mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Some protocols, such as protocols marked with 'objc', do not have a Witness Table. The code before this patch assumes all protocols do have a Witness Table when generating the layout of an OpaqueTypeDescriptor, causing an assert to be triggered for opaque return types that conform to an 'objc' protocol. Fixes SR-12257 / rdar://problem/59740179
4808 lines
167 KiB
C++
4808 lines
167 KiB
C++
//===--- GenMeta.cpp - IR generation for metadata constructs --------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for type metadata constructs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "swift/ABI/TypeIdentity.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ASTMangler.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/CanTypeVisitor.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/SubstitutionMap.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/IRGen/Linking.h"
|
|
#include "swift/SIL/FormalLinkage.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "swift/Strings.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "Address.h"
|
|
#include "Callee.h"
|
|
#include "ClassLayout.h"
|
|
#include "ClassMetadataVisitor.h"
|
|
#include "ConstantBuilder.h"
|
|
#include "EnumMetadataVisitor.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "ForeignClassMetadataVisitor.h"
|
|
#include "GenArchetype.h"
|
|
#include "GenClass.h"
|
|
#include "GenDecl.h"
|
|
#include "GenPointerAuth.h"
|
|
#include "GenPoly.h"
|
|
#include "GenStruct.h"
|
|
#include "GenValueWitness.h"
|
|
#include "GenericArguments.h"
|
|
#include "HeapTypeInfo.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenMangler.h"
|
|
#include "IRGenModule.h"
|
|
#include "MetadataLayout.h"
|
|
#include "MetadataRequest.h"
|
|
#include "ProtocolInfo.h"
|
|
#include "ScalarTypeInfo.h"
|
|
#include "StructLayout.h"
|
|
#include "StructMetadataVisitor.h"
|
|
|
|
#include "GenMeta.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
static Address emitAddressOfMetadataSlotAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
int index,
|
|
llvm::Type *objectTy) {
|
|
// Require the metadata to be some type that we recognize as a
|
|
// metadata pointer.
|
|
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
|
|
|
|
return IGF.emitAddressAtOffset(metadata,
|
|
Offset(index * IGF.IGM.getPointerSize()),
|
|
objectTy, IGF.IGM.getPointerAlignment());
|
|
}
|
|
|
|
/// Emit a load from the given metadata at a constant index.
|
|
static llvm::LoadInst *emitLoadFromMetadataAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value **slotPtr,
|
|
int index,
|
|
llvm::Type *objectTy,
|
|
const llvm::Twine &suffix = "") {
|
|
Address slot =
|
|
emitAddressOfMetadataSlotAtIndex(IGF, metadata, index, objectTy);
|
|
if (slotPtr) *slotPtr = slot.getAddress();
|
|
|
|
// Load.
|
|
return IGF.Builder.CreateLoad(slot, metadata->getName() + suffix);
|
|
}
|
|
|
|
static Address createPointerSizedGEP(IRGenFunction &IGF,
|
|
Address base,
|
|
Size offset) {
|
|
return IGF.Builder.CreateConstArrayGEP(base,
|
|
IGF.IGM.getOffsetInWords(offset),
|
|
offset);
|
|
}
|
|
|
|
void IRGenModule::setTrueConstGlobal(llvm::GlobalVariable *var) {
|
|
disableAddressSanitizer(*this, var);
|
|
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::UnknownObjectFormat:
|
|
llvm_unreachable("unknown object format");
|
|
case llvm::Triple::MachO:
|
|
var->setSection("__TEXT,__const");
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
case llvm::Triple::Wasm:
|
|
var->setSection(".rodata");
|
|
break;
|
|
case llvm::Triple::XCOFF:
|
|
case llvm::Triple::COFF:
|
|
var->setSection(".rdata");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/** Metadata completion ******************************************************/
|
|
/*****************************************************************************/
|
|
|
|
/// Does the metadata for the given type, which we are currently emitting,
|
|
/// require singleton metadata initialization structures and functions?
|
|
static bool needsSingletonMetadataInitialization(IRGenModule &IGM,
|
|
NominalTypeDecl *typeDecl) {
|
|
// Generic types never have singleton metadata initialization.
|
|
if (typeDecl->isGenericContext())
|
|
return false;
|
|
|
|
// Non-generic classes use singleton initialization if they have anything
|
|
// non-trivial about their metadata.
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(typeDecl)) {
|
|
switch (IGM.getClassMetadataStrategy(classDecl)) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
case ClassMetadataStrategy::Singleton:
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
return true;
|
|
case ClassMetadataStrategy::Fixed:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
assert(isa<StructDecl>(typeDecl) || isa<EnumDecl>(typeDecl));
|
|
|
|
// If the type is known to be fixed-layout, we can emit its metadata such
|
|
// that it doesn't need dynamic initialization.
|
|
auto &ti = IGM.getTypeInfoForUnlowered(typeDecl->getDeclaredTypeInContext());
|
|
if (ti.isFixedSize(ResilienceExpansion::Maximal))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
using MetadataCompletionBodyEmitter =
|
|
void (IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector);
|
|
|
|
static void emitMetadataCompletionFunction(IRGenModule &IGM,
|
|
NominalTypeDecl *typeDecl,
|
|
llvm::function_ref<MetadataCompletionBodyEmitter> body) {
|
|
llvm::Function *f =
|
|
IGM.getAddrOfTypeMetadataCompletionFunction(typeDecl, ForDefinition);
|
|
f->setAttributes(IGM.constructInitialAttributes());
|
|
f->setDoesNotThrow();
|
|
IGM.setHasFramePointer(f, false);
|
|
|
|
IRGenFunction IGF(IGM, f);
|
|
|
|
// Skip instrumentation when building for TSan to avoid false positives.
|
|
// The synchronization for this happens in the Runtime and we do not see it.
|
|
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
|
|
f->removeFnAttr(llvm::Attribute::SanitizeThread);
|
|
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, f);
|
|
|
|
Explosion params = IGF.collectParameters();
|
|
llvm::Value *metadata = params.claimNext();
|
|
llvm::Value *context = params.claimNext();
|
|
llvm::Value *templatePointer = params.claimNext();
|
|
|
|
// TODO: use these?
|
|
(void) context;
|
|
(void) templatePointer;
|
|
|
|
MetadataDependencyCollector collector;
|
|
|
|
body(IGF, metadata, &collector);
|
|
|
|
// At the current insertion point, the metadata is now complete.
|
|
|
|
// Merge with any metadata dependencies we may have collected.
|
|
auto dependency = collector.finish(IGF);
|
|
auto returnValue = dependency.combine(IGF);
|
|
|
|
IGF.Builder.CreateRet(returnValue);
|
|
}
|
|
|
|
static bool needsForeignMetadataCompletionFunction(IRGenModule &IGM,
|
|
StructDecl *decl) {
|
|
// Currently, foreign structs never need a completion function.
|
|
return false;
|
|
}
|
|
|
|
static bool needsForeignMetadataCompletionFunction(IRGenModule &IGM,
|
|
EnumDecl *decl) {
|
|
// Currently, foreign enums never need a completion function.
