mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
in preparation to extend it. NFC except for a cleanup of the dynamicType diagnostic. Swift SVN r24095
546 lines
20 KiB
C++
546 lines
20 KiB
C++
//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements AST-level diagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MiscDiagnostics.h"
|
|
#include "TypeChecker.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnose assigning variable to itself.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
static Decl *findSimpleReferencedDecl(const Expr *E) {
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
E = LE->getSubExpr();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return DRE->getDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static std::pair<Decl *, Decl *> findReferencedDecl(const Expr *E) {
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
E = LE->getSubExpr();
|
|
|
|
if (auto *D = findSimpleReferencedDecl(E))
|
|
return std::make_pair(nullptr, D);
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
if (auto *BaseDecl = findSimpleReferencedDecl(MRE->getBase()))
|
|
return std::make_pair(BaseDecl, MRE->getMember().getDecl());
|
|
}
|
|
|
|
return std::make_pair(nullptr, nullptr);
|
|
}
|
|
|
|
/// Diagnose assigning variable to itself.
|
|
static void diagSelfAssignment(TypeChecker &TC, const Expr *E) {
|
|
auto *AE = dyn_cast<AssignExpr>(E);
|
|
if (!AE)
|
|
return;
|
|
|
|
auto LHSDecl = findReferencedDecl(AE->getDest());
|
|
auto RHSDecl = findReferencedDecl(AE->getSrc());
|
|
if (LHSDecl.second && LHSDecl == RHSDecl) {
|
|
TC.diagnose(AE->getLoc(), LHSDecl.first ? diag::self_assignment_prop
|
|
: diag::self_assignment_var)
|
|
.highlight(AE->getDest()->getSourceRange())
|
|
.highlight(AE->getSrc()->getSourceRange());
|
|
}
|
|
}
|
|
|
|
|
|
/// Issue a warning on code where a returned expression is on a different line
|
|
/// than the return keyword, but both have the same indentation.
|
|
///
|
|
/// \code
|
|
/// ...
|
|
/// return
|
|
/// foo()
|
|
/// \endcode
|
|
static void diagUnreachableCode(TypeChecker &TC, const Stmt *S) {
|
|
auto *RS = dyn_cast<ReturnStmt>(S);
|
|
if (!RS)
|
|
return;
|
|
if (!RS->hasResult())
|
|
return;
|
|
|
|
auto RetExpr = RS->getResult();
|
|
auto RSLoc = RS->getStartLoc();
|
|
auto RetExprLoc = RetExpr->getStartLoc();
|
|
// FIXME: Expose getColumnNumber() in LLVM SourceMgr to make this check
|
|
// cheaper.
|
|
if (RSLoc.isInvalid() || RetExprLoc.isInvalid() || (RSLoc == RetExprLoc))
|
|
return;
|
|
SourceManager &SM = TC.Context.SourceMgr;
|
|
if (SM.getLineAndColumn(RSLoc).second ==
|
|
SM.getLineAndColumn(RetExprLoc).second) {
|
|
TC.diagnose(RetExpr->getStartLoc(), diag::unindented_code_after_return);
|
|
TC.diagnose(RetExpr->getStartLoc(), diag::indent_expression_to_silence);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/// Diagnose syntactic restrictions of expressions:
|
|
/// - Module values may only occur as part of qualification.
|
|
/// - Metatype names cannot generally be used as values: they need a "T.self"
|
|
/// qualification unless used in narrow case (e.g. T() for construction).
|
|
///
|
|
static void diagSyntacticUseRestrictions(TypeChecker &TC, const Expr *E) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
SmallPtrSet<Expr*, 4> AlreadyDiagnosedMetatypes;
|
|
public:
|
|
TypeChecker &TC;
|
|
|
|
DiagnoseWalker(TypeChecker &TC) : TC(TC) {}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
// Diagnose module values that don't appear as part of a qualification.
|
|
if (auto *ME = dyn_cast<ModuleExpr>(E))
|
|
checkUseOfModuleExpr(ME);
|
|
|
|
// Diagnose metatype values that don't appear as part of a property,
|
|
// method, or constructor reference.
|
|
|
|
// See through implicit conversions. We want to treat things like:
|
|
/// (apply_expr (metatype_cvt (typeexpr metatype)) (4)) as an apply.
|
|
auto Base = E;
|
|
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
|
|
Base = Conv->getSubExpr();
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
|
|
if (isa<TypeDecl>(DRE->getDecl()))
|
|
checkUseOfMetaTypeName(Base);
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(Base))
|
|
if (isa<TypeDecl>(MRE->getMember().getDecl()))
|
|
checkUseOfMetaTypeName(Base);
|
|
if (isa<TypeExpr>(Base))
|
|
checkUseOfMetaTypeName(Base);
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
void checkUseOfModuleExpr(ModuleExpr *E) {
|
|
// Allow module values as a part of:
|
|
// - ignored base expressions;
|
|
// - expressions that failed to type check.
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedDotExpr>(ParentExpr))
|
|
return;
|
|
}
|
|
|
|
TC.diagnose(E->getStartLoc(), diag::value_of_module_type);
|
|
}
|
|
|
|
void checkUseOfMetaTypeName(Expr *E) {
|
|
// If we've already checked this at a higher level, we're done.
|
|
if (!AlreadyDiagnosedMetatypes.insert(E).second)
|
|
return;
|
|
|
|
// Allow references to types as a part of:
|
|
// - member references T.foo, T.Type, T.self, etc. (but *not* T.type)
|
|
// - constructor calls T()
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
// Reject use of "T.dynamicType", it should be written as "T.self".
|
|
if (auto metaExpr = dyn_cast<DynamicTypeExpr>(ParentExpr)) {
|
|
// Add a fixit to replace '.dynamicType' with '.self'.
|
|
TC.diagnose(E->getStartLoc(), diag::type_of_metatype)
|
|
.fixItReplace(metaExpr->getMetatypeLoc(), "self");
|
|
return;
|
|
}
|
|
|
|
// This is the white-list of accepted syntactic forms.
|
|
if (isa<ErrorExpr>(ParentExpr) ||
|
|
isa<DotSelfExpr>(ParentExpr) || // T.self
|
|
isa<CallExpr>(ParentExpr) || // T()
|
|
isa<MemberRefExpr>(ParentExpr) || // T.foo
|
|
isa<UnresolvedMemberExpr>(ParentExpr) ||
|
|
isa<SelfApplyExpr>(ParentExpr) || // T.foo() T()
|
|
isa<UnresolvedDotExpr>(ParentExpr) ||
|
|
isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedSelectorExpr>(ParentExpr) ||
|
|
isa<UnresolvedSpecializeExpr>(ParentExpr)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
TC.diagnose(E->getStartLoc(), diag::value_of_metatype_type);
|
|
// Add fixits to insert '()' or '.self'.
|
|
auto endLoc = Lexer::getLocForEndOfToken(TC.Context.SourceMgr,
|
|
E->getEndLoc());
|
|
TC.diagnose(endLoc, diag::add_parens_to_type).fixItInsert(endLoc, "()");
|
|
TC.diagnose(endLoc, diag::add_self_to_type).fixItInsert(endLoc, ".self");
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker Walker(TC);
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
|
|
/// Diagnose recursive use of properties within their own accessors
|
|
static void diagRecursivePropertyAccess(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
auto fn = dyn_cast<FuncDecl>(DC);
|
|
if (!fn || !fn->isAccessor())
|
|
return;
|
|
|
|
auto var = dyn_cast<VarDecl>(fn->getAccessorStorageDecl());
|
|
if (!var) // Ignore subscripts
|
|
return;
|
|
|
|
class DiagnoseWalker : public ASTWalker {
|
|
TypeChecker &TC;
|
|
VarDecl *Var;
|
|
const FuncDecl *Accessor;
|
|
|
|
public:
|
|
explicit DiagnoseWalker(TypeChecker &TC, VarDecl *var,
|
|
const FuncDecl *Accessor)
|
|
: TC(TC), Var(var), Accessor(Accessor) {}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
// Handle local and top-level computed variables.
