Files
swift-mirror/lib/SILPasses/PerformanceInliner.cpp
Nadav Rotem 0e1f77dcbc Change the perf-inliner heuristics to a simple threshold check.
This does not change the performance of our tiny test suite, probably because
we run the optimizations multiple times.


Swift SVN r12659
2014-01-21 21:39:32 +00:00

234 lines
8.0 KiB
C++

//===- PerformanceInliner.cpp - Basic cost based inlining for performance -===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-inliner"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/CallGraph.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILPasses/Passes.h"
#include "swift/SILPasses/Utils/SILInliner.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
static llvm::cl::opt<unsigned>
InlineCostThreshold("sil-inline-threshold", llvm::cl::Hidden,
llvm::cl::init(50));
STATISTIC(NumFunctionsInlined, "Number of functions inlined");
//===----------------------------------------------------------------------===//
// Call Graph Creation
//===----------------------------------------------------------------------===//
/// \brief Returns a SILFunction if this ApplyInst calls a recognizable function
/// that is legal to inline.
static SILFunction *getInlinableFunction(ApplyInst *AI) {
// Avoid substituion lists, we don't support them.
if (AI->hasSubstitutions())
return nullptr;
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee().getDef());
if (!FRI)
return nullptr;
SILFunction *F = FRI->getReferencedFunction();
if (F->empty() || F->isExternalDeclaration()) {
DEBUG(llvm::dbgs() << " Can't inline " << F->getName() << ".\n");
return nullptr;
}
DEBUG(llvm::dbgs() << " Can inline " << F->getName() << ".\n");
return F;
}
/// Return the bottom up call-graph order for module M. Notice that we don't
/// include functions that don't participate in any call (caller or callee).
static void TopDownCallGraphOrder(SILModule *M,
std::vector<SILFunction *> &order) {
CallGraphSorter<SILFunction *> sorter;
// Construct the call graph, mapping callee to callers to that the resulting
// topological ordering has callees before callers.
//
// *NOTE* From the typical callgraph perspective, we are inserting edges in
// reverse.
for (auto &Caller : *M)
for (auto &BB : Caller)
for (auto &I : BB)
if (FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(&I)) {
SILFunction *Callee = FRI->getReferencedFunction();
sorter.addEdge(Callee, &Caller);
}
// Perform the topological sorting.
sorter.sort(order);
}
//===----------------------------------------------------------------------===//
// Cost Model
//===----------------------------------------------------------------------===//
/// For now just assume that every SIL instruction is one to one with an LLVM
/// instruction. This is of course very much so not true.
///
/// TODO: Fill this out.
static unsigned instructionInlineCost(SILInstruction &I) {
switch (I.getKind()) {
case ValueKind::FunctionRefInst:
case ValueKind::BuiltinFunctionRefInst:
case ValueKind::GlobalAddrInst:
case ValueKind::SILGlobalAddrInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst:
return 0;
case ValueKind::TupleElementAddrInst:
case ValueKind::StructElementAddrInst: {
// A gep whose operand is a gep with no other users will get folded by
// LLVM into one gep implying the second should be free.
SILValue Op = I.getOperand(0);
if ((Op->getKind() == ValueKind::TupleElementAddrInst ||
Op->getKind() == ValueKind::StructElementAddrInst) &&
Op->hasOneUse())
return 0;
}
default:
return 1;
}
}
/// \brief Returns the inlining cost of the function.
static unsigned getFunctionCost(SILFunction *F) {
DEBUG(llvm::dbgs() << " Calculating cost for " << F->getName() << ".\n");
if (F->isTransparent() == IsTransparent_t::IsTransparent)
return 0;
unsigned Cost = 0;
for (auto &BB : *F) {
for (auto &I : BB) {
Cost += instructionInlineCost(I);
// If i is greater than the InlineCostThreshold, we already know we are
// not going to inline this given function, so there is no point in
// continuing to visit instructions.
if (Cost > InlineCostThreshold) {
DEBUG(llvm::dbgs() << " Cost too high.\n");
return Cost;
}
}
}
DEBUG(llvm::dbgs() << " Found cost: " << Cost << "\n");
return Cost;
}
//===----------------------------------------------------------------------===//
// Inliner
//===----------------------------------------------------------------------===//
/// Attempt to inline all calls smaller than our threshold into F until.
static void inlineCallsIntoFunction(SILFunction *Caller) {
SILInliner Inliner(*Caller, SILInliner::InlineKind::PerformanceInline);
DEBUG(llvm::dbgs() << "Visiting Function: " << Caller->getName() << "\n");
llvm::SmallVector<ApplyInst*, 8> CallSites;
// Collect all of the ApplyInsts in this function. We will be changing the
// control flow and collecting the AIs simplifies the scan.
for (auto &BB : *Caller) {
auto I = BB.begin(), E = BB.end();
while (I != E) {
// Check if this is a call site.
ApplyInst *AI = dyn_cast<ApplyInst>(I++);
if (AI)
CallSites.push_back(AI);
}
}
for (auto AI : CallSites) {
DEBUG(llvm::dbgs() << " Found call site:" << *AI);
// Get the callee.
SILFunction *Callee = getInlinableFunction(AI);
if (!Callee)
continue;
DEBUG(llvm::dbgs() << " Found callee:" << Callee->getName() << ".\n");
// Prevent circular inlining.
if (Callee == Caller) {
DEBUG(llvm::dbgs() << " Skipping recursive calls.\n");
continue;
}
// Calculate the inlining cost of the callee.
unsigned CalleeCost = getFunctionCost(Callee);
if (CalleeCost > InlineCostThreshold) {
DEBUG(llvm::dbgs() << " Function too big to inline. Skipping.\n");
continue;
}
// Add the arguments from AI into a SILValue list.
SmallVector<SILValue, 8> Args;
for (const auto &Arg : AI->getArguments())
Args.push_back(Arg);
// Ok, we are within budget. Attempt to inline.
DEBUG(llvm::dbgs() << " Inlining " << Callee->getName() << " Into " <<
Caller->getName() << "\n");
// We already moved the iterator to the next instruction because the AI
// will be erased by the inliner. Notice that we will skip all of the
// newly inlined ApplyInsts. That's okay because we will visit them in
// our next invocation of the inliner.
Inliner.inlineFunction(AI, Callee, ArrayRef<Substitution>(), Args);
NumFunctionsInlined++;
}
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
void swift::performSILPerformanceInlining(SILModule *M) {
DEBUG(llvm::dbgs() << "*** SIL Performance Inlining ***\n\n");
if (InlineCostThreshold == 0) {
DEBUG(llvm::dbgs() << "*** The SIL performance Inliner is disabled ***\n");
return;
}
// Collect a call-graph bottom-up list of functions.
std::vector<SILFunction *> Worklist;
TopDownCallGraphOrder(M, Worklist);
// For each function in the worklist, attempt to inline its list of apply
// inst.
while (Worklist.size()) {
SILFunction *F = Worklist.back();
Worklist.pop_back();
// Do not inline into transparent functions. This is exposing a diagnostics
// bug. We will still inline after we perform mandatory inlining of the
// transparent function.
inlineCallsIntoFunction(F);
}
}