|
|
return false;
|
|
}
|
|
|
|
static bool needsForeignMetadataCompletionFunction(IRGenModule &IGM,
|
|
ClassDecl *decl) {
|
|
return IGM.getOptions().LazyInitializeClassMetadata || decl->hasSuperclass();
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/** Nominal Type Descriptor Emission *****************************************/
|
|
/*****************************************************************************/
|
|
|
|
template <class Flags>
|
|
static Flags getMethodDescriptorFlags(ValueDecl *fn) {
|
|
if (isa<ConstructorDecl>(fn))
|
|
return Flags(Flags::Kind::Init); // 'init' is considered static
|
|
|
|
auto kind = [&] {
|
|
auto accessor = dyn_cast<AccessorDecl>(fn);
|
|
if (!accessor) return Flags::Kind::Method;
|
|
switch (accessor->getAccessorKind()) {
|
|
case AccessorKind::Get:
|
|
return Flags::Kind::Getter;
|
|
case AccessorKind::Set:
|
|
return Flags::Kind::Setter;
|
|
case AccessorKind::Read:
|
|
return Flags::Kind::ReadCoroutine;
|
|
case AccessorKind::Modify:
|
|
return Flags::Kind::ModifyCoroutine;
|
|
#define OPAQUE_ACCESSOR(ID, KEYWORD)
|
|
#define ACCESSOR(ID) \
|
|
case AccessorKind::ID:
|
|
#include "swift/AST/AccessorKinds.def"
|
|
llvm_unreachable("these accessors never appear in protocols or v-tables");
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}();
|
|
return Flags(kind).withIsInstance(!fn->isStatic());
|
|
}
|
|
|
|
namespace {
|
|
template<class Impl>
|
|
class ContextDescriptorBuilderBase {
|
|
protected:
|
|
Impl &asImpl() { return *static_cast<Impl*>(this); }
|
|
IRGenModule &IGM;
|
|
private:
|
|
ConstantInitBuilder InitBuilder;
|
|
protected:
|
|
ConstantStructBuilder B;
|
|
Optional<ConstantAggregateBuilderBase::PlaceholderPosition>
|
|
GenericParamCount,
|
|
GenericRequirementCount,
|
|
GenericKeyArgumentCount,
|
|
GenericExtraArgumentCount;
|
|
unsigned NumGenericKeyArguments = 0;
|
|
unsigned NumGenericExtraArguments = 0;
|
|
|
|
ContextDescriptorBuilderBase(IRGenModule &IGM)
|
|
: IGM(IGM), InitBuilder(IGM), B(InitBuilder.beginStruct()) {
|
|
B.setPacked(true);
|
|
}
|
|
|
|
public:
|
|
void layout() {
|
|
asImpl().addFlags();
|
|
asImpl().addParent();
|
|
}
|
|
|
|
void addFlags() {
|
|
B.addInt32(
|
|
ContextDescriptorFlags(asImpl().getContextKind(),
|
|
!asImpl().getGenericSignature().isNull(),
|
|
asImpl().isUniqueDescriptor(),
|
|
asImpl().getVersion(),
|
|
asImpl().getKindSpecificFlags())
|
|
.getIntValue());
|
|
}
|
|
|
|
void addParent() {
|
|
ConstantReference parent = asImpl().getParent();
|
|
if (parent.getValue()) {
|
|
B.addRelativeAddress(parent);
|
|
} else {
|
|
B.addInt32(0); // null offset
|
|
}
|
|
}
|
|
|
|
void addGenericSignature() {
|
|
if (!asImpl().getGenericSignature())
|
|
return;
|
|
|
|
asImpl().addGenericParametersHeader();
|
|
asImpl().addGenericParameters();
|
|
asImpl().addGenericRequirements();
|
|
asImpl().finishGenericParameters();
|
|
}
|
|
|
|
void addGenericParametersHeader() {
|
|
// Drop placeholders for the counts. We'll fill these in when we emit
|
|
// the related sections.
|
|
GenericParamCount = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
GenericRequirementCount = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
GenericKeyArgumentCount = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
GenericExtraArgumentCount = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
}
|
|
|
|
void addGenericParameters() {
|
|
GenericSignature sig = asImpl().getGenericSignature();
|
|
assert(sig);
|
|
auto canSig = sig.getCanonicalSignature();
|
|
|
|
canSig->forEachParam([&](GenericTypeParamType *param, bool canonical) {
|
|
// Currently, there are only type parameters. The parameter is a key
|
|
// argument if it's canonical in its generic context.
|
|
asImpl().addGenericParameter(GenericParamKind::Type,
|
|
/*key argument*/ canonical,
|
|
/*extra argument*/ false);
|
|
});
|
|
|
|
// Pad the structure up to four bytes for the following requirements.
|
|
unsigned padding = (unsigned) -canSig->getGenericParams().size() & 3;
|
|
for (unsigned i = 0; i < padding; ++i)
|
|
B.addInt(IGM.Int8Ty, 0);
|
|
|
|
// Fill in the parameter count.
|
|
assert(canSig->getGenericParams().size() <= UINT16_MAX
|
|
&& "way too generic");
|
|
B.fillPlaceholderWithInt(*GenericParamCount, IGM.Int16Ty,
|
|
canSig->getGenericParams().size());
|
|
}
|
|
|
|
void addGenericParameter(GenericParamKind kind,
|
|
bool isKeyArgument, bool isExtraArgument) {
|
|
if (isKeyArgument)
|
|
++NumGenericKeyArguments;
|
|
if (isExtraArgument)
|
|
++NumGenericExtraArguments;
|
|
|
|
B.addInt(IGM.Int8Ty,
|
|
GenericParamDescriptor(kind, isKeyArgument, isExtraArgument)
|
|
.getIntValue());
|
|
}
|
|
|
|
void addGenericRequirements() {
|
|
auto metadata =
|
|
irgen::addGenericRequirements(IGM, B,
|
|
asImpl().getGenericSignature(),
|
|
asImpl().getGenericSignature()->getRequirements());
|
|
|
|
// Fill in the final requirement count.
|
|
assert(metadata.NumRequirements <= UINT16_MAX
|
|
&& "way too generic");
|
|
B.fillPlaceholderWithInt(*GenericRequirementCount, IGM.Int16Ty,
|
|
metadata.NumRequirements);
|
|
NumGenericKeyArguments += metadata.NumGenericKeyArguments;
|
|
NumGenericExtraArguments += metadata.NumGenericExtraArguments;
|
|
}
|
|
|
|
void finishGenericParameters() {
|
|
assert(NumGenericKeyArguments <= UINT16_MAX
|
|
&& NumGenericExtraArguments <= UINT16_MAX
|
|
&& "way too generic");
|
|
B.fillPlaceholderWithInt(*GenericKeyArgumentCount, IGM.Int16Ty,
|
|
NumGenericKeyArguments);
|
|
B.fillPlaceholderWithInt(*GenericExtraArgumentCount, IGM.Int16Ty,
|
|
NumGenericExtraArguments);
|
|
}
|
|
|
|
uint8_t getVersion() {
|
|
return 0;
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
return 0;
|
|
}
|
|
|
|
// Subclasses should provide:
|
|
//
|
|
// bool isUniqueDescriptor();
|
|
// llvm::Constant *getParent();
|
|
// ContextDescriptorKind getContextKind();
|
|
// GenericSignature getGenericSignature();
|
|
// void emit();
|
|
};
|
|
|
|
class ModuleContextDescriptorBuilder
|
|
: public ContextDescriptorBuilderBase<ModuleContextDescriptorBuilder> {
|
|
using super = ContextDescriptorBuilderBase;
|
|
|
|
ModuleDecl *M;
|
|
|
|
public:
|
|
ModuleContextDescriptorBuilder(IRGenModule &IGM, ModuleDecl *M)
|
|
: super(IGM), M(M)
|
|
{}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
addName();
|
|
}
|
|
|
|
void addName() {
|
|
B.addRelativeAddress(IGM.getAddrOfGlobalString(M->getName().str(),
|
|
/*willBeRelativelyAddressed*/ true));
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
return false;
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
return {nullptr, ConstantReference::Direct};
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Module;
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return nullptr;
|
|
}
|
|
|
|
void emit() {
|
|
asImpl().layout();
|
|
|
|
auto addr = IGM.getAddrOfModuleContextDescriptor(M,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
}
|
|
};
|
|
|
|
class ExtensionContextDescriptorBuilder
|
|
: public ContextDescriptorBuilderBase<ExtensionContextDescriptorBuilder> {
|
|
|
|
using super = ContextDescriptorBuilderBase;
|
|
|
|
ExtensionDecl *E;
|
|
|
|
public:
|
|
ExtensionContextDescriptorBuilder(IRGenModule &IGM, ExtensionDecl *E)
|
|
: super(IGM), E(E)
|
|
{}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
addExtendedContext();
|
|
addGenericSignature();
|
|
}
|
|
|
|
void addExtendedContext() {
|
|
auto string = IGM.getTypeRef(E->getSelfInterfaceType(),
|
|
E->getGenericSignature(),
|
|
MangledTypeRefRole::Metadata).first;
|
|
B.addRelativeAddress(string);
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
return {IGM.getAddrOfModuleContextDescriptor(E->getParentModule()),
|
|
ConstantReference::Direct};
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
// Extensions generated by the Clang importer will be emitted into any
|
|
// binary that uses the Clang module. Otherwise, we can guarantee that
|
|
// an extension (and any of its possible sub-contexts) belong to one
|
|
// translation unit.