|
|
if (DRE->getDecl() == Var &&
|
|
DRE->getAccessSemantics() != AccessSemantics::DirectToStorage &&
|
|
Accessor->getAccessorKind() != AccessorKind::IsMaterializeForSet) {
|
|
bool shouldDiagnose = true;
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr))
|
|
shouldDiagnose = false;
|
|
else if (Accessor->isSetter())
|
|
shouldDiagnose = !isa<LoadExpr>(ParentExpr);
|
|
}
|
|
if (shouldDiagnose) {
|
|
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
}
|
|
}
|
|
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (DRE->getDecl() == Var &&
|
|
DRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
|
|
!dyn_cast_or_null<LoadExpr>(Parent.getAsExpr()) &&
|
|
Accessor->getAccessorKind() == AccessorKind::IsWillSet) {
|
|
TC.diagnose(E->getLoc(), diag::store_in_willset, Var->getName());
|
|
}
|
|
|
|
|
|
} else if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
// Handle instance and type computed variables.
|
|
// Find MemberRefExprs that have an implicit "self" base.
|
|
if (MRE->getMember().getDecl() == Var &&
|
|
isa<DeclRefExpr>(MRE->getBase()) &&
|
|
MRE->getBase()->isImplicit()) {
|
|
|
|
if (MRE->getAccessSemantics() != AccessSemantics::DirectToStorage) {
|
|
bool shouldDiagnose = false;
|
|
// Warn about any property access in the getter.
|
|
if (Accessor->isGetter())
|
|
shouldDiagnose = true;
|
|
// Warn about stores in the setter, but allow loads.
|
|
if (Accessor->isSetter())
|
|
shouldDiagnose = !dyn_cast_or_null<LoadExpr>(Parent.getAsExpr());
|
|
|
|
if (shouldDiagnose) {
|
|
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
TC.diagnose(E->getLoc(),
|
|
diag::recursive_accessor_reference_silence)
|
|
.fixItInsert(E->getStartLoc(), "self.");
|
|
}
|
|
} else {
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (!dyn_cast_or_null<LoadExpr>(Parent.getAsExpr()) &&
|
|
Accessor->getAccessorKind() == AccessorKind::IsWillSet) {
|
|
TC.diagnose(E->getLoc(), diag::store_in_willset, Var->getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (auto *PE = dyn_cast<IdentityExpr>(E)) {
|
|
// Look through ParenExprs because a function argument of a single
|
|
// rvalue will have a LoadExpr /outside/ the ParenExpr.
|
|
return { true, PE->getSubExpr() };
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker walker(TC, var, fn);
|
|
const_cast<Expr *>(E)->walk(walker);
|
|
}
|
|
|
|
/// Look for any property references in closures that lack a "self." qualifier.
|
|
/// Within a closure, we require that the source code contain "self." explicitly
|
|
/// because 'self' is captured, not the property value. This is a common source
|
|
/// of confusion, so we force an explicit self.
|
|
static void diagnoseImplicitSelfUseInClosure(TypeChecker &TC, const Expr *E) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
TypeChecker &TC;
|
|
unsigned InClosure = 0;
|
|
public:
|
|
explicit DiagnoseWalker(TypeChecker &TC) : TC(TC) {}
|
|
|
|
/// Return true if this is an implicit reference to self.
|
|
static bool isImplicitSelfUse(Expr *E) {
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
return DRE && DRE->isImplicit() && DRE->getDecl()->hasName() &&
|
|
DRE->getDecl()->getName().str() == "self";
|
|
}
|
|
|
|
/// Return true if this is a closure expression that will require "self."
|
|
/// qualification of member references.
|
|
static bool isClosureRequiringSelfQualification(const Expr *E) {
|
|
if (!isa<ClosureExpr>(E)) return false;
|
|
|
|
// If the closure's type was inferred to be nocapture, then it doesn't
|
|
// need qualification.
|
|
if (auto *FT = E->getType()->getAs<FunctionType>())
|
|
return !FT->isNoCapture();
|
|
return true;
|
|
}
|
|
|
|
|
|
// Don't walk into nested decls.
|
|
bool walkToDeclPre(Decl *D) override {
|
|
return false;
|
|
}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
|
|
// If this is an explicit closure expression - not an autoclosure - then
|
|
// we keep track of the fact that recursive walks are within the closure.
|
|
if (isClosureRequiringSelfQualification(E))
|
|
++InClosure;
|
|
|
|
// If we aren't in a closure, no diagnostics will be produced.
|
|
if (!InClosure)
|
|
return { true, E };
|
|
|
|
// If we see a property reference with an implicit base from within a
|
|
// closure, then reject it as requiring an explicit "self." qualifier. We
|
|
// do this in explicit closures, not autoclosures, because otherwise the
|
|
// transparence of autoclosures is lost.
