Files
swift-mirror/include/swift/AST/ProtocolConformance.h
Saleem Abdulrasool 01d5652999 remove VS2015 workaround (NFC)
VS2015 had an issue with the deletion of an operator.  Since VS2017 is
the minimum version that LLVM uses, we can assume that VS2017+ is in use
(_MSC_VER >= 1910).  Clean up the now defunct workaround.
2019-12-23 11:55:10 -08:00

1031 lines
37 KiB
C++

//===--- ProtocolConformance.h - AST Protocol Conformance -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the protocol conformance data structures.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_AST_PROTOCOLCONFORMANCE_H
#define SWIFT_AST_PROTOCOLCONFORMANCE_H
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeAlignments.h"
#include "swift/AST/Witness.h"
#include "swift/Basic/Compiler.h"
#include "swift/Basic/Debug.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <utility>
namespace swift {
class ASTContext;
class DiagnosticEngine;
class GenericParamList;
class NormalProtocolConformance;
class RootProtocolConformance;
class ProtocolConformance;
class ModuleDecl;
class SubstitutableType;
enum class AllocationArena;
/// Type substitution mapping from substitutable types to their
/// replacements.
typedef llvm::DenseMap<SubstitutableType *, Type> TypeSubstitutionMap;
/// Map from non-type requirements to the corresponding conformance witnesses.
typedef llvm::DenseMap<ValueDecl *, Witness> WitnessMap;
/// Map from associated type requirements to the corresponding type and
/// the type declaration that was used to satisfy the requirement.
typedef llvm::DenseMap<AssociatedTypeDecl *, TypeWitnessAndDecl>
TypeWitnessMap;
/// Describes the kind of protocol conformance structure used to encode
/// conformance.
enum class ProtocolConformanceKind {
/// "Normal" conformance of a (possibly generic) nominal type, which
/// contains complete mappings.
Normal,
/// Self-conformance of a protocol to itself.
Self,
/// Conformance for a specialization of a generic type, which projects the
/// underlying generic conformance.
Specialized,
/// Conformance of a generic class type projected through one of its
/// superclass's conformances.
Inherited
};
/// Describes the state of a protocol conformance, which may be complete,
/// incomplete, or currently being checked.
enum class ProtocolConformanceState {
/// The conformance has been fully checked.
Complete,
/// The conformance is known but is not yet complete.
Incomplete,
/// The conformance's type witnesses are currently being resolved.
CheckingTypeWitnesses,
/// The conformance is being checked.
Checking,
};
/// Describes how a particular type conforms to a given protocol,
/// providing the mapping from the protocol members to the type (or extension)
/// members that provide the functionality for the concrete type.
///
/// ProtocolConformance is an abstract base class, implemented by subclasses
/// for the various kinds of conformance (normal, specialized, inherited).
class alignas(1 << DeclAlignInBits) ProtocolConformance {
/// The kind of protocol conformance.
ProtocolConformanceKind Kind;
/// The type that conforms to the protocol, in the context of the
/// conformance definition.
Type ConformingType;
protected:
ProtocolConformance(ProtocolConformanceKind kind, Type conformingType)
: Kind(kind), ConformingType(conformingType) {}
public:
/// Determine the kind of protocol conformance.
ProtocolConformanceKind getKind() const { return Kind; }
/// Get the conforming type.
Type getType() const { return ConformingType; }
/// Get the protocol being conformed to.
ProtocolDecl *getProtocol() const;
/// Get the declaration context that contains the conforming extension or
/// nominal type declaration.
DeclContext *getDeclContext() const;
/// Retrieve the state of this conformance.
ProtocolConformanceState getState() const;
/// Get the kind of source from which this conformance comes.
ConformanceEntryKind getSourceKind() const;
/// Get the protocol conformance which implied this implied conformance.
NormalProtocolConformance *getImplyingConformance() const;
/// Determine whether this conformance is complete.
bool isComplete() const {
return getState() == ProtocolConformanceState::Complete;
}
/// Determine whether this conformance is invalid.
bool isInvalid() const;
/// Determine whether this conformance is incomplete.
bool isIncomplete() const {
return getState() == ProtocolConformanceState::Incomplete ||
getState() == ProtocolConformanceState::CheckingTypeWitnesses ||
getState() == ProtocolConformanceState::Checking;
}
/// Determine whether this conformance is canonical.
bool isCanonical() const;
/// Create a canonical conformance from the current one.
/// If the current conformance is canonical already, it will be returned.
/// Otherwise a new conformance will be created.
ProtocolConformance *getCanonicalConformance();
/// Return true if the conformance has a witness for the given associated
/// type.
bool hasTypeWitness(AssociatedTypeDecl *assocType) const;
/// Retrieve the type witness for the given associated type.
Type getTypeWitness(AssociatedTypeDecl *assocType,
SubstOptions options=None) const;
/// Retrieve the type witness and type decl (if one exists)
/// for the given associated type.
TypeWitnessAndDecl
getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options=None) const;
/// Apply the given function object to each type witness within this
/// protocol conformance.
///
/// The function object should accept an \c AssociatedTypeDecl* for the
/// requirement followed by the \c Type for the witness and a
/// (possibly null) \c TypeDecl* that explicitly declared the type.
/// It should return true to indicate an early exit.
///
/// \returns true if the function ever returned true
template<typename F>
bool forEachTypeWitness(F f, bool useResolver=false) const {
const ProtocolDecl *protocol = getProtocol();
for (auto assocTypeReq : protocol->getAssociatedTypeMembers()) {
if (assocTypeReq->isInvalid())
continue;
// If we don't have and cannot resolve witnesses, skip it.
if (!useResolver && !hasTypeWitness(assocTypeReq))
continue;
const auto &TWInfo = getTypeWitnessAndDecl(assocTypeReq);
if (f(assocTypeReq, TWInfo.getWitnessType(), TWInfo.getWitnessDecl()))
return true;
}
return false;
}
/// Retrieve the value witness declaration corresponding to the given
/// requirement.
ValueDecl *getWitnessDecl(ValueDecl *requirement) const;
/// Retrieve the witness corresponding to the given value requirement.
/// TODO: maybe this should return a Witness?
ConcreteDeclRef getWitnessDeclRef(ValueDecl *requirement) const;
private:
/// Determine whether we have a witness for the given requirement.
bool hasWitness(ValueDecl *requirement) const;
public:
/// Apply the given function object to each requirement, either type or value,
/// that is not witnessed.
///
/// The function object should accept a \c ValueDecl* for the requirement.
template<typename F>
void forEachNonWitnessedRequirement(F f) const {
const ProtocolDecl *protocol = getProtocol();
for (auto req : protocol->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq || valueReq->isInvalid())
continue;
if (auto assocTypeReq = dyn_cast<AssociatedTypeDecl>(req)) {
// If we don't have witness for the associated type, apply the function.
if (getTypeWitness(assocTypeReq)->hasError()) {
f(valueReq);
}
continue;
}
if (!valueReq->isProtocolRequirement())
continue;
// If we don't have witness for the value, apply the function.
if (!hasWitness(valueReq)) {
f(valueReq);
}
}
}
/// Retrieve the protocol conformance for the inherited protocol.
ProtocolConformance *getInheritedConformance(ProtocolDecl *protocol) const;
/// Given a dependent type expressed in terms of the self parameter,
/// map it into the context of this conformance.
Type getAssociatedType(Type assocType) const;
/// Given that the requirement signature of the protocol directly states
/// that the given dependent type must conform to the given protocol,
/// return its associated conformance.
ProtocolConformanceRef
getAssociatedConformance(Type assocType, ProtocolDecl *protocol) const;
/// Get the generic parameters open on the conforming type.
GenericEnvironment *getGenericEnvironment() const;
/// Get the generic signature containing the parameters open on the conforming
/// interface type.
GenericSignature getGenericSignature() const;
/// Get the substitutions associated with this conformance.
SubstitutionMap getSubstitutions(ModuleDecl *M) const;
/// Get the underlying normal conformance.
/// FIXME: remove uses of this.
const NormalProtocolConformance *getRootNormalConformance() const;
/// Get the underlying normal conformance.
NormalProtocolConformance *getRootNormalConformance() {
return const_cast<NormalProtocolConformance *>(
const_cast<const ProtocolConformance *>(this)
->getRootNormalConformance());
}
/// Get the underlying root conformance.
const RootProtocolConformance *getRootConformance() const;
/// Get the underlying root conformance.
RootProtocolConformance *getRootConformance() {
return const_cast<RootProtocolConformance *>(
const_cast<const ProtocolConformance *>(this)->getRootConformance());
}
/// Determine whether this protocol conformance is visible from the
/// given declaration context.
bool isVisibleFrom(const DeclContext *dc) const;
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool usesDefaultDefinition(AssociatedTypeDecl *requirement) const;
// Make vanilla new/delete illegal for protocol conformances.
void *operator new(size_t bytes) = delete;
void operator delete(void *data) = delete;
// Only allow allocation of protocol conformances using the allocator in
// ASTContext or by doing a placement new.
void *operator new(size_t bytes, ASTContext &context,
AllocationArena arena,
unsigned alignment = alignof(ProtocolConformance));
void *operator new(size_t bytes, void *mem) {
assert(mem);
return mem;
}
/// Print a parseable and human-readable description of the identifying
/// information of the protocol conformance.
void printName(raw_ostream &os,
const PrintOptions &PO = PrintOptions()) const;
/// Get any additional requirements that are required for this conformance to
/// be satisfied, if it is possible for them to be computed.
Optional<ArrayRef<Requirement>> getConditionalRequirementsIfAvailable() const;
/// Get any additional requirements that are required for this conformance to
/// be satisfied.
ArrayRef<Requirement> getConditionalRequirements() const;
/// Substitute the conforming type and produce a ProtocolConformance that
/// applies to the substituted type.
ProtocolConformance *subst(SubstitutionMap subMap,
SubstOptions options=None) const;
/// Substitute the conforming type and produce a ProtocolConformance that
/// applies to the substituted type.
ProtocolConformance *subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances,
SubstOptions options=None) const;
SWIFT_DEBUG_DUMP;
void dump(llvm::raw_ostream &out, unsigned indent = 0) const;
};
/// A "root" protocol conformance states some sort of ground truth
/// about the conforming type and the required protocol. Either:
///
/// - the type is directly declared to conform to the protocol (a
/// normal conformance) or
/// - the protocol's existential type is known to conform to itself (a
/// self-conformance).
class RootProtocolConformance : public ProtocolConformance {
protected:
RootProtocolConformance(ProtocolConformanceKind kind, Type conformingType)
: ProtocolConformance(kind, conformingType) {}
public:
/// Retrieve the location of this conformance.
SourceLoc getLoc() const;
bool isInvalid() const;
/// Whether this conformance is weak-imported.
bool isWeakImported(ModuleDecl *fromModule) const;
bool hasWitness(ValueDecl *requirement) const;
Witness getWitness(ValueDecl *requirement) const;
/// Retrieve the witness corresponding to the given value requirement.
/// TODO: maybe this should return a Witness?
ConcreteDeclRef getWitnessDeclRef(ValueDecl *requirement) const;
/// Apply the given function object to each value witness within this
/// protocol conformance.
///
/// The function object should accept a \c ValueDecl* for the requirement
/// followed by the \c Witness for the witness. Note that a generic
/// witness will only be specialized if the conformance came from the current
/// file.
template<typename F>
void forEachValueWitness(F f, bool useResolver=false) const {
const ProtocolDecl *protocol = getProtocol();
for (auto req : protocol->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq || isa<AssociatedTypeDecl>(valueReq) ||
valueReq->isInvalid())
continue;
if (!valueReq->isProtocolRequirement())
continue;
// If we don't have and cannot resolve witnesses, skip it.
if (!useResolver && !hasWitness(valueReq))
continue;
f(valueReq, getWitness(valueReq));
}
}
static bool classof(const ProtocolConformance *conformance) {
return conformance->getKind() == ProtocolConformanceKind::Normal ||
conformance->getKind() == ProtocolConformanceKind::Self;
}
};
/// Normal protocol conformance, which involves mapping each of the protocol
/// requirements to a witness.
///
/// Normal protocol conformance is used for the explicit conformances placed on
/// nominal types and extensions. For example:
///
/// \code
/// protocol P { func foo() }
/// struct A : P { func foo() { } }
/// class B<T> : P { func foo() { } }
/// \endcode
///
/// Here, there is a normal protocol conformance for both \c A and \c B<T>,
/// providing the witnesses \c A.foo and \c B<T>.foo, respectively, for the
/// requirement \c foo.
class NormalProtocolConformance : public RootProtocolConformance,
public llvm::FoldingSetNode
{
friend class ValueWitnessRequest;
friend class TypeWitnessRequest;
/// The protocol being conformed to and its current state.
llvm::PointerIntPair<ProtocolDecl *, 2, ProtocolConformanceState>
ProtocolAndState;
/// The location of this protocol conformance in the source.
SourceLoc Loc;
/// The declaration context containing the ExtensionDecl or
/// NominalTypeDecl that declared the conformance.
///
/// Also stores the "invalid" bit.
llvm::PointerIntPair<DeclContext *, 1, bool> ContextAndInvalid;
/// The reason that this conformance exists.
///
/// Either Explicit (e.g. 'struct Foo: Protocol {}' or 'extension Foo:
/// Protocol {}'), Synthesized (e.g. RawRepresentable for 'enum Foo: Int {}')
/// or Implied (e.g. 'Foo : Protocol' in 'protocol Other: Protocol {} struct
/// Foo: Other {}'). In only the latter case, the conformance is non-null and
/// points to the conformance that implies this one.
///
/// This should never be Inherited: that is handled by
/// InheritedProtocolConformance.
llvm::PointerIntPair<NormalProtocolConformance *, 2, ConformanceEntryKind>
SourceKindAndImplyingConformance = {nullptr,
ConformanceEntryKind::Explicit};
/// The mapping of individual requirements in the protocol over to
/// the declarations that satisfy those requirements.
mutable WitnessMap Mapping;
/// The mapping from associated type requirements to their types.
mutable TypeWitnessMap TypeWitnesses;
/// Conformances that satisfy each of conformance requirements of the
/// requirement signature of the protocol.
ArrayRef<ProtocolConformanceRef> SignatureConformances;
/// Any additional requirements that are required for this conformance to
/// apply, e.g. 'Something: Baz' in 'extension Foo: Bar where Something: Baz'.
mutable ArrayRef<Requirement> ConditionalRequirements;
enum class ConditionalRequirementsState {
Uncomputed,
Computing,
Complete,
};
/// The state of the ConditionalRequirements field: whether it has been
/// computed or not.
mutable ConditionalRequirementsState CRState =
ConditionalRequirementsState::Uncomputed;
/// The lazy member loader provides callbacks for populating imported and
/// deserialized conformances.
///
/// This is not use for parsed conformances -- those are lazily populated
/// by the ASTContext's LazyResolver, which is really a Sema instance.
LazyConformanceLoader *Loader = nullptr;
uint64_t LoaderContextData;
friend class ASTContext;
NormalProtocolConformance(Type conformingType, ProtocolDecl *protocol,
SourceLoc loc, DeclContext *dc,
ProtocolConformanceState state)
: RootProtocolConformance(ProtocolConformanceKind::Normal, conformingType),
ProtocolAndState(protocol, state), Loc(loc), ContextAndInvalid(dc, false)
{
assert(!conformingType->hasArchetype() &&
"ProtocolConformances should store interface types");
}
void resolveLazyInfo() const;
void differenceAndStoreConditionalRequirements() const;
public:
/// Get the protocol being conformed to.
ProtocolDecl *getProtocol() const { return ProtocolAndState.getPointer(); }
/// Retrieve the location of this
SourceLoc getLoc() const { return Loc; }
/// Get the declaration context that contains the conforming extension or
/// nominal type declaration.
DeclContext *getDeclContext() const {
return ContextAndInvalid.getPointer();
}
/// Get any additional requirements that are required for this conformance to
/// be satisfied if they can be computed.
///
/// If \c computeIfPossible is false, this will not do the lazy computation of
/// the conditional requirements and will just query the current state. This
/// should almost certainly only be used for debugging purposes, prefer \c
/// getConditionalRequirementsIfAvailable (these are separate because
/// CONFORMANCE_SUBCLASS_DISPATCH does some type checks and a defaulted
/// parameter gets in the way of that).
Optional<ArrayRef<Requirement>>
getConditionalRequirementsIfAvailableOrCached(bool computeIfPossible) const {
if (computeIfPossible)
differenceAndStoreConditionalRequirements();
if (CRState == ConditionalRequirementsState::Complete)
return ConditionalRequirements;
return None;
}
/// Get any additional requirements that are required for this conformance to
/// be satisfied if they can be computed.
Optional<ArrayRef<Requirement>>
getConditionalRequirementsIfAvailable() const {
return getConditionalRequirementsIfAvailableOrCached(
/*computeIfPossible=*/true);
}
/// Get any additional requirements that are required for this conformance to
/// be satisfied, e.g. for Array<T>: Equatable, T: Equatable also needs
/// to be satisfied.
ArrayRef<Requirement> getConditionalRequirements() const {
return *getConditionalRequirementsIfAvailable();
}
/// Retrieve the state of this conformance.
ProtocolConformanceState getState() const {
return ProtocolAndState.getInt();
}
/// Set the state of this conformance.
void setState(ProtocolConformanceState state) {
ProtocolAndState.setInt(state);
}
/// Determine whether this conformance is invalid.
bool isInvalid() const {
return ContextAndInvalid.getInt();
}
/// Mark this conformance as invalid.
void setInvalid() {
ContextAndInvalid.setInt(true);
SignatureConformances = {};
}
/// Get the kind of source from which this conformance comes.
ConformanceEntryKind getSourceKind() const {
return SourceKindAndImplyingConformance.getInt();
}
/// Get the protocol conformance which implied this implied conformance.
NormalProtocolConformance *getImplyingConformance() const {
assert(getSourceKind() == ConformanceEntryKind::Implied);
return SourceKindAndImplyingConformance.getPointer();
}
void setSourceKindAndImplyingConformance(
ConformanceEntryKind sourceKind,
NormalProtocolConformance *implyingConformance) {
assert(sourceKind != ConformanceEntryKind::Inherited &&
"a normal conformance cannot be inherited");
assert((sourceKind == ConformanceEntryKind::Implied) ==
(bool)implyingConformance &&
"an implied conformance needs something that implies it");
SourceKindAndImplyingConformance = {implyingConformance, sourceKind};
}
/// Determine whether this conformance is lazily loaded.
///
/// This only matters to the AST verifier.
bool isLazilyLoaded() const { return Loader != nullptr; }
/// A "retroactive" conformance is one that is defined in a module that
/// is neither the module that defines the protocol nor the module that
/// defines the conforming type.
bool isRetroactive() const;
/// Whether this conformance was synthesized automatically in multiple
/// modules, but in a manner that ensures that all copies are equivalent.
bool isSynthesizedNonUnique() const;
/// Whether clients from outside the module can rely on the value witnesses
/// being consistent across versions of the framework.
bool isResilient() const;
/// Retrieve the type witness and type decl (if one exists)
/// for the given associated type.
TypeWitnessAndDecl
getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options=None) const;
TypeWitnessAndDecl
getTypeWitnessUncached(AssociatedTypeDecl *requirement) const;
/// Determine whether the protocol conformance has a type witness for the
/// given associated type.
bool hasTypeWitness(AssociatedTypeDecl *assocType) const;
/// Set the type witness for the given associated type.
/// \param typeDecl the type decl the witness type came from, if one exists.
void setTypeWitness(AssociatedTypeDecl *assocType, Type type,
TypeDecl *typeDecl) const;
/// Given that the requirement signature of the protocol directly states
/// that the given dependent type must conform to the given protocol,
/// return its associated conformance.
ProtocolConformanceRef
getAssociatedConformance(Type assocType, ProtocolDecl *protocol) const;
/// Retrieve the value witness corresponding to the given requirement.
Witness getWitness(ValueDecl *requirement) const;
Witness getWitnessUncached(ValueDecl *requirement) const;
/// Determine whether the protocol conformance has a witness for the given
/// requirement.
bool hasWitness(ValueDecl *requirement) const {
if (Loader)
resolveLazyInfo();
return Mapping.count(requirement) > 0;
}
/// Set the witness for the given requirement.
void setWitness(ValueDecl *requirement, Witness witness) const;
/// Retrieve the protocol conformances that satisfy the requirements of the
/// protocol, which line up with the conformance constraints in the
/// protocol's requirement signature.
ArrayRef<ProtocolConformanceRef> getSignatureConformances() const {
if (Loader)
resolveLazyInfo();
return SignatureConformances;
}
/// Copy the given protocol conformances for the requirement signature into
/// the normal conformance.
void setSignatureConformances(ArrayRef<ProtocolConformanceRef> conformances);
/// Populate the signature conformances without checking if they satisfy
/// requirements. Can only be used with parsed or imported conformances.
void finishSignatureConformances();
/// Determine whether the witness for the given type requirement
/// is the default definition.
bool usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
TypeDecl *witnessDecl = getTypeWitnessAndDecl(requirement).getWitnessDecl();
if (witnessDecl)
return witnessDecl->isImplicit();
// Conservatively assume it does not.
return false;
}
void setLazyLoader(LazyConformanceLoader *resolver, uint64_t contextData);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getProtocol(), getDeclContext());
}
static void Profile(llvm::FoldingSetNodeID &ID, ProtocolDecl *protocol,
DeclContext *dc) {
ID.AddPointer(protocol);
ID.AddPointer(dc);
}
static bool classof(const ProtocolConformance *conformance) {
return conformance->getKind() == ProtocolConformanceKind::Normal;
}
};
/// The conformance of a protocol to itself.
///
/// For now, we generally do not use this type in ProtocolConformanceRefs;
/// it's only used to anchor structures relating to emitting witness tables
/// for self-conformances.
class SelfProtocolConformance : public RootProtocolConformance {
friend class ASTContext;
SelfProtocolConformance(Type conformingType)
: RootProtocolConformance(ProtocolConformanceKind::Self, conformingType) {
}
public:
/// Get the protocol being conformed to.
ProtocolDecl *getProtocol() const {
return getType()->castTo<ProtocolType>()->getDecl();
}
/// Get the declaration context in which this conformance was declared.
DeclContext *getDeclContext() const {
return getProtocol();
}
/// Retrieve the location of this conformance.
SourceLoc getLoc() const {
return getProtocol()->getLoc();
}
ProtocolConformanceState getState() const {
return ProtocolConformanceState::Complete;
}
bool isInvalid() const {
return false;
}
ConformanceEntryKind getSourceKind() const {
return ConformanceEntryKind::Explicit; // FIXME?
}
NormalProtocolConformance *getImplyingConformance() const {
llvm_unreachable("never an implied conformance");
}
bool hasTypeWitness(AssociatedTypeDecl *assocType) const {
llvm_unreachable("self-conformances never have associated types");
}
TypeWitnessAndDecl
getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options=None) const {
llvm_unreachable("self-conformances never have associated types");
}
Type getTypeWitness(AssociatedTypeDecl *assocType,
SubstOptions options=None) const {
llvm_unreachable("self-conformances never have associated types");
}
bool usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
llvm_unreachable("self-conformances never have associated types");
}
ProtocolConformanceRef getAssociatedConformance(Type assocType,
ProtocolDecl *protocol) const{
llvm_unreachable("self-conformances never have associated types");
}
bool hasWitness(ValueDecl *requirement) const {
return true;
}
Witness getWitness(ValueDecl *requirement) const;
Optional<ArrayRef<Requirement>> getConditionalRequirementsIfAvailable() const{
return ArrayRef<Requirement>();
}
/// Get any additional requirements that are required for this conformance to
/// be satisfied.
ArrayRef<Requirement> getConditionalRequirements() const {
return ArrayRef<Requirement>();
}
static bool classof(const ProtocolConformance *conformance) {
return conformance->getKind() == ProtocolConformanceKind::Self;
}
};
/// Specialized protocol conformance, which projects a generic protocol
/// conformance to one of the specializations of the generic type.
///
/// For example:
/// \code
/// protocol P { func foo() }
/// class A<T> : P { func foo() { } }
/// \endcode
///
/// \c A<T> conforms to \c P via normal protocol conformance. Any specialization
/// of \c A<T> conforms to \c P via a specialized protocol conformance. For
/// example, \c A<Int> conforms to \c P via a specialized protocol conformance
/// that refers to the normal protocol conformance \c A<T> to \c P with the
/// substitution \c T -> \c Int.
class SpecializedProtocolConformance : public ProtocolConformance,
public llvm::FoldingSetNode {
/// The generic conformance from which this conformance was derived.
ProtocolConformance *GenericConformance;
/// The substitutions applied to the generic conformance to produce this
/// conformance.
SubstitutionMap GenericSubstitutions;
/// The mapping from associated type requirements to their substitutions.
///
/// This mapping is lazily produced by specializing the underlying,
/// generic conformance.
mutable TypeWitnessMap TypeWitnesses;
/// Any conditional requirements, in substituted form. (E.g. given Foo<T>: Bar
/// where T: Bar, Foo<Baz<U>> will include Baz<U>: Bar.)
mutable Optional<ArrayRef<Requirement>> ConditionalRequirements;
friend class ASTContext;
SpecializedProtocolConformance(Type conformingType,
ProtocolConformance *genericConformance,
SubstitutionMap substitutions);
void computeConditionalRequirements() const;
public:
/// Get the generic conformance from which this conformance was derived,
/// if there is one.
ProtocolConformance *getGenericConformance() const {
return GenericConformance;
}
/// Get the substitution map representing the substitutions used to produce
/// this specialized conformance.
SubstitutionMap getSubstitutionMap() const { return GenericSubstitutions; }
/// Get any requirements that must be satisfied for this conformance to apply.
///
/// If \c computeIfPossible is false, this will not do the lazy computation of
/// the conditional requirements and will just query the current state. This
/// should almost certainly only be used for debugging purposes, prefer \c
/// getConditionalRequirementsIfAvailable (these are separate because
/// CONFORMANCE_SUBCLASS_DISPATCH does some type checks and a defaulted
/// parameter gets in the way of that).
Optional<ArrayRef<Requirement>>
getConditionalRequirementsIfAvailableOrCached(bool computeIfPossible) const {
if (computeIfPossible)
computeConditionalRequirements();
return ConditionalRequirements;
}
Optional<ArrayRef<Requirement>>
getConditionalRequirementsIfAvailable() const {
return getConditionalRequirementsIfAvailableOrCached(
/*computeIfPossible=*/true);
}
/// Get any requirements that must be satisfied for this conformance to apply.
ArrayRef<Requirement> getConditionalRequirements() const {
return *getConditionalRequirementsIfAvailable();
}
/// Get the protocol being conformed to.
ProtocolDecl *getProtocol() const {
return GenericConformance->getProtocol();
}
/// Get the declaration context that contains the conforming extension or
/// nominal type declaration.
DeclContext *getDeclContext() const {
return GenericConformance->getDeclContext();
}
/// Retrieve the state of this conformance.
ProtocolConformanceState getState() const {
return GenericConformance->getState();
}
/// Get the kind of source from which this conformance comes.
ConformanceEntryKind getSourceKind() const {
return GenericConformance->getSourceKind();
}
/// Get the protocol conformance which implied this implied conformance.
NormalProtocolConformance *getImplyingConformance() const {
return GenericConformance->getImplyingConformance();
}
bool hasTypeWitness(AssociatedTypeDecl *assocType) const;
/// Retrieve the type witness and type decl (if one exists)
/// for the given associated type.
TypeWitnessAndDecl
getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options=None) const;
/// Given that the requirement signature of the protocol directly states
/// that the given dependent type must conform to the given protocol,
/// return its associated conformance.
ProtocolConformanceRef
getAssociatedConformance(Type assocType, ProtocolDecl *protocol) const;
/// Retrieve the witness corresponding to the given value requirement.
ConcreteDeclRef getWitnessDeclRef(ValueDecl *requirement) const;
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
return GenericConformance->usesDefaultDefinition(requirement);
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getType(), getGenericConformance(), getSubstitutionMap());
}
static void Profile(llvm::FoldingSetNodeID &ID, Type type,
ProtocolConformance *genericConformance,
SubstitutionMap subs) {
ID.AddPointer(type.getPointer());
ID.AddPointer(genericConformance);
subs.profile(ID);
}
static bool classof(const ProtocolConformance *conformance) {
return conformance->getKind() == ProtocolConformanceKind::Specialized;
}
};
/// Inherited protocol conformance, which projects the conformance of a
/// superclass to its subclasses.
///
/// An example:
/// \code
/// protocol P { func foo() }
/// class A : P { func foo() { } }
/// class B : A { }
/// \endcode
///
/// \c A conforms to \c P via normal protocol conformance. The subclass \c B
/// of \c A conforms to \c P via an inherited protocol conformance.
class InheritedProtocolConformance : public ProtocolConformance,
public llvm::FoldingSetNode {
/// The conformance inherited from the superclass.
ProtocolConformance *InheritedConformance;
friend class ASTContext;
InheritedProtocolConformance(Type conformingType,
ProtocolConformance *inheritedConformance)
: ProtocolConformance(ProtocolConformanceKind::Inherited, conformingType),
InheritedConformance(inheritedConformance)
{
}
public:
/// Retrieve the conformance for the inherited type.
ProtocolConformance *getInheritedConformance() const {
return InheritedConformance;
}
/// Get the protocol being conformed to.
ProtocolDecl *getProtocol() const {
return InheritedConformance->getProtocol();
}
/// Get any requirements that must be satisfied for this conformance to apply.
Optional<ArrayRef<Requirement>>
getConditionalRequirementsIfAvailable() const {
return InheritedConformance->getConditionalRequirementsIfAvailable();
}
/// Get any requirements that must be satisfied for this conformance to apply.
ArrayRef<Requirement> getConditionalRequirements() const {
return InheritedConformance->getConditionalRequirements();
}
/// Get the declaration context that contains the conforming extension or
/// nominal type declaration.
DeclContext *getDeclContext() const {
auto bgc = getType()->getClassOrBoundGenericClass();
// In some cases, we may not have a BGC handy, in which case we should
// delegate to the inherited conformance for the decl context.
return bgc ? bgc : InheritedConformance->getDeclContext();
}
/// Retrieve the state of this conformance.
ProtocolConformanceState getState() const {
return InheritedConformance->getState();
}
/// Get the kind of source from which this conformance comes.
ConformanceEntryKind getSourceKind() const {
return ConformanceEntryKind::Inherited;
}
/// Get the protocol conformance which implied this implied conformance.
NormalProtocolConformance *getImplyingConformance() const { return nullptr; }
bool hasTypeWitness(AssociatedTypeDecl *assocType) const {
return InheritedConformance->hasTypeWitness(assocType);
}
/// Retrieve the type witness and type decl (if one exists)
/// for the given associated type.
TypeWitnessAndDecl
getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options=None) const {
return InheritedConformance->getTypeWitnessAndDecl(assocType, options);
}
/// Given that the requirement signature of the protocol directly states
/// that the given dependent type must conform to the given protocol,
/// return its associated conformance.
ProtocolConformanceRef
getAssociatedConformance(Type assocType, ProtocolDecl *protocol) const;
/// Retrieve the witness corresponding to the given value requirement.
ConcreteDeclRef getWitnessDeclRef(ValueDecl *requirement) const;
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
return InheritedConformance->usesDefaultDefinition(requirement);
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getType(), getInheritedConformance());
}
static void Profile(llvm::FoldingSetNodeID &ID, Type type,
ProtocolConformance *inheritedConformance) {
ID.AddPointer(type.getPointer());
ID.AddPointer(inheritedConformance);
}
static bool classof(const ProtocolConformance *conformance) {
return conformance->getKind() == ProtocolConformanceKind::Inherited;
}
};
inline bool ProtocolConformance::isInvalid() const {
return getRootConformance()->isInvalid();
}
inline bool ProtocolConformance::hasWitness(ValueDecl *requirement) const {
return getRootConformance()->hasWitness(requirement);
}
void simple_display(llvm::raw_ostream &out, const ProtocolConformance *conf);
} // end namespace swift
#endif // LLVM_SWIFT_AST_PROTOCOLCONFORMANCE_H