|
|
return !isa<ClangModuleUnit>(E->getModuleScopeContext());
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Extension;
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return E->getGenericSignature();
|
|
}
|
|
|
|
void emit() {
|
|
asImpl().layout();
|
|
|
|
auto addr = IGM.getAddrOfExtensionContextDescriptor(E,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
}
|
|
};
|
|
|
|
class AnonymousContextDescriptorBuilder
|
|
: public ContextDescriptorBuilderBase<AnonymousContextDescriptorBuilder> {
|
|
|
|
using super = ContextDescriptorBuilderBase;
|
|
|
|
PointerUnion<DeclContext *, VarDecl *> Name;
|
|
|
|
DeclContext *getInnermostDeclContext() {
|
|
if (auto DC = Name.dyn_cast<DeclContext *>()) {
|
|
return DC;
|
|
}
|
|
if (auto VD = Name.dyn_cast<VarDecl *>()) {
|
|
return VD->getInnermostDeclContext();
|
|
}
|
|
llvm_unreachable("unknown name kind");
|
|
}
|
|
|
|
public:
|
|
AnonymousContextDescriptorBuilder(IRGenModule &IGM,
|
|
PointerUnion<DeclContext *, VarDecl *> Name)
|
|
: super(IGM), Name(Name)
|
|
{
|
|
}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
asImpl().addGenericSignature();
|
|
asImpl().addMangledName();
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
return IGM.getAddrOfParentContextDescriptor(
|
|
getInnermostDeclContext(), /*fromAnonymousContext=*/true);
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Anonymous;
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return getInnermostDeclContext()->getGenericSignatureOfContext();
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
return true;
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
AnonymousContextDescriptorFlags flags{};
|
|
flags.setHasMangledName(
|
|
IGM.IRGen.Opts.EnableAnonymousContextMangledNames);
|
|
|
|
return flags.getOpaqueValue();
|
|
}
|
|
|
|
void addMangledName() {
|
|
if (!IGM.IRGen.Opts.EnableAnonymousContextMangledNames)
|
|
return;
|
|
|
|
IRGenMangler mangler;
|
|
auto mangledName = mangler.mangleAnonymousDescriptorName(Name);
|
|
auto mangledNameConstant =
|
|
IGM.getAddrOfGlobalString(mangledName,
|
|
/*willBeRelativelyAddressed*/ true);
|
|
B.addRelativeAddress(mangledNameConstant);
|
|
}
|
|
|
|
void emit() {
|
|
asImpl().layout();
|
|
auto addr = IGM.getAddrOfAnonymousContextDescriptor(Name,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
}
|
|
};
|
|
|
|
class ProtocolDescriptorBuilder
|
|
: public ContextDescriptorBuilderBase<ProtocolDescriptorBuilder> {
|
|
|
|
using super = ContextDescriptorBuilderBase;
|
|
|
|
ProtocolDecl *Proto;
|
|
SILDefaultWitnessTable *DefaultWitnesses;
|
|
|
|
Optional<ConstantAggregateBuilderBase::PlaceholderPosition>
|
|
NumRequirementsInSignature,
|
|
NumRequirements;
|
|
|
|
bool Resilient;
|
|
|
|
public:
|
|
ProtocolDescriptorBuilder(IRGenModule &IGM, ProtocolDecl *Proto,
|
|
SILDefaultWitnessTable *defaultWitnesses)
|
|
: super(IGM), Proto(Proto), DefaultWitnesses(defaultWitnesses),
|
|
Resilient(IGM.isResilient(Proto, ResilienceExpansion::Minimal)) {}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
return IGM.getAddrOfParentContextDescriptor(
|
|
Proto, /*fromAnonymousContext=*/false);
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Protocol;
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return nullptr;
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
return true;
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
ProtocolContextDescriptorFlags flags;
|
|
flags.setClassConstraint(Proto->requiresClass()
|
|
? ProtocolClassConstraint::Class
|
|
: ProtocolClassConstraint::Any);
|
|
flags.setSpecialProtocol(getSpecialProtocolID(Proto));
|
|
flags.setIsResilient(DefaultWitnesses != nullptr);
|
|
return flags.getOpaqueValue();
|
|
}
|
|
|
|
void emit() {
|
|
asImpl().layout();
|
|
asImpl().addName();
|
|
NumRequirementsInSignature = B.addPlaceholderWithSize(IGM.Int32Ty);
|
|
NumRequirements = B.addPlaceholderWithSize(IGM.Int32Ty);
|
|
asImpl().addAssociatedTypeNames();
|
|
asImpl().addRequirementSignature();
|
|
asImpl().addRequirements();
|
|
auto addr = IGM.getAddrOfProtocolDescriptor(Proto,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
}
|
|
|
|
void addName() {
|
|
auto nameStr = IGM.getAddrOfGlobalString(Proto->getName().str(),
|
|
/*willBeRelativelyAddressed*/ true);
|
|
B.addRelativeAddress(nameStr);
|
|
}
|
|
|
|
void addRequirementSignature() {
|
|
auto metadata =
|
|
irgen::addGenericRequirements(IGM, B, Proto->getGenericSignature(),
|
|
Proto->getRequirementSignature());
|
|
|
|
B.fillPlaceholderWithInt(*NumRequirementsInSignature, IGM.Int32Ty,
|
|
metadata.NumRequirements);
|
|
}
|
|
|
|
struct RequirementInfo {
|
|
ProtocolRequirementFlags Flags;
|
|
llvm::Constant *DefaultImpl;
|
|
};
|
|
|
|
/// Build the information which will go into a ProtocolRequirement entry.
|
|
RequirementInfo getRequirementInfo(const WitnessTableEntry &entry) {
|
|
using Flags = ProtocolRequirementFlags;
|
|
if (entry.isBase()) {
|
|
assert(entry.isOutOfLineBase());
|
|
auto flags = Flags(Flags::Kind::BaseProtocol);
|
|
return { flags, nullptr };
|
|
}
|
|
|
|
if (entry.isAssociatedType()) {
|
|
auto flags = Flags(Flags::Kind::AssociatedTypeAccessFunction);
|
|
if (auto &schema = IGM.getOptions().PointerAuth
|
|
.ProtocolAssociatedTypeAccessFunctions) {
|
|
addDiscriminator(flags, schema,
|
|
AssociatedType(entry.getAssociatedType()));
|
|
}
|
|
|
|
// Look for a default witness.
|
|
llvm::Constant *defaultImpl =
|
|
findDefaultTypeWitness(entry.getAssociatedType());
|
|
|
|
return { flags, defaultImpl };
|
|
}
|
|
|
|
if (entry.isAssociatedConformance()) {
|
|
auto flags = Flags(Flags::Kind::AssociatedConformanceAccessFunction);
|
|
if (auto &schema = IGM.getOptions().PointerAuth
|
|
.ProtocolAssociatedTypeWitnessTableAccessFunctions) {
|
|
addDiscriminator(flags, schema,
|
|
AssociatedConformance(Proto,
|
|
entry.getAssociatedConformancePath(),
|
|
entry.getAssociatedConformanceRequirement()));
|
|
}
|
|
|
|
// Look for a default witness.
|
|
llvm::Constant *defaultImpl =
|
|
findDefaultAssociatedConformanceWitness(
|
|
entry.getAssociatedConformancePath(),
|
|
entry.getAssociatedConformanceRequirement());
|
|
|
|
return { flags, defaultImpl };
|
|
}
|
|
|
|
assert(entry.isFunction());
|
|
SILDeclRef func(entry.getFunction());
|
|
|
|
// Emit the dispatch thunk.
|
|
if (Resilient)
|
|
IGM.emitDispatchThunk(func);
|
|
|
|
// Classify the function.
|
|
auto flags = getMethodDescriptorFlags<Flags>(func.getDecl());
|
|
|
|
if (auto &schema = IGM.getOptions().PointerAuth.ProtocolWitnesses) {
|
|
SILDeclRef declRef(func.getDecl(),
|
|
isa<ConstructorDecl>(func.getDecl())
|
|
? SILDeclRef::Kind::Allocator
|
|
: SILDeclRef::Kind::Func);
|
|
addDiscriminator(flags, schema, declRef);
|
|
}
|
|
|
|
// Look for a default witness.