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
|
|
if (isImplicitSelfUse(MRE->getBase())) {
|
|
TC.diagnose(MRE->getLoc(),
|
|
diag::property_use_in_closure_without_explicit_self,
|
|
MRE->getMember().getDecl()->getName())
|
|
.fixItInsert(MRE->getLoc(), "self.");
|
|
return { false, E };
|
|
}
|
|
|
|
// Handle method calls with a specific diagnostic + fixit.
|
|
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E))
|
|
if (isImplicitSelfUse(DSCE->getBase()) &&
|
|
isa<DeclRefExpr>(DSCE->getFn())) {
|
|
auto MethodExpr = cast<DeclRefExpr>(DSCE->getFn());
|
|
TC.diagnose(DSCE->getLoc(),
|
|
diag::method_call_in_closure_without_explicit_self,
|
|
MethodExpr->getDecl()->getName())
|
|
.fixItInsert(DSCE->getLoc(), "self.");
|
|
return { false, E };
|
|
}
|
|
|
|
// Catch any other implicit uses of self with a generic diagnostic.
|
|
if (isImplicitSelfUse(E))
|
|
TC.diagnose(E->getLoc(), diag::implicit_use_of_self_in_closure);
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *E) {
|
|
if (isClosureRequiringSelfQualification(E)) {
|
|
assert(InClosure);
|
|
--InClosure;
|
|
}
|
|
|
|
return E;
|
|
}
|
|
};
|
|
|
|
const_cast<Expr *>(E)->walk(DiagnoseWalker(TC));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnose availability.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Diagnose uses of unavailable declarations.
|
|
static void diagAvailability(TypeChecker &TC, const ValueDecl *D,
|
|
SourceRange R, const DeclContext *DC) {
|
|
if (!D)
|
|
return;
|
|
|
|
if (auto Attr = AvailabilityAttr::isUnavailable(D)) {
|
|
auto Name = D->getFullName();
|
|
SourceLoc Loc = R.Start;
|
|
|
|
if (!Attr->Rename.empty()) {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_rename, Name,
|
|
Attr->Rename)
|
|
.fixItReplace(R, Attr->Rename);
|
|
} else if (Attr->Message.empty()) {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable, Name)
|
|
.highlight(R);
|
|
} else {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_msg,
|
|
Name, Attr->Message)
|
|
.highlight(SourceRange(Loc, Loc));
|
|
}
|
|
|
|
switch (Attr->getMinVersionAvailability(
|
|
TC.Context.LangOpts.MinPlatformVersion)) {
|
|
case MinVersionComparison::Available:
|
|
case MinVersionComparison::PotentiallyUnavailable:
|
|
llvm_unreachable("These aren't considered unavailable");
|
|
|
|
case MinVersionComparison::Unavailable:
|
|
TC.diagnose(D, diag::availability_marked_unavailable, Name)
|
|
.highlight(Attr->getRange());
|
|
break;
|
|
|
|
case MinVersionComparison::Obsoleted: {
|
|
// FIXME: Use of the platformString here is non-awesome for application
|
|
// extensions.
|
|
TC.diagnose(D, diag::availability_obsoleted, Name,
|
|
Attr->prettyPlatformString(), *Attr->Obsoleted)
|
|
.highlight(Attr->getRange());
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
class AvailabilityWalker : public ASTWalker {
|
|
TypeChecker &TC;
|
|
const DeclContext *DC;
|
|
public:
|
|
AvailabilityWalker(TypeChecker &TC, const DeclContext *DC)
|
|
: TC(TC), DC(DC) {}
|
|
|
|
virtual Expr *walkToExprPost(Expr *E) override {
|
|
if (auto DR = dyn_cast<DeclRefExpr>(E))
|
|
diagAvailability(TC, DR->getDecl(), DR->getSourceRange(), DC);
|
|
if (auto MR = dyn_cast<MemberRefExpr>(E))
|
|
diagAvailability(TC, MR->getMember().getDecl(), MR->getNameLoc(), DC);
|
|
if (auto OCDR = dyn_cast<OtherConstructorDeclRefExpr>(E))
|
|
diagAvailability(TC, OCDR->getDecl(), OCDR->getConstructorLoc(), DC);
|
|
if (auto DMR = dyn_cast<DynamicMemberRefExpr>(E))
|
|
diagAvailability(TC, DMR->getMember().getDecl(), DMR->getNameLoc(), DC);
|
|
if (auto DS = dyn_cast<DynamicSubscriptExpr>(E))
|
|
diagAvailability(TC, DS->getMember().getDecl(), DS->getSourceRange(), DC);
|
|
if (auto S = dyn_cast<SubscriptExpr>(E)) {
|
|
if (S->hasDecl())
|
|
diagAvailability(TC, S->getDecl().getDecl(), S->getSourceRange(), DC);
|
|
}
|
|
return E;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Diagnose uses of unavailable declarations.
|
|
static void diagAvailability(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
AvailabilityWalker walker(TC, DC);
|
|
const_cast<Expr*>(E)->walk(walker);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// High-level entry points.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void swift::performExprDiagnostics(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
diagSelfAssignment(TC, E);
|
|
diagSyntacticUseRestrictions(TC, E);
|
|
diagRecursivePropertyAccess(TC, E, DC);
|
|
diagnoseImplicitSelfUseInClosure(TC, E);
|
|
diagAvailability(TC, E, DC);
|
|
}
|
|
|
|
void swift::performStmtDiagnostics(TypeChecker &TC, const Stmt *S) {
|
|
return diagUnreachableCode(TC, S);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utility functions
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void swift::fixItAccessibility(InFlightDiagnostic &diag, ValueDecl *VD,
|
|
Accessibility desiredAccess, bool isForSetter) {
|
|
StringRef fixItString;
|
|
switch (desiredAccess) {
|
|
case Accessibility::Private: fixItString = "private "; break;
|
|
case Accessibility::Internal: fixItString = "internal "; break;
|
|
case Accessibility::Public: fixItString = "public "; break;
|
|
}
|
|
|
|
DeclAttribute *attr;
|
|
if (isForSetter) {
|
|
attr = VD->getAttrs().getAttribute<SetterAccessibilityAttr>();
|
|
cast<AbstractStorageDecl>(VD)->overwriteSetterAccessibility(desiredAccess);
|
|
} else {
|
|
attr = VD->getAttrs().getAttribute<AccessibilityAttr>();
|
|
VD->overwriteAccessibility(desiredAccess);
|
|
}
|
|
|
|
if (isForSetter && VD->getAccessibility() == desiredAccess) {
|
|
assert(attr);
|
|
attr->setInvalid();
|
|
if (!attr->Range.isValid())
|
|
return;
|
|
|
|
// Remove the setter attribute along with a possible single trailing space.
|
|
SourceManager &sourceMgr = VD->getASTContext().SourceMgr;
|
|
SourceLoc nextCharLoc = Lexer::getLocForEndOfToken(sourceMgr,
|
|
attr->Range.End);
|
|
StringRef nextChar = sourceMgr.extractText({ nextCharLoc, 1 });
|
|
if (nextChar == " ")
|
|
diag.fixItRemoveChars(attr->Range.Start, nextCharLoc.getAdvancedLoc(1));
|
|
else
|
|
diag.fixItRemove(attr->Range);
|
|
|
|
} else if (attr) {
|
|
// This uses getLocation() instead of getRange() because we don't want to
|
|
// replace the "(set)" part of a setter attribute.
|
|
diag.fixItReplace(attr->getLocation(), fixItString.drop_back());
|
|
attr->setInvalid();
|
|
|
|
} else if (auto var = dyn_cast<VarDecl>(VD)) {
|
|
if (auto PBD = var->getParentPattern())
|
|
diag.fixItInsert(PBD->getStartLoc(), fixItString);
|
|
|
|
} else {
|
|
diag.fixItInsert(VD->getStartLoc(), fixItString);
|
|
}
|
|
}
|