Files
swift-mirror/lib/SIL/SIL.cpp

482 lines
17 KiB
C++

//===--- SIL.cpp - Implements random SIL functionality --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILUndef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Mangle.h"
#include "swift/AST/Pattern.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Basic/Fallthrough.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
void ValueBase::replaceAllUsesWith(ValueBase *RHS) {
assert(this != RHS && "Cannot RAUW a value with itself");
assert(getNumTypes() == RHS->getNumTypes() &&
"An instruction and the value base that it is being replaced by "
"must have the same number of types");
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(SILValue(RHS, Op->get().getResultNumber()));
}
}
SILUndef *SILUndef::get(SILType Ty, SILModule *M) {
// Unique these.
SILUndef *&Entry = M->UndefValues[Ty];
if (Entry == nullptr)
Entry = new (*M) SILUndef(Ty);
return Entry;
}
static unsigned getFuncNaturalUncurryLevel(AnyFunctionRef AFR) {
assert(AFR.getArgParamPatterns().size() >= 1 && "no arguments for func?!");
unsigned Level = AFR.getArgParamPatterns().size() - 1;
// Functions with captures have an extra uncurry level for the capture
// context.
if (AFR.getCaptureInfo().hasLocalCaptures())
Level += 1;
return Level;
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind,
unsigned atUncurryLevel,
bool isForeign)
: loc(vd), kind(kind), isForeign(isForeign), defaultArgIndex(0)
{
unsigned naturalUncurryLevel;
// FIXME: restructure to use a "switch".
if (auto *func = dyn_cast<FuncDecl>(vd)) {
assert(!func->isGetterOrSetter() &&
"cannot create a Func SILDeclRef for a property accessor");
assert(kind == Kind::Func &&
"can only create a Func SILDeclRef for a func decl");
naturalUncurryLevel = getFuncNaturalUncurryLevel(func);
} else if (isa<ConstructorDecl>(vd)) {
assert((kind == Kind::Allocator || kind == Kind::Initializer)
&& "can only create Allocator or Initializer SILDeclRef for ctor");
naturalUncurryLevel = 1;
} else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
assert(kind == Kind::EnumElement
&& "can only create EnumElement SILDeclRef for enum element");
naturalUncurryLevel = ed->hasArgumentType() ? 1 : 0;
} else if (isa<DestructorDecl>(vd)) {
assert((kind == Kind::Destroyer || kind == Kind::Deallocator)
&& "can only create destroyer/deallocator SILDeclRef for dtor");
naturalUncurryLevel = 0;
} else if (isa<ClassDecl>(vd)) {
assert((kind == Kind::IVarInitializer || kind == Kind::IVarDestroyer) &&
"can only create ivar initializer/destroyer SILDeclRef for class");
naturalUncurryLevel = 1;
} else if (auto *var = dyn_cast<VarDecl>(vd)) {
assert((kind == Kind::Getter || kind == Kind::Setter ||
kind == Kind::GlobalAccessor) &&
"can only create Getter, Setter, GlobalAccessor, or GlobalAddress "
"SILDeclRef for var");
if (kind == Kind::GlobalAccessor) {
naturalUncurryLevel = 0;
assert(!var->getDeclContext()->isLocalContext() &&
"can't reference local var as global var");
assert(var->hasStorage() && "can't reference computed var as global var");
} else {
// Member computed vars have a 'self' curry.
// FIXME: What about static vars?
if (var->isInstanceMember())
naturalUncurryLevel = 1;
// Local computed vars may have captures that affect the natural uncurry
// level.
else if (kind == Kind::Getter && var->getGetter())
naturalUncurryLevel = getFuncNaturalUncurryLevel(var->getGetter());
else if (kind == Kind::Setter && var->getSetter())
naturalUncurryLevel = getFuncNaturalUncurryLevel(var->getSetter());
// An accessor for a non-instance variable without getters and
// setters must be a resilient variable, so it can't have context.
else
naturalUncurryLevel = 0;
}
} else if (isa<SubscriptDecl>(vd)) {
assert((kind == Kind::Getter || kind == Kind::Setter)
&& "can only create Getter or Setter SILDeclRef for subscript");
// Subscript accessors have
// getter type (T)(Index)() -> U and
// setter type (T)(Index)(U) -> ()
naturalUncurryLevel = 2;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
assert((atUncurryLevel == ConstructAtNaturalUncurryLevel
|| atUncurryLevel <= naturalUncurryLevel)
&& "can't emit SILDeclRef below natural uncurry level");
uncurryLevel = atUncurryLevel == ConstructAtNaturalUncurryLevel
? naturalUncurryLevel
: atUncurryLevel;
isCurried = uncurryLevel != naturalUncurryLevel;
}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc, unsigned atUncurryLevel,
bool asForeign)
: defaultArgIndex(0)
{
unsigned naturalUncurryLevel;
if (ValueDecl *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (FuncDecl *fd = dyn_cast<FuncDecl>(vd)) {
// Map getter or setter FuncDecls to Getter or Setter SILDeclRefs of the
// variable.