|
|
llvm::Constant *defaultImpl = findDefaultWitness(func);
|
|
|
|
return { flags, defaultImpl };
|
|
}
|
|
|
|
void addDiscriminator(ProtocolRequirementFlags &flags,
|
|
const PointerAuthSchema &schema,
|
|
const PointerAuthEntity &entity) {
|
|
assert(schema);
|
|
auto discriminator =
|
|
PointerAuthInfo::getOtherDiscriminator(IGM, schema, entity);
|
|
flags = flags.withExtraDiscriminator(discriminator->getZExtValue());
|
|
}
|
|
|
|
void addRequirements() {
|
|
auto &pi = IGM.getProtocolInfo(Proto, ProtocolInfoKind::Full);
|
|
|
|
B.fillPlaceholderWithInt(*NumRequirements, IGM.Int32Ty,
|
|
pi.getNumWitnesses());
|
|
|
|
if (pi.getNumWitnesses() > 0) {
|
|
// Define the protocol requirements "base" descriptor, which references
|
|
// the beginning of the protocol requirements, offset so that
|
|
// subtracting this address from the address of a given protocol
|
|
// requirements gives the corresponding offset into the witness
|
|
// table.
|
|
auto address =
|
|
B.getAddrOfCurrentPosition(IGM.ProtocolRequirementStructTy);
|
|
int offset = WitnessTableFirstRequirementOffset;
|
|
auto firstReqAdjustment = llvm::ConstantInt::get(IGM.Int32Ty, -offset);
|
|
address = llvm::ConstantExpr::getGetElementPtr(nullptr, address,
|
|
firstReqAdjustment);
|
|
|
|
IGM.defineProtocolRequirementsBaseDescriptor(Proto, address);
|
|
}
|
|
|
|
for (auto &entry : pi.getWitnessEntries()) {
|
|
if (Resilient) {
|
|
if (entry.isFunction()) {
|
|
// Define the method descriptor.
|
|
SILDeclRef func(entry.getFunction());
|
|
auto *descriptor =
|
|
B.getAddrOfCurrentPosition(
|
|
IGM.ProtocolRequirementStructTy);
|
|
IGM.defineMethodDescriptor(func, Proto, descriptor);
|
|
}
|
|
}
|
|
|
|
if (entry.isAssociatedType()) {
|
|
auto assocType = entry.getAssociatedType();
|
|
// Define the associated type descriptor to point to the current
|
|
// position in the protocol descriptor.
|
|
IGM.defineAssociatedTypeDescriptor(
|
|
assocType,
|
|
B.getAddrOfCurrentPosition(IGM.ProtocolRequirementStructTy));
|
|
}
|
|
|
|
if (entry.isAssociatedConformance()) {
|
|
// Define the associated conformance descriptor to point to the
|
|
// current position in the protocol descriptor.
|
|
AssociatedConformance conformance(
|
|
Proto,
|
|
entry.getAssociatedConformancePath(),
|
|
entry.getAssociatedConformanceRequirement());
|
|
IGM.defineAssociatedConformanceDescriptor(
|
|
conformance,
|
|
B.getAddrOfCurrentPosition(IGM.ProtocolRequirementStructTy));
|
|
}
|
|
|
|
if (entry.isBase()) {
|
|
// Define a base conformance descriptor, which is just an associated
|
|
// conformance descriptor for a base protocol.
|
|
BaseConformance conformance(Proto, entry.getBase());
|
|
IGM.defineBaseConformanceDescriptor(
|
|
conformance,
|
|
B.getAddrOfCurrentPosition(IGM.ProtocolRequirementStructTy));
|
|
}
|
|
|
|
auto reqt = B.beginStruct(IGM.ProtocolRequirementStructTy);
|
|
|
|
auto info = getRequirementInfo(entry);
|
|
|
|
// Flags.
|
|
reqt.addInt32(info.Flags.getIntValue());
|
|
|
|
// Default implementation.
|
|
reqt.addRelativeAddressOrNull(info.DefaultImpl);
|
|
|
|
reqt.finishAndAddTo(B);
|
|
}
|
|
}
|
|
|
|
llvm::Constant *findDefaultWitness(SILDeclRef func) {
|
|
if (!DefaultWitnesses) return nullptr;
|
|
|
|
for (auto &entry : DefaultWitnesses->getEntries()) {
|
|
if (!entry.isValid() || entry.getKind() != SILWitnessTable::Method ||
|
|
entry.getMethodWitness().Requirement != func)
|
|
continue;
|
|
return IGM.getAddrOfSILFunction(entry.getMethodWitness().Witness,
|
|
NotForDefinition);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::Constant *findDefaultTypeWitness(AssociatedTypeDecl *assocType) {
|
|
if (!DefaultWitnesses) return nullptr;
|
|
|
|
for (auto &entry : DefaultWitnesses->getEntries()) {
|
|
if (!entry.isValid() ||
|
|
entry.getKind() != SILWitnessTable::AssociatedType ||
|
|
entry.getAssociatedTypeWitness().Requirement != assocType)
|
|
continue;
|
|
|
|
auto witness =
|
|
entry.getAssociatedTypeWitness().Witness->mapTypeOutOfContext();
|
|
return IGM.getAssociatedTypeWitness(witness,
|
|
Proto->getGenericSignature(),
|
|
/*inProtocolContext=*/true);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::Constant *findDefaultAssociatedConformanceWitness(
|
|
CanType association,
|
|
ProtocolDecl *requirement) {
|
|
if (!DefaultWitnesses) return nullptr;
|
|
|
|
for (auto &entry : DefaultWitnesses->getEntries()) {
|
|
if (!entry.isValid() ||
|
|
entry.getKind() != SILWitnessTable::AssociatedTypeProtocol ||
|
|
entry.getAssociatedTypeProtocolWitness().Protocol != requirement ||
|
|
entry.getAssociatedTypeProtocolWitness().Requirement != association)
|
|
continue;
|
|
|
|
auto witness = entry.getAssociatedTypeProtocolWitness().Witness;
|
|
AssociatedConformance conformance(Proto, association, requirement);
|
|
defineDefaultAssociatedConformanceAccessFunction(conformance, witness);
|
|
return IGM.getMangledAssociatedConformance(nullptr, conformance);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void defineDefaultAssociatedConformanceAccessFunction(
|
|
AssociatedConformance requirement,
|
|
ProtocolConformanceRef conformance) {
|
|
auto accessor =
|
|
IGM.getAddrOfDefaultAssociatedConformanceAccessor(requirement);
|
|
|
|
IRGenFunction IGF(IGM, accessor);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, accessor);
|
|
|
|
Explosion parameters = IGF.collectParameters();
|
|
|
|
llvm::Value *associatedTypeMetadata = parameters.claimNext();
|
|
llvm::Value *self = parameters.claimNext();
|
|
llvm::Value *wtable = parameters.claimNext();
|
|
|
|
bool hasArchetype =
|
|
!conformance.isConcrete() ||
|
|
conformance.getConcrete()->getType()->hasArchetype();
|
|
if (hasArchetype) {
|
|
// Bind local Self type data from the metadata argument.
|
|
auto selfInContext = Proto->getSelfTypeInContext()->getCanonicalType();
|
|
IGF.bindLocalTypeDataFromTypeMetadata(selfInContext, IsExact, self,
|
|
MetadataState::Abstract);
|
|
IGF.setUnscopedLocalTypeData(
|
|
selfInContext,
|
|
LocalTypeDataKind::forAbstractProtocolWitnessTable(Proto),
|
|
wtable);
|
|
|
|
// Bind the associated type metadata.
|
|
IGF.bindLocalTypeDataFromTypeMetadata(requirement.getAssociation(),
|
|
IsExact,
|
|
associatedTypeMetadata,
|
|
MetadataState::Abstract);
|
|
}
|
|
|
|
// For a concrete witness table, call it.
|
|
ProtocolDecl *associatedProtocol = requirement.getAssociatedRequirement();
|
|
if (conformance.isConcrete()) {
|
|
auto conformanceI = &IGM.getConformanceInfo(associatedProtocol,
|
|
conformance.getConcrete());
|
|
auto returnValue = conformanceI->getTable(IGF, &associatedTypeMetadata);
|
|
IGF.Builder.CreateRet(returnValue);
|
|
return;
|
|
}
|
|
|
|
// For an abstract table, emit a reference to the witness table.
|
|
CanType associatedTypeInContext
|
|
= Proto->mapTypeIntoContext(requirement.getAssociation())
|
|
->getCanonicalType();
|
|
auto returnValue =
|
|
emitArchetypeWitnessTableRef(
|
|
IGF,
|
|
cast<ArchetypeType>(associatedTypeInContext),
|
|
associatedProtocol);
|
|
IGF.Builder.CreateRet(returnValue);
|
|
return;
|
|
}
|
|
|
|
void addAssociatedTypeNames() {
|
|
std::string AssociatedTypeNames;
|
|
|
|
auto &pi = IGM.getProtocolInfo(Proto,
|
|
ProtocolInfoKind::RequirementSignature);
|
|
for (auto &entry : pi.getWitnessEntries()) {
|
|
// Add the associated type name to the list.
|
|
if (entry.isAssociatedType()) {
|
|
if (!AssociatedTypeNames.empty())
|
|
AssociatedTypeNames += ' ';
|
|
AssociatedTypeNames += entry.getAssociatedType()->getName().str();
|
|
}
|
|
}
|
|
|
|
llvm::Constant *global = nullptr;
|
|
if (!AssociatedTypeNames.empty()) {
|
|
global = IGM.getAddrOfGlobalString(AssociatedTypeNames,
|
|
/*willBeRelativelyAddressed=*/true);
|
|
}
|
|
B.addRelativeAddressOrNull(global);
|
|
}
|
|
};
|
|
|
|
template<class Impl, class DeclType>
|
|
class TypeContextDescriptorBuilderBase
|
|
: public ContextDescriptorBuilderBase<Impl> {
|
|
|
|
using super = ContextDescriptorBuilderBase<Impl>;
|
|
|
|
protected:
|
|
DeclType *Type;
|
|
RequireMetadata_t HasMetadata;
|
|
TypeContextDescriptorFlags::MetadataInitializationKind
|
|
MetadataInitialization;
|
|
|
|
StringRef UserFacingName;
|
|
Optional<TypeImportInfo<std::string>> ImportInfo;
|
|
|
|
using super::IGM;
|
|
using super::B;
|
|
using super::asImpl;
|
|
|
|
public:
|
|
using super::addGenericSignature;
|
|
|
|
TypeContextDescriptorBuilderBase(IRGenModule &IGM, DeclType *Type,
|
|
RequireMetadata_t requireMetadata)
|
|
: super(IGM), Type(Type),
|
|
HasMetadata(requireMetadata),
|
|
MetadataInitialization(computeMetadataInitialization()) {
|
|
}
|
|
|
|
void layout() {
|
|
asImpl().computeIdentity();
|
|
|
|
super::layout();
|
|
asImpl().addName();
|
|
asImpl().addAccessFunction();
|
|
asImpl().addReflectionFieldDescriptor();
|
|
asImpl().addLayoutInfo();
|
|
asImpl().addGenericSignature();
|
|
asImpl().maybeAddResilientSuperclass();
|
|
asImpl().maybeAddMetadataInitialization();
|
|
}
|
|
|
|
/// Fill out all the aspects of the type identity.
|
|
void computeIdentity() {
|
|
// Remember the user-facing name.
|
|
UserFacingName = Type->getName().str();
|
|
|
|
// For related entities, set the original type name as the ABI name
|
|
// and remember the related entity tag.
|
|
StringRef abiName;
|
|
if (auto *synthesizedTypeAttr =
|
|
Type->getAttrs()
|
|
.template getAttribute<ClangImporterSynthesizedTypeAttr>()) {
|
|
abiName = synthesizedTypeAttr->originalTypeName;
|
|
|
|
getMutableImportInfo().RelatedEntityName =
|
|
std::string(synthesizedTypeAttr->getManglingName());
|
|
|
|
// Otherwise, if this was imported from a Clang declaration, use that
|
|
// declaration's name as the ABI name.
|
|
} else if (auto clangDecl =
|
|
Mangle::ASTMangler::getClangDeclForMangling(Type)) {
|
|
abiName = clangDecl->getName();
|
|
|
|
// Typedefs and compatibility aliases that have been promoted to
|
|
// their own nominal types need to be marked specially.
|
|
if (isa<clang::TypedefNameDecl>(clangDecl) ||
|
|
isa<clang::ObjCCompatibleAliasDecl>(clangDecl)) {
|
|
getMutableImportInfo().SymbolNamespace =
|
|
TypeImportSymbolNamespace::CTypedef;
|
|
}
|
|
}
|
|
|
|
// If the ABI name differs from the user-facing name, add it as
|
|
// an override.
|
|
if (!abiName.empty() && abiName != UserFacingName) {
|
|
getMutableImportInfo().ABIName = std::string(abiName);
|
|
}
|
|
}
|
|
|
|
/// Get the mutable import info. Note that calling this method itself
|
|
/// changes the code to cause it to be used, so don't set it unless
|
|
/// you're about to write something into it.
|
|
TypeImportInfo<std::string> &getMutableImportInfo() {
|
|
if (!ImportInfo)
|
|
ImportInfo.emplace();
|
|
return *ImportInfo;
|
|
}
|
|
|
|
void addName() {
|
|
SmallString<32> name;
|
|
name += UserFacingName;
|
|
|
|
// Collect the import info if present.
|
|
if (ImportInfo) {
|
|
name += '\0';
|
|
ImportInfo->appendTo(name);
|
|
|
|
// getAddrOfGlobalString will add its own null terminator, so pop
|
|
// off the second one.
|
|
assert(name.back() == '\0');
|
|
name.pop_back();
|
|
assert(name.back() == '\0');
|
|
}
|
|
|
|
auto nameStr = IGM.getAddrOfGlobalString(name,
|
|
/*willBeRelativelyAddressed*/ true);
|
|
B.addRelativeAddress(nameStr);
|
|
}
|
|
|
|
void addAccessFunction() {
|
|
llvm::Constant *accessor;
|
|
|
|
// Don't include an access function if we're emitting the context
|
|
// descriptor without metadata.
|
|
if (!HasMetadata) {
|
|
accessor = nullptr;
|
|
|
|
// If it's a generic type, use the generic access function.
|
|
// This has a different prototype from an ordinary function, but
|
|
// the runtime knows to check for that.
|
|
} else if (Type->isGenericContext()) {
|
|
accessor = getGenericTypeMetadataAccessFunction(IGM, Type,
|
|
NotForDefinition);
|
|
|
|
// Otherwise, use the ordinary access function, which we'll define
|
|
// when we emit the metadata.
|
|
} else {
|
|
CanType type = Type->getDeclaredType()->getCanonicalType();
|
|
accessor = getOtherwiseDefinedTypeMetadataAccessFunction(IGM, type);
|
|
}
|
|
|
|
B.addRelativeAddressOrNull(accessor);
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
return IGM.getAddrOfParentContextDescriptor(
|
|
Type, /*fromAnonymousContext=*/false);
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return Type->getGenericSignature();
|
|
}
|
|
|
|
/// Fill in the fields of a TypeGenericContextDescriptorHeader.
|
|
void addGenericParametersHeader() {
|
|
asImpl().addMetadataInstantiationCache();
|
|
|
|
asImpl().addMetadataInstantiationPattern();
|
|
|
|
super::addGenericParametersHeader();
|
|
}
|
|
|
|
void addMetadataInstantiationPattern() {
|
|
if (!HasMetadata) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
auto pattern = IGM.getAddrOfTypeMetadataPattern(Type);
|
|
B.addRelativeAddress(pattern);
|
|
}
|
|
|
|
void addMetadataInstantiationCache() {
|
|
if (!HasMetadata) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
auto cache =
|
|
IGM.getAddrOfTypeMetadataInstantiationCache(Type, NotForDefinition);
|
|
B.addRelativeAddress(cache);
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
return !isa<ClangModuleUnit>(Type->getModuleScopeContext());
|
|
}
|
|
|
|
llvm::Constant *emit() {
|
|
asImpl().layout();
|
|
auto addr = IGM.getAddrOfTypeContextDescriptor(Type, HasMetadata,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
void setCommonFlags(TypeContextDescriptorFlags &flags) {
|
|
setClangImportedFlags(flags);
|
|
setMetadataInitializationKind(flags);
|
|
}
|
|
|
|
void setClangImportedFlags(TypeContextDescriptorFlags &flags) {
|
|
if (ImportInfo) {
|
|
flags.setHasImportInfo(true);
|
|
}
|
|
}
|
|
|
|
TypeContextDescriptorFlags::MetadataInitializationKind
|
|
computeMetadataInitialization() {
|
|
// Not if we don't have metadata.
|
|
if (!HasMetadata)
|
|
return TypeContextDescriptorFlags::NoMetadataInitialization;
|
|
|
|
// Generic types use their own system.
|
|
if (Type->isGenericContext())
|
|
return TypeContextDescriptorFlags::NoMetadataInitialization;
|
|
|
|
// Check for foreign metadata.
|
|
if (requiresForeignTypeMetadata(Type))
|
|
return TypeContextDescriptorFlags::ForeignMetadataInitialization;
|
|
|
|
// The only other option is singleton initialization.
|
|
if (needsSingletonMetadataInitialization(IGM, Type))
|
|
return TypeContextDescriptorFlags::SingletonMetadataInitialization;
|
|
|
|
return TypeContextDescriptorFlags::NoMetadataInitialization;
|
|
}
|
|
|
|
void setMetadataInitializationKind(TypeContextDescriptorFlags &flags) {
|
|
flags.setMetadataInitialization(MetadataInitialization);
|
|
}
|
|
|
|
void maybeAddMetadataInitialization() {
|
|
switch (MetadataInitialization) {
|
|
case TypeContextDescriptorFlags::NoMetadataInitialization:
|
|
return;
|
|
|
|
case TypeContextDescriptorFlags::ForeignMetadataInitialization:
|
|
addForeignMetadataInitialization();
|
|
return;
|
|
|
|
case TypeContextDescriptorFlags::SingletonMetadataInitialization:
|
|
addSingletonMetadataInitialization();
|
|
return;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
/// Add a ForeignMetadataInitialization structure to the descriptor.
|
|
void addForeignMetadataInitialization() {
|
|
llvm::Constant *completionFunction = nullptr;
|
|
if (asImpl().needsForeignMetadataCompletionFunction()) {
|
|
completionFunction =
|
|
IGM.getAddrOfTypeMetadataCompletionFunction(Type, NotForDefinition);
|
|
}
|
|
B.addRelativeAddressOrNull(completionFunction);
|
|
}
|
|
|
|
bool needsForeignMetadataCompletionFunction() {
|
|
return ::needsForeignMetadataCompletionFunction(IGM, Type);
|
|
}
|
|
|
|
/// Add an SingletonMetadataInitialization structure to the descriptor.
|
|
void addSingletonMetadataInitialization() {
|
|
// Relative pointer to the initialization cache.
|
|
// Note that we trigger the definition of it when emitting the
|
|
// completion function.
|
|
auto cache = IGM.getAddrOfTypeMetadataSingletonInitializationCache(Type,
|
|
NotForDefinition);
|
|
B.addRelativeAddress(cache);
|
|
|
|
asImpl().addIncompleteMetadataOrRelocationFunction();
|
|
|
|
// Completion function.
|
|
auto completionFunction =
|
|
IGM.getAddrOfTypeMetadataCompletionFunction(Type, NotForDefinition);
|
|
B.addRelativeAddress(completionFunction);
|
|
}
|
|
|
|
void addIncompleteMetadata() {
|
|
// Relative pointer to the metadata.
|
|
auto type = Type->getDeclaredTypeInContext()->getCanonicalType();
|
|
auto metadata = IGM.getAddrOfTypeMetadata(type);
|
|
B.addRelativeAddress(metadata);
|
|
}
|
|
|
|
/// Customization point for ClassContextDescriptorBuilder.
|
|
void addIncompleteMetadataOrRelocationFunction() {
|
|
addIncompleteMetadata();
|
|
}
|
|
|
|
// Subclasses should provide:
|
|
// ContextDescriptorKind getContextKind();
|
|
// void addLayoutInfo();
|
|
// void addReflectionFieldDescriptor();
|
|
};
|
|
|
|
class StructContextDescriptorBuilder
|
|
: public TypeContextDescriptorBuilderBase<StructContextDescriptorBuilder,
|
|
StructDecl>
|
|
{
|
|
using super = TypeContextDescriptorBuilderBase;
|
|
|
|
StructDecl *getType() {
|
|
return cast<StructDecl>(Type);
|
|
}
|
|
|
|
Size FieldVectorOffset;
|
|
|
|
public:
|
|
StructContextDescriptorBuilder(IRGenModule &IGM, StructDecl *Type,
|
|
RequireMetadata_t requireMetadata)
|
|
: super(IGM, Type, requireMetadata)
|
|
{
|
|
auto &layout = IGM.getMetadataLayout(getType());
|
|
FieldVectorOffset = layout.getFieldOffsetVectorOffset().getStatic();
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Struct;
|
|
}
|
|
|
|
void addLayoutInfo() {
|
|
auto properties = getType()->getStoredProperties();
|
|
|
|
// uint32_t NumFields;
|
|
B.addInt32(properties.size());
|
|
|
|
// uint32_t FieldOffsetVectorOffset;
|
|
B.addInt32(FieldVectorOffset / IGM.getPointerSize());
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
TypeContextDescriptorFlags flags;
|
|
|
|
setCommonFlags(flags);
|
|
return flags.getOpaqueValue();
|
|
}
|
|
|
|
void maybeAddResilientSuperclass() { }
|
|
|
|
void addReflectionFieldDescriptor() {
|
|
if (!IGM.IRGen.Opts.EnableReflectionMetadata) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
IGM.IRGen.noteUseOfFieldDescriptor(getType());
|
|
|
|
B.addRelativeAddress(IGM.getAddrOfReflectionFieldDescriptor(
|
|
getType()->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
};
|
|
|
|
class EnumContextDescriptorBuilder
|
|
: public TypeContextDescriptorBuilderBase<EnumContextDescriptorBuilder,
|
|
EnumDecl>
|
|
{
|
|
using super = TypeContextDescriptorBuilderBase;
|
|
|
|
EnumDecl *getType() {
|
|
return cast<EnumDecl>(Type);
|
|
}
|
|
|
|
Size PayloadSizeOffset;
|
|
const EnumImplStrategy &Strategy;
|
|
|
|
public:
|
|
EnumContextDescriptorBuilder(IRGenModule &IGM, EnumDecl *Type,
|
|
RequireMetadata_t requireMetadata)
|
|
: super(IGM, Type, requireMetadata),
|
|
Strategy(getEnumImplStrategy(IGM,
|
|
getType()->getDeclaredTypeInContext()->getCanonicalType()))
|
|
{
|
|
auto &layout = IGM.getMetadataLayout(getType());
|
|
if (layout.hasPayloadSizeOffset())
|
|
PayloadSizeOffset = layout.getPayloadSizeOffset().getStatic();
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Enum;
|
|
}
|
|
|
|
void addLayoutInfo() {
|
|
// # payload cases in the low 24 bits, payload size offset in the high 8.
|
|
unsigned numPayloads = Strategy.getElementsWithPayload().size();
|
|
assert(numPayloads < (1<<24) && "too many payload elements for runtime");
|
|
assert(PayloadSizeOffset % IGM.getPointerAlignment() == Size(0)
|
|
&& "payload size not word-aligned");
|
|
unsigned PayloadSizeOffsetInWords
|
|
= PayloadSizeOffset / IGM.getPointerSize();
|
|
assert(PayloadSizeOffsetInWords < 0x100 &&
|
|
"payload size offset too far from address point for runtime");
|
|
|
|
// uint32_t NumPayloadCasesAndPayloadSizeOffset;
|
|
B.addInt32(numPayloads | (PayloadSizeOffsetInWords << 24));
|
|
|
|
// uint32_t NumEmptyCases;
|
|
B.addInt32(Strategy.getElementsWithNoPayload().size());
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
TypeContextDescriptorFlags flags;
|
|
|
|
setCommonFlags(flags);
|
|
return flags.getOpaqueValue();
|
|
}
|
|
|
|
void maybeAddResilientSuperclass() { }
|
|
|
|
void addReflectionFieldDescriptor() {
|
|
if (!IGM.IRGen.Opts.EnableReflectionMetadata) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
// Force the emission of the field descriptor or fixed descriptor.
|
|
IGM.IRGen.noteUseOfFieldDescriptor(getType());
|
|
|
|
// Some enum layout strategies (viz. C compatible layout) aren't
|
|
// supported by reflection.
|
|
if (!Strategy.isReflectable()) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
B.addRelativeAddress(IGM.getAddrOfReflectionFieldDescriptor(
|
|
getType()->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
};
|
|
|
|
class ClassContextDescriptorBuilder
|
|
: public TypeContextDescriptorBuilderBase<ClassContextDescriptorBuilder,
|
|
ClassDecl>,
|
|
public SILVTableVisitor<ClassContextDescriptorBuilder>
|
|
{
|
|
using super = TypeContextDescriptorBuilderBase;
|
|
|
|
ClassDecl *getType() {
|
|
return cast<ClassDecl>(Type);
|
|
}
|
|
|
|
// Non-null unless the type is foreign.
|
|
ClassMetadataLayout *MetadataLayout = nullptr;
|
|
|
|
Optional<TypeEntityReference> ResilientSuperClassRef;
|
|
|
|
SILVTable *VTable;
|
|
bool Resilient;
|
|
|
|
SmallVector<SILDeclRef, 8> VTableEntries;
|
|
SmallVector<std::pair<SILDeclRef, SILDeclRef>, 8> OverrideTableEntries;
|
|
|
|
public:
|
|
ClassContextDescriptorBuilder(IRGenModule &IGM, ClassDecl *Type,
|
|
RequireMetadata_t requireMetadata)
|
|
: super(IGM, Type, requireMetadata),
|
|
VTable(IGM.getSILModule().lookUpVTable(getType())),
|
|
Resilient(IGM.hasResilientMetadata(Type, ResilienceExpansion::Minimal)) {
|
|
|
|
if (getType()->isForeign()) return;
|
|
|
|
MetadataLayout = &IGM.getClassMetadataLayout(Type);
|
|
|
|
if (auto superclassDecl = getType()->getSuperclassDecl()) {
|
|
if (MetadataLayout && MetadataLayout->hasResilientSuperclass())
|
|
ResilientSuperClassRef = IGM.getTypeEntityReference(superclassDecl);
|
|
}
|
|
|
|
addVTableEntries(getType());
|
|
}
|
|
|
|
void addMethod(SILDeclRef fn) {
|
|
VTableEntries.push_back(fn);
|
|
}
|
|
|
|
void addMethodOverride(SILDeclRef baseRef, SILDeclRef declRef) {
|
|
OverrideTableEntries.emplace_back(baseRef, declRef);
|
|
}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
addVTable();
|
|
addOverrideTable();
|
|
addObjCResilientClassStubInfo();
|
|
}
|
|
|
|
void addIncompleteMetadataOrRelocationFunction() {
|
|
if (MetadataLayout == nullptr ||
|
|
!MetadataLayout->hasResilientSuperclass()) {
|
|
addIncompleteMetadata();
|
|
return;
|
|
}
|
|
|
|
auto *pattern = IGM.getAddrOfTypeMetadataPattern(Type);
|
|
B.addRelativeAddress(pattern);
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::Class;
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
TypeContextDescriptorFlags flags;
|
|
|
|
setCommonFlags(flags);
|
|
|
|
if (!getType()->isForeign()) {
|
|
if (MetadataLayout->areImmediateMembersNegative())
|
|
flags.class_setAreImmediateMembersNegative(true);
|
|
|
|
if (!VTableEntries.empty())
|
|
flags.class_setHasVTable(true);
|
|
|
|
if (!OverrideTableEntries.empty())
|
|
flags.class_setHasOverrideTable(true);
|
|
|
|
if (MetadataLayout->hasResilientSuperclass())
|
|
flags.class_setHasResilientSuperclass(true);
|
|
}
|
|
|
|
if (ResilientSuperClassRef) {
|
|
flags.class_setResilientSuperclassReferenceKind(
|
|
ResilientSuperClassRef->getKind());
|
|
}
|
|
|
|
return flags.getOpaqueValue();
|
|
}
|
|
|
|
void maybeAddResilientSuperclass() {
|
|
// RelativeDirectPointer<const void, /*nullable*/ true> SuperClass;
|
|
if (ResilientSuperClassRef) {
|
|
B.addRelativeAddress(ResilientSuperClassRef->getValue());
|
|
}
|
|
}
|
|
|
|
void addReflectionFieldDescriptor() {
|
|
// Classes are always reflectable, unless reflection is disabled or this
|
|
// is a foreign class.
|
|
if (!IGM.IRGen.Opts.EnableReflectionMetadata ||
|
|
getType()->isForeign()) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
B.addRelativeAddress(IGM.getAddrOfReflectionFieldDescriptor(
|
|
getType()->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
|
|
Size getFieldVectorOffset() {
|
|
if (!MetadataLayout) return Size(0);
|
|
return (MetadataLayout->hasResilientSuperclass()
|
|
? MetadataLayout->getRelativeFieldOffsetVectorOffset()
|
|
: MetadataLayout->getStaticFieldOffsetVectorOffset());
|
|
}
|
|
|
|
void addVTable() {
|
|
if (VTableEntries.empty())
|
|
return;
|
|
|
|
// Only emit a method lookup function if the class is resilient
|
|
// and has a non-empty vtable.
|
|
if (IGM.hasResilientMetadata(getType(), ResilienceExpansion::Minimal))
|
|
IGM.emitMethodLookupFunction(getType());
|
|
|
|
auto offset = MetadataLayout->hasResilientSuperclass()
|
|
? MetadataLayout->getRelativeVTableOffset()
|
|
: MetadataLayout->getStaticVTableOffset();
|
|
B.addInt32(offset / IGM.getPointerSize());
|
|
B.addInt32(VTableEntries.size());
|
|
|
|
for (auto fn : VTableEntries)
|
|
emitMethodDescriptor(fn);
|
|
}
|
|
|
|
void emitMethodDescriptor(SILDeclRef fn) {
|
|
// Define the method descriptor to point to the current position in the
|
|
// nominal type descriptor.
|
|
IGM.defineMethodDescriptor(fn, Type,
|
|
B.getAddrOfCurrentPosition(IGM.MethodDescriptorStructTy));
|
|
|
|
// Actually build the descriptor.
|
|
auto *func = cast<AbstractFunctionDecl>(fn.getDecl());
|
|
auto descriptor = B.beginStruct(IGM.MethodDescriptorStructTy);
|
|
|
|
// Classify the method.
|
|
using Flags = MethodDescriptorFlags;
|
|
auto flags = getMethodDescriptorFlags<Flags>(func);
|
|
|
|
// Remember if the declaration was dynamic.
|
|
if (func->isObjCDynamic())
|
|
flags = flags.withIsDynamic(true);
|
|
|
|
// Include the pointer-auth discriminator.
|
|
if (auto &schema = IGM.getOptions().PointerAuth.SwiftClassMethods) {
|
|
auto discriminator =
|
|
PointerAuthInfo::getOtherDiscriminator(IGM, schema, fn);
|
|
flags = flags.withExtraDiscriminator(discriminator->getZExtValue());
|
|
}
|
|
|
|
// TODO: final? open?
|
|
descriptor.addInt(IGM.Int32Ty, flags.getIntValue());
|
|
|
|
if (auto entry = VTable->getEntry(IGM.getSILModule(), fn)) {
|
|
assert(entry->TheKind == SILVTable::Entry::Kind::Normal);
|
|
auto *implFn = IGM.getAddrOfSILFunction(entry->Implementation,
|
|
NotForDefinition);
|
|
descriptor.addRelativeAddress(implFn);
|
|
} else {
|
|
// The method is removed by dead method elimination.
|
|
// It should be never called. We add a pointer to an error function.
|
|
descriptor.addRelativeAddressOrNull(nullptr);
|
|
}
|
|
|
|
descriptor.finishAndAddTo(B);
|
|
|
|
// Emit method dispatch thunk if the class is resilient.
|
|
if (Resilient &&
|
|
func->getEffectiveAccess() >= AccessLevel::Public) {
|
|
IGM.emitDispatchThunk(fn);
|
|
}
|
|
}
|
|
|
|
void addOverrideTable() {
|
|
if (OverrideTableEntries.empty())
|
|
return;
|
|
|
|
B.addInt32(OverrideTableEntries.size());
|
|
|
|
for (auto pair : OverrideTableEntries)
|
|
emitMethodOverrideDescriptor(pair.first, pair.second);
|
|
}
|
|
|
|
void emitMethodOverrideDescriptor(SILDeclRef baseRef, SILDeclRef declRef) {
|
|
auto descriptor = B.beginStruct(IGM.MethodOverrideDescriptorStructTy);
|
|
|
|
// The class containing the base method.
|
|
auto *baseClass = cast<ClassDecl>(baseRef.getDecl()->getDeclContext());
|
|
IGM.IRGen.noteUseOfTypeContextDescriptor(baseClass, DontRequireMetadata);
|
|
auto baseClassEntity = LinkEntity::forNominalTypeDescriptor(baseClass);
|
|
auto baseClassDescriptor =
|
|
IGM.getAddrOfLLVMVariableOrGOTEquivalent(baseClassEntity);
|
|
descriptor.addRelativeAddress(baseClassDescriptor);
|
|
|
|
// The base method.
|
|
auto baseMethodEntity = LinkEntity::forMethodDescriptor(baseRef);
|
|
auto baseMethodDescriptor =
|
|
IGM.getAddrOfLLVMVariableOrGOTEquivalent(baseMethodEntity);
|
|
descriptor.addRelativeAddress(baseMethodDescriptor);
|
|
|
|
// The implementation of the override.
|
|
if (auto entry = VTable->getEntry(IGM.getSILModule(), baseRef)) {
|
|
assert(entry->TheKind == SILVTable::Entry::Kind::Override);
|
|
auto *implFn = IGM.getAddrOfSILFunction(entry->Implementation,
|
|
NotForDefinition);
|
|
descriptor.addRelativeAddress(implFn);
|
|
} else {
|
|
// The method is removed by dead method elimination.
|
|
// It should be never called. We add a pointer to an error function.
|
|
descriptor.addRelativeAddressOrNull(nullptr);
|
|
}
|
|
|
|
descriptor.finishAndAddTo(B);
|
|
}
|
|
|
|
void addPlaceholder(MissingMemberDecl *MMD) {
|
|
llvm_unreachable("cannot generate metadata with placeholders in it");
|
|
}
|
|
|
|
void addLayoutInfo() {
|
|
|
|
// TargetRelativeDirectPointer<Runtime, const char> SuperclassType;
|
|
if (auto superclassType = getType()->getSuperclass()) {
|
|
GenericSignature genericSig = getType()->getGenericSignature();
|
|
B.addRelativeAddress(IGM.getTypeRef(superclassType, genericSig,
|
|
MangledTypeRefRole::Metadata)
|
|
.first);
|
|
} else {
|
|
B.addInt32(0);
|
|
}
|
|
|
|
auto properties = getType()->getStoredProperties();
|
|
|
|
// union {
|
|
// uint32_t MetadataNegativeSizeInWords;
|
|
// RelativeDirectPointer<StoredClassMetadataBounds>
|
|
// ResilientMetadataBounds;
|
|
// };
|
|
if (!MetadataLayout) {
|
|
// FIXME: do something meaningful for foreign classes?
|
|
B.addInt32(0);
|
|
} else if (!MetadataLayout->hasResilientSuperclass()) {
|
|
B.addInt32(MetadataLayout->getSize().AddressPoint
|
|
/ IGM.getPointerSize());
|
|
} else {
|
|
B.addRelativeAddress(
|
|
IGM.getAddrOfClassMetadataBounds(getType(), NotForDefinition));
|
|
}
|
|
|
|
// union {
|
|
// uint32_t MetadataPositiveSizeInWords;
|
|
// ExtraClassContextFlags ExtraClassFlags;
|
|
// };
|
|
if (!MetadataLayout) {
|
|
// FIXME: do something meaningful for foreign classes?
|
|
B.addInt32(0);
|
|
} else if (!MetadataLayout->hasResilientSuperclass()) {
|
|
B.addInt32(MetadataLayout->getSize().getOffsetToEnd()
|
|
/ IGM.getPointerSize());
|
|
} else {
|
|
ExtraClassDescriptorFlags flags;
|
|
if (hasObjCResilientClassStub(IGM, getType()))
|
|
flags.setObjCResilientClassStub(true);
|
|
B.addInt32(flags.getOpaqueValue());
|
|
}
|
|
|
|
// uint32_t NumImmediateMembers;
|
|
auto numImmediateMembers =
|
|
(MetadataLayout ? MetadataLayout->getNumImmediateMembers() : 0);
|
|
B.addInt32(numImmediateMembers);
|
|
|
|
// uint32_t NumFields;
|
|
B.addInt32(properties.size());
|
|
|
|
// uint32_t FieldOffsetVectorOffset;
|
|
B.addInt32(getFieldVectorOffset() / IGM.getPointerSize());
|
|
}
|
|
|
|
void addObjCResilientClassStubInfo() {
|
|
if (IGM.getClassMetadataStrategy(getType()) !=
|
|
ClassMetadataStrategy::Resilient)
|
|
return;
|
|
|
|
if (!hasObjCResilientClassStub(IGM, getType()))
|
|
return;
|
|
|
|
B.addRelativeAddress(
|
|
IGM.getAddrOfObjCResilientClassStub(
|
|
getType(), NotForDefinition,
|
|
TypeMetadataAddress::AddressPoint));
|
|
}
|
|
};
|
|
|
|
class OpaqueTypeDescriptorBuilder
|
|
: public ContextDescriptorBuilderBase<OpaqueTypeDescriptorBuilder>
|
|
{
|
|
using super = ContextDescriptorBuilderBase;
|
|
|
|
OpaqueTypeDecl *O;
|
|
public:
|
|
|
|
OpaqueTypeDescriptorBuilder(IRGenModule &IGM, OpaqueTypeDecl *O)
|
|
: super(IGM), O(O)
|
|
{}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
addGenericSignature();
|
|
addUnderlyingTypeAndConformances();
|
|
}
|
|
|
|
void addUnderlyingTypeAndConformances() {
|
|
auto sig = O->getOpaqueInterfaceGenericSignature();
|
|
auto underlyingType = Type(O->getUnderlyingInterfaceType())
|
|
.subst(*O->getUnderlyingTypeSubstitutions())
|
|
->getCanonicalType(sig);
|
|
|
|
auto contextSig = O->getGenericSignature().getCanonicalSignature();
|
|
|
|
B.addRelativeAddress(IGM.getTypeRef(underlyingType, contextSig,
|
|
MangledTypeRefRole::Metadata).first);
|
|
|
|
auto opaqueType = O->getDeclaredInterfaceType()
|
|
->castTo<OpaqueTypeArchetypeType>();
|
|
|
|
for (auto proto : opaqueType->getConformsTo()) {
|
|
auto conformance = ProtocolConformanceRef(proto);
|
|
auto underlyingConformance = conformance
|
|
.subst(O->getUnderlyingInterfaceType(),
|
|
*O->getUnderlyingTypeSubstitutions());
|
|
|
|
// Skip protocols without Witness tables, e.g. @objc protocols.
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(
|
|
underlyingConformance.getRequirement()))
|
|
continue;
|
|
|
|
auto witnessTableRef = IGM.emitWitnessTableRefString(
|
|
underlyingType, underlyingConformance,
|
|
contextSig,
|
|
/*setLowBit*/ false);
|
|
B.addRelativeAddress(witnessTableRef);
|
|
}
|
|
}
|
|
|
|
bool isUniqueDescriptor() {
|
|
switch (LinkEntity::forOpaqueTypeDescriptor(O)
|
|
.getLinkage(NotForDefinition)) {
|
|
case SILLinkage::Public:
|
|
case SILLinkage::PublicExternal:
|
|
case SILLinkage::Hidden:
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::Private:
|
|
case SILLinkage::PrivateExternal:
|
|
return true;
|
|
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::SharedExternal:
|
|
case SILLinkage::PublicNonABI:
|
|
return false;
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
GenericSignature getGenericSignature() {
|
|
return O->getOpaqueInterfaceGenericSignature();
|
|
}
|
|
|
|
ConstantReference getParent() {
|
|
// VarDecls aren't normally contexts, but we still want to mangle
|
|
// an anonymous context for one.
|
|
if (IGM.IRGen.Opts.EnableAnonymousContextMangledNames) {
|
|
if (auto namingVar = dyn_cast<VarDecl>(O->getNamingDecl())) {
|
|
return ConstantReference(
|
|
IGM.getAddrOfAnonymousContextDescriptor(namingVar),
|
|
ConstantReference::Direct);
|
|
}
|
|
}
|
|
|
|
DeclContext *parent = O->getNamingDecl()->getInnermostDeