Files
swift-mirror/lib/IRGen/GenTuple.cpp
Joe Groff 0e6ec12b57 Revert "Use the first element of a struct as a source for"
This reverts commit r17243. We can't just forward the extra inhabitant payloads
from a field, because they will end up receiving metadata for the incorrect
type and crashing.

Swift SVN r17251
2014-05-02 16:22:41 +00:00

343 lines
14 KiB
C++

//===--- GenTuple.cpp - Swift IR Generation For Tuple Types ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for tuple types in Swift. This
// includes creating the IR type as well as emitting the primitive access
// operations.
//
// It is assumed in several places in IR-generation that the
// explosion schema of a tuple type is always equal to the appended
// explosion schemas of the component types.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Pattern.h"
#include "swift/SIL/SILType.h"
#include "swift/Basic/Optional.h"
#include "llvm/IR/DerivedTypes.h"
#include "GenHeap.h"
#include "GenSequential.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Explosion.h"
#include "IndirectTypeInfo.h"
#include "NonFixedTypeInfo.h"
#include "GenTuple.h"
using namespace swift;
using namespace irgen;
namespace {
class TupleFieldInfo : public SequentialField<TupleFieldInfo> {
public:
TupleFieldInfo(unsigned index, StringRef name, const TypeInfo &type)
: SequentialField(type), Index(index), Name(name)
{}
/// The field index.
const unsigned Index;
const StringRef Name;
StringRef getFieldName() const {
return Name;
}
const TupleTypeElt &getField(CanType t) const {
auto tup = cast<TupleType>(t);
return tup->getFields()[Index];
}
CanType getType(IRGenModule&, CanType t) const {
auto tup = cast<TupleType>(t);
return tup.getElementType(Index);
}
};
/// Adapter for tuple types.
template <class Impl, class Base>
class TupleTypeInfoBase
: public SequentialTypeInfo<Impl, Base, TupleFieldInfo> {
typedef SequentialTypeInfo<Impl, Base, TupleFieldInfo> super;
protected:
template <class... As>
TupleTypeInfoBase(As &&...args) : super(std::forward<As>(args)...) {}
using super::asImpl;
public:
/// Given a full tuple explosion, project out a single element.
void projectElementFromExplosion(IRGenFunction &IGF,
Explosion &tuple,
unsigned fieldNo,
Explosion &out) const {
assert(tuple.getKind() == out.getKind());
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
// If the field requires no storage, there's nothing to do.
if (field.isEmpty())
return IGF.emitFakeExplosion(field.getTypeInfo(), out);
// Otherwise, project from the base.
auto fieldRange = field.getProjectionRange(out.getKind());
ArrayRef<llvm::Value *> element = tuple.getRange(fieldRange.first,
fieldRange.second);
out.add(element);
}
/// Given the address of a tuple, project out the address of a
/// single element.
Address projectElementAddress(IRGenFunction &IGF,
Address tuple,
CanType T,
unsigned fieldNo) const {
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
if (field.isEmpty())
return field.getTypeInfo().getUndefAddress();
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
return field.projectAddress(IGF, tuple, offsets);
}
bool isIndirectArgument(ResilienceExpansion kind) const override {
llvm_unreachable("unexploded tuple as argument?");
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address src, CanType T) const override {
llvm_unreachable("unexploded tuple as argument?");
}
// For now, just use extra inhabitants from the first element.
// FIXME: generalize
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
if (asImpl().getFields().empty()) return false;
return asImpl().getFields()[0].getTypeInfo().mayHaveExtraInhabitants(IGM);
}
// This is dead code in NonFixedTupleTypeInfo.
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const {
if (asImpl().getFields().empty()) return 0;
auto &eltTI = cast<FixedTypeInfo>(asImpl().getFields()[0].getTypeInfo());
return eltTI.getFixedExtraInhabitantCount(IGM);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address tupleAddr,
CanType tupleType) const override {
Address eltAddr =
asImpl().projectElementAddress(IGF, tupleAddr, tupleType, 0);
auto &elt = asImpl().getFields()[0];
return elt.getTypeInfo().getExtraInhabitantIndex(IGF, eltAddr,
elt.getType(IGF.IGM, tupleType));
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address tupleAddr,
CanType tupleType) const override {
Address eltAddr =
asImpl().projectElementAddress(IGF, tupleAddr, tupleType, 0);
auto &elt = asImpl().getFields()[0];
elt.getTypeInfo().storeExtraInhabitant(IGF, index, eltAddr,
elt.getType(IGF.IGM, tupleType));
}
};
/// Type implementation for loadable tuples.
class LoadableTupleTypeInfo :
public TupleTypeInfoBase<LoadableTupleTypeInfo, LoadableTypeInfo> {
public:
// FIXME: Spare bits between tuple elements.
LoadableTupleTypeInfo(unsigned numFields, llvm::Type *ty,
Size size, llvm::BitVector spareBits,
Alignment align, IsPOD_t isPOD)
: TupleTypeInfoBase(numFields, ty, size, std::move(spareBits), align,
isPOD)
{}
Nothing_t getNonFixedOffsets(IRGenFunction &IGF) const { return Nothing; }
Nothing_t getNonFixedOffsets(IRGenFunction &IGF,
CanType T) const { return Nothing; }
};
/// Type implementation for fixed-size but non-loadable tuples.
class FixedTupleTypeInfo :
public TupleTypeInfoBase<FixedTupleTypeInfo,
IndirectTypeInfo<FixedTupleTypeInfo,
FixedTypeInfo>>
{
public:
// FIXME: Spare bits between tuple elements.
FixedTupleTypeInfo(unsigned numFields, llvm::Type *ty,
Size size, llvm::BitVector spareBits, Alignment align,
IsPOD_t isPOD, IsBitwiseTakable_t isBT)
: TupleTypeInfoBase(numFields, ty, size, std::move(spareBits), align,
isPOD, isBT)
{}
Nothing_t getNonFixedOffsets(IRGenFunction &IGF) const { return Nothing; }
Nothing_t getNonFixedOffsets(IRGenFunction &IGF,
CanType T) const { return Nothing; }
};
/// An accessor for the non-fixed offsets for a tuple type.
class TupleNonFixedOffsets : public NonFixedOffsetsImpl {
CanType TheType;
public:
TupleNonFixedOffsets(CanType type) : TheType(type) {
assert(isa<TupleType>(TheType));
}
llvm::Value *getOffsetForIndex(IRGenFunction &IGF, unsigned index) {
// Fetch the metadata as a tuple type. We cache this because
// we might repeatedly need the bitcast.
auto metadata = IGF.emitTypeMetadataRef(TheType);
auto asTuple = IGF.Builder.CreateBitCast(metadata,
IGF.IGM.TupleTypeMetadataPtrTy);
llvm::Value *indices[] = {
IGF.IGM.getSize(Size(0)), // (*tupleType)
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 3), // .Elements
IGF.IGM.getSize(Size(index)), // [index]
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1) // .Offset
};
auto slot = IGF.Builder.CreateInBoundsGEP(asTuple, indices);
return IGF.Builder.CreateLoad(slot, IGF.IGM.getPointerAlignment(),
metadata->getName()
+ "." + Twine(index) + ".offset");
}
};
/// Type implementation for non-fixed-size tuples.
class NonFixedTupleTypeInfo :
public TupleTypeInfoBase<NonFixedTupleTypeInfo,
WitnessSizedTypeInfo<NonFixedTupleTypeInfo>>
{
public:
NonFixedTupleTypeInfo(unsigned numFields, llvm::Type *T,
Alignment minAlign, IsPOD_t isPOD,
IsBitwiseTakable_t isBT)
: TupleTypeInfoBase(numFields, T, minAlign, isPOD, isBT) {}
TupleNonFixedOffsets getNonFixedOffsets(IRGenFunction &IGF,
CanType T) const {
return TupleNonFixedOffsets(T);
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable,
CanType T) const override {
// Tuple value witness tables are instantiated by the runtime along with
// their metadata. We should never try to initialize one in the compiler.
llvm_unreachable("initializing value witness table for tuple?!");
}
};
class TupleTypeBuilder :
public SequentialTypeBuilder<TupleTypeBuilder, TupleFieldInfo,
TupleTypeElt> {
CanType TheTuple;
public:
TupleTypeBuilder(IRGenModule &IGM, CanType theTuple)
: SequentialTypeBuilder(IGM), TheTuple(theTuple) {}
FixedTupleTypeInfo *createFixed(ArrayRef<TupleFieldInfo> fields,
const StructLayout &layout) {
return create<FixedTupleTypeInfo>(fields, layout.getType(),
layout.getSize(),
layout.getSpareBits(),
layout.getAlignment(),
layout.isKnownPOD(),
layout.isKnownBitwiseTakable());
}
LoadableTupleTypeInfo *createLoadable(ArrayRef<TupleFieldInfo> fields,
const StructLayout &layout) {
return create<LoadableTupleTypeInfo>(fields, layout.getType(),
layout.getSize(),
layout.getSpareBits(),
layout.getAlignment(),
layout.isKnownPOD());
}
NonFixedTupleTypeInfo *createNonFixed(ArrayRef<TupleFieldInfo> fields,
const StructLayout &layout) {
return create<NonFixedTupleTypeInfo>(fields, layout.getType(),
layout.getAlignment(),
layout.isKnownPOD(),
layout.isKnownBitwiseTakable());
}
TupleFieldInfo getFieldInfo(unsigned index,
const TupleTypeElt &field,
const TypeInfo &fieldTI) {
StringRef name = field.hasName() ? field.getName().str() : "elt";
return TupleFieldInfo(index, name, fieldTI);
}
SILType getType(const TupleTypeElt &field) {
// We know we're working with a lowered type here.
return SILType::getPrimitiveObjectType(CanType(field.getType()));
}
StructLayout performLayout(ArrayRef<const TypeInfo *> fieldTypes) {
return StructLayout(IGM, LayoutKind::NonHeapObject,
LayoutStrategy::Universal, fieldTypes);
}
};
}
const TypeInfo *TypeConverter::convertTupleType(TupleType *tuple) {
TupleTypeBuilder builder(IGM, CanType(tuple));
return builder.layout(tuple->getFields());
}
/// A convenient macro for delegating an operation to all of the
/// various tuple implementations.
#define FOR_TUPLE_IMPL(IGF, type, op, ...) do { \
auto &tupleTI = IGF.getTypeInfo(type); \
if (isa<LoadableTypeInfo>(tupleTI)) { \
return tupleTI.as<LoadableTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} else if (isa<FixedTypeInfo>(tupleTI)) { \
return tupleTI.as<FixedTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} else { \
return tupleTI.as<NonFixedTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} \
} while(0)
void irgen::projectTupleElementFromExplosion(IRGenFunction &IGF,
SILType tupleType,
Explosion &tuple,
unsigned fieldNo,
Explosion &out) {
FOR_TUPLE_IMPL(IGF, tupleType, projectElementFromExplosion,
tuple, fieldNo, out);
}
Address irgen::projectTupleElementAddress(IRGenFunction &IGF,
Address tuple,
SILType tupleType,
unsigned fieldNo) {
FOR_TUPLE_IMPL(IGF, tupleType, projectElementAddress, tuple,
tupleType.getSwiftRValueType(), fieldNo);
}