if (fd->isGetterOrSetter()) {
loc = fd->getAccessorStorageDecl();
if (fd->isGetter()) {
kind = Kind::Getter;
} else if (fd->isSetter()) {
kind = Kind::Setter;
} else {
llvm_unreachable("no getter or setter decl?!");
}
}
// Map other FuncDecls directly to Func SILDeclRefs.
else {
loc = fd;
kind = Kind::Func;
}
naturalUncurryLevel = getFuncNaturalUncurryLevel(fd);
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (ConstructorDecl *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
naturalUncurryLevel = 1;
// FIXME: Should we require the caller to think about this?
asForeign = false;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (EnumElementDecl *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
naturalUncurryLevel = ed->hasArgumentType() ? 1 : 0;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
naturalUncurryLevel = 0;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
assert(ACE->getParamPatterns().size() >= 1 &&
"no param patterns for function?!");
naturalUncurryLevel = getFuncNaturalUncurryLevel(ACE);
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
// Set the uncurry level.
assert((atUncurryLevel == ConstructAtNaturalUncurryLevel
|| atUncurryLevel <= naturalUncurryLevel)
&& "can't emit SILDeclRef below natural uncurry level");
uncurryLevel = atUncurryLevel == ConstructAtNaturalUncurryLevel
? naturalUncurryLevel
: atUncurryLevel;
isCurried = uncurryLevel != naturalUncurryLevel;
isForeign = asForeign;
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
/// \brief True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (hasDecl()) {
const ValueDecl *D = getDecl();
if (isAccessor()) {
if (kind == Kind::Getter) {
if (const SubscriptDecl *SD = dyn_cast<SubscriptDecl>(getDecl()))
D = SD->getGetter();
else
D = cast<VarDecl>(getDecl())->getGetter();
} else if (kind == Kind::Setter) {
if (const SubscriptDecl *SD = dyn_cast<SubscriptDecl>(getDecl()))
D = SD->getSetter();
else
D = cast<VarDecl>(getDecl())->getSetter();
} else {
llvm_unreachable("Accessor is neither a getter nor a setter.");
}
}
return D ? D->isTransparent() : false;
}
return false;
}
bool SILDeclRef::isForeignThunk() const {
// Non-decl entry points are never thunks.
if (!hasDecl())
return false;
// Otherwise, match whether we have a clang node with whether we're foreign.
if (isa<FuncDecl>(getDecl()) && getDecl()->hasClangNode())
return !isForeign;
return false;
}
static void mangleConstant(SILDeclRef c, llvm::raw_ostream &buffer,
ResilienceExpansion expansion) {
using namespace Mangle;
Mangler mangler(buffer);
// Almost everything below gets one of the common prefixes:
// mangled-name ::= '_T' global // Native symbol
// mangled-name ::= '_TTo' global // ObjC interop thunk
// mangled-name ::= '_TTO' global // Foreign function thunk
StringRef introducer = "_T";
if (c.isForeign)
introducer = "_TTo";
else if (c.isForeignThunk())
introducer = "_TTO";
switch (c.kind) {
// entity ::= declaration // other declaration
case SILDeclRef::Kind::Func:
if (!c.hasDecl()) {
buffer << introducer;
mangler.mangleClosureEntity(c.getAbstractClosureExpr(),
expansion,
c.uncurryLevel);
return;
}
// As a special case, functions can have external asm names.
// Use the asm name only for the original non-thunked, non-curried entry
// point.
if (!c.getDecl()->getAttrs().AsmName.empty()
&& !c.isForeignThunk() && !c.isCurried) {
buffer << c.getDecl()->getAttrs().AsmName;
return;
}
if (auto *FD = dyn_cast<FuncDecl>(c.getDecl())) {
switch (FD->getAccessorKind()) {
default: assert(0 && "Unhandled accessor");
case AccessorKind::NotAccessor: break;
case AccessorKind::IsWillSet:
// entity ::= declaration 'w' // willSet
buffer << introducer;
mangler.mangleAccessorEntity('w', FD->getAccessorStorageDecl(),
expansion);
return;
case AccessorKind::IsDidSet:
// entity ::= declaration 'W' // didSet
buffer << introducer;
mangler.mangleAccessorEntity('W', FD->getAccessorStorageDecl(),
expansion);
return;
}
}
// Otherwise, fall through into the 'other decl' case.
SWIFT_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
// As a special case, Clang functions and globals don't get mangled at all.
// FIXME: When we can import C++, use Clang's mangler.
if (auto clangDecl = c.getDecl()->getClangDecl()) {
if (!c.isForeignThunk() && !c.isCurried) {
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
buffer << '\01' << asmLabel->getLabel();
} else {
buffer << namedClangDecl->getName();
}
return;
}
}
}
buffer << introducer;
mangler.mangleEntity(c.getDecl(), expansion, c.uncurryLevel);
return;
// entity ::= context 'D' // deallocating destructor
case SILDeclRef::Kind::Deallocator:
buffer << introducer;
mangler.mangleDestructorEntity(cast<DestructorDecl>(c.getDecl()),
/*isDeallocating*/ true);
return;
// entity ::= context 'd' // destroying destructor
case SILDeclRef::Kind::Destroyer:
buffer << introducer;
mangler.mangleDestructorEntity(cast<DestructorDecl>(c.getDecl()),
/*isDeallocating*/ false);
return;
// entity ::= context 'C' type // allocating constructor
case SILDeclRef::Kind::Allocator:
buffer << introducer;
mangler.mangleConstructorEntity(cast<ConstructorDecl>(c.getDecl()),
/*allocating*/ true,
expansion,
c.uncurryLevel);
return;
// entity ::= context 'c' type // initializing constructor
case SILDeclRef::Kind::Initializer:
buffer << introducer;
mangler.mangleConstructorEntity(cast<ConstructorDecl>(c.getDecl()),
/*allocating*/ false,
expansion,
c.uncurryLevel);
return;
// entity ::= declaration 'e' // ivar initializer
// entity ::= declaration 'E' // ivar destroyer
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
buffer << introducer;
mangler.mangleIVarInitDestroyEntity(
cast<ClassDecl>(c.getDecl()),
c.kind == SILDeclRef::Kind::IVarDestroyer);
return;
// entity ::= declaration 'g' // getter
case SILDeclRef::Kind::Getter:
buffer << introducer;
mangler.mangleAccessorEntity('g', c.getDecl(), expansion);
return;
// entity ::= declaration 's' // setter
case SILDeclRef::Kind::Setter:
buffer << introducer;
mangler.mangleAccessorEntity('s', c.getDecl(), expansion);
return;
// entity ::= declaration 'a' // addressor
case SILDeclRef::Kind::GlobalAccessor:
buffer << introducer;
mangler.mangleAddressorEntity(c.getDecl());
return;
// entity ::= context 'e' index // default arg generator
case SILDeclRef::Kind::DefaultArgGenerator:
buffer << introducer;
mangler.mangleDefaultArgumentEntity(cast<AbstractFunctionDecl>(c.getDecl()),
c.defaultArgIndex);
return;
}
llvm_unreachable("bad entity kind!");
}
StringRef SILDeclRef::mangle(SmallVectorImpl<char> &buffer,
ResilienceExpansion expansion) const {
assert(buffer.empty());
llvm::raw_svector_ostream stream(buffer);
mangleConstant(*this, stream, expansion);
return stream.str();
}
static FormalLinkage getGenericClauseLinkage(ArrayRef<GenericParam> params) {
FormalLinkage result = FormalLinkage::Top;
for (auto &param : params) {
for (auto proto : param.getAsTypeParam()->getProtocols())
result ^= getTypeLinkage(CanType(proto->getDeclaredType()));
if (auto superclass = param.getAsTypeParam()->getSuperclass())
result ^= getTypeLinkage(superclass->getCanonicalType());
}
return result;
}
FormalLinkage swift::getDeclLinkage(Decl *D) {
DeclContext *DC = D->getDeclContext();
while (!DC->isModuleScopeContext()) {
if (DC->isLocalContext())
return FormalLinkage::Private;
DC = DC->getParent();
}
// Clang declarations are public and can't be assured of having a
// unique defining location.
if (isa<ClangModuleUnit>(DC))
return FormalLinkage::PublicNonUnique;
// TODO: access control
return FormalLinkage::PublicUnique;
}
FormalLinkage swift::getTypeLinkage(CanType type) {
FormalLinkage result = FormalLinkage::Top;
// Merge all nominal types from the structural type.
(void) type.findIf([&](Type _type) {
CanType type = CanType(_type);
// For any nominal type reference, look at the type declaration.
if (auto nominal = type->getAnyNominal()) {
result ^= getDeclLinkage(nominal);
// For polymorphic function types, look at the generic parameters.
// FIXME: findIf should do this, once polymorphic function types can be
// canonicalized and re-formed properly.
} else if (auto polyFn = dyn_cast<PolymorphicFunctionType>(type)) {
result ^= getGenericClauseLinkage(polyFn->getGenericParameters());
}
return false; // continue searching
});
return result;
}
FormalLinkage swift::getConformanceLinkage(const ProtocolConformance *conf) {
// FIXME
return FormalLinkage::PublicUnique;
}