// Handle projections.
|
|
if (!isa<StructExtractInst>(User) &&
|
|
!isa<TupleExtractInst>(User) &&
|
|
!isa<UncheckedEnumDataInst>(User))
|
|
return false;
|
|
auto proj = cast<SingleValueInstruction>(User);
|
|
|
|
// For now, just handle the case where all predecessors are
|
|
// unconditional branches.
|
|
for (auto *Pred : BB->getPredecessorBlocks()) {
|
|
if (!isa<BranchInst>(Pred->getTerminator()))
|
|
return false;
|
|
auto *Branch = cast<BranchInst>(Pred->getTerminator());
|
|
SILValue BranchArg = Branch->getArg(i);
|
|
if (isa<StructInst>(BranchArg))
|
|
continue;
|
|
if (isa<TupleInst>(BranchArg))
|
|
continue;
|
|
if (auto *EI = dyn_cast<EnumInst>(BranchArg)) {
|
|
if (EI->getElement() == cast<UncheckedEnumDataInst>(proj)->getElement())
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Okay, we'll replace the BB arg with one with the right type, replace
|
|
// the uses in this block, and then rewrite the branch operands.
|
|
LLVM_DEBUG(llvm::dbgs() << "unwrap argument:" << *A);
|
|
A->replaceAllUsesWith(SILUndef::get(A->getType(), *BB->getParent()));
|
|
auto *NewArg =
|
|
BB->replacePhiArgument(i, proj->getType(), OwnershipKind::Owned);
|
|
proj->replaceAllUsesWith(NewArg);
|
|
|
|
// Rewrite the branch operand for each incoming branch.
|
|
for (auto *Pred : BB->getPredecessorBlocks()) {
|
|
if (auto *Branch = cast<BranchInst>(Pred->getTerminator())) {
|
|
auto V = getInsertedValue(cast<SingleValueInstruction>(Branch->getArg(i)),
|
|
proj);
|
|
Branch->setOperand(i, V);
|
|
addToWorklist(Pred);
|
|
}
|
|
}
|
|
|
|
proj->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void tryToReplaceArgWithIncomingValue(SILBasicBlock *BB, unsigned i,
|
|
DominanceInfo *DT) {
|
|
auto *A = BB->getArgument(i);
|
|
SmallVector<SILValue, 4> Incoming;
|
|
if (!A->getIncomingPhiValues(Incoming) || Incoming.empty())
|
|
return;
|
|
|
|
SILValue V = Incoming[0];
|
|
for (size_t Idx = 1, Size = Incoming.size(); Idx < Size; ++Idx) {
|
|
if (Incoming[Idx] != V)
|
|
return;
|
|
}
|
|
|
|
// If the incoming values of all predecessors are equal usually this means
|
|
// that the common incoming value dominates the BB. But: this might be not
|
|
// the case if BB is unreachable. Therefore we still have to check it.
|
|
if (!DT->dominates(V->getParentBlock(), BB))
|
|
return;
|
|
|
|
// An argument has one result value. We need to replace this with the *value*
|
|
// of the incoming block(s).
|
|
LLVM_DEBUG(llvm::dbgs() << "replace arg with incoming value:" << *A);
|
|
A->replaceAllUsesWith(V);
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyArgs(SILBasicBlock *BB) {
|
|
// Ignore blocks with no arguments.
|
|
if (BB->args_empty())
|
|
return false;
|
|
|
|
// Ignore the entry block.
|
|
if (BB->pred_empty())
|
|
return false;
|
|
|
|
// Ignore blocks that are successors of terminators with mandatory args.
|
|
for (SILBasicBlock *pred : BB->getPredecessorBlocks()) {
|
|
if (hasMandatoryArgument(pred->getTerminator()))
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (int i = BB->getNumArguments() - 1; i >= 0; --i) {
|
|
SILArgument *A = BB->getArgument(i);
|
|
|
|
// Replace a block argument if all incoming values are equal. If this
|
|
// succeeds, argument A will have no uses afterwards.
|
|
if (DT)
|
|
tryToReplaceArgWithIncomingValue(BB, i, DT);
|
|
|
|
// Try to simplify the argument
|
|
if (!A->use_empty()) {
|
|
if (simplifyArgument(BB, i))
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
erasePhiArgument(BB, i);
|
|
++NumDeadArguments;
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyProgramTerminationBlock(SILBasicBlock *BB) {
|
|
// If this is not ARC-inert, do not do anything to it.
|
|
//
|
|
// TODO: should we use ProgramTerminationAnalysis ?. The reason we do not
|
|
// use the analysis is because the CFG is likely to be invalidated right
|
|
// after this pass, o we do not really get the benefit of reusing the
|
|
// computation for the next iteration of the pass.
|
|
if (!isARCInertTrapBB(BB))
|
|
return false;
|
|
|
|
// This is going to be the last basic block this program is going to execute
|
|
// and this block is inert from the ARC's prospective, no point to do any
|
|
// releases at this point.
|
|
bool Changed = false;
|
|
llvm::SmallPtrSet<SILInstruction *, 4> InstsToRemove;
|
|
for (auto &I : *BB) {
|
|
// We can only remove the instructions below from the ARC-inert BB
|
|
// We *can't* replace copy_addr with move instructions:
|
|
// If the copy_addr was [take] [initialization]:
|
|
// * previous passes would have replaced it with moves
|
|
// If the copy_addr contains [initialization]:
|
|
// * nothing we can do - the target address is invalid
|
|
// Else, i.e. the copy_addr was [take] assignment, it is not always safe:
|
|
// The type being operated on might contain weak references,
|
|
// or other side references - We'll corrupt the weak reference table
|
|
// if we fail to release the old value.
|
|
switch (I.getKind()) {
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##ReleaseInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::ReleaseValueInst:
|
|
case SILInstructionKind::DestroyAddrInst:
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
InstsToRemove.insert(&I);
|
|
}
|
|
|
|
// Remove the instructions.
|
|
for (auto I : InstsToRemove) {
|
|
I->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
if (Changed)
|
|
++NumTermBlockSimplified;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
class SimplifyCFGPass : public SILFunctionTransform {
|
|
public:
|
|
void run() override {
|
|
// FIXME: We should be able to handle ownership.
|
|
if (getFunction()->hasOwnership())
|
|
return;
|
|
|
|
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll,
|
|
/*EnableJumpThread=*/false)
|
|
.run())
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
SILTransform *swift::createSimplifyCFG() {
|
|
return new SimplifyCFGPass();
|
|
}
|
|
|
|
namespace {
|
|
class JumpThreadSimplifyCFGPass : public SILFunctionTransform {
|
|
public:
|
|
void run() override {
|
|
// FIXME: Handle ownership.
|
|
if (getFunction()->hasOwnership())
|
|
return;
|
|
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll,
|
|
/*EnableJumpThread=*/true)
|
|
.run())
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createJumpThreadSimplifyCFG() {
|
|
return new JumpThreadSimplifyCFGPass();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes only for Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Used to test critical edge splitting with sil-opt.
|
|
class SplitCriticalEdges : public SILFunctionTransform {
|
|
bool OnlyNonCondBrEdges;
|
|
|
|
public:
|
|
SplitCriticalEdges(bool SplitOnlyNonCondBrEdges)
|
|
: OnlyNonCondBrEdges(SplitOnlyNonCondBrEdges) {}
|
|
|
|
void run() override {
|
|
auto &Fn = *getFunction();
|
|
|
|
if (OnlyNonCondBrEdges)
|
|
Fn.verifyCriticalEdges();
|
|
|
|
// Split all critical edges from all or non only cond_br terminators.
|
|
bool Changed = splitAllCriticalEdges(Fn, nullptr, nullptr);
|
|
|
|
if (Changed) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
// Used to test SimplifyCFG::simplifyArgs with sil-opt.
|
|
class SimplifyBBArgs : public SILFunctionTransform {
|
|
public:
|
|
SimplifyBBArgs() {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll, false)
|
|
.simplifyBlockArgs()) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
// Used to test splitBBArguments with sil-opt
|
|
class SROABBArgs : public SILFunctionTransform {
|
|
public:
|
|
SROABBArgs() {}
|
|
|
|
void run() override {
|
|
if (splitBBArguments(*getFunction())) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
// Used to test tryMoveCondFailToPreds with sil-opt
|
|
class MoveCondFailToPreds : public SILFunctionTransform {
|
|
public:
|
|
MoveCondFailToPreds() {}
|
|
void run() override {
|
|
for (auto &BB : *getFunction()) {
|
|
if (tryMoveCondFailToPreds(&BB)) {
|
|
invalidateAnalysis(
|
|
SILAnalysis::InvalidationKind::BranchesAndInstructions);
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Splits all critical edges in a function.
|
|
SILTransform *swift::createSplitAllCriticalEdges() {
|
|
return new SplitCriticalEdges(false);
|
|
}
|
|
|
|
/// Splits all critical edges from non cond_br terminators in a function.
|
|
SILTransform *swift::createSplitNonCondBrCriticalEdges() {
|
|
return new SplitCriticalEdges(true);
|
|
}
|
|
|
|
// Simplifies basic block arguments.
|
|
SILTransform *swift::createSROABBArgs() { return new SROABBArgs(); }
|
|
|
|
// Simplifies basic block arguments.
|
|
SILTransform *swift::createSimplifyBBArgs() {
|
|
return new SimplifyBBArgs();
|
|
}
|
|
|
|
// Moves cond_fail instructions to predecessors.
|
|
SILTransform *swift::createMoveCondFailToPreds() {
|
|
return new MoveCondFailToPreds();
|
|
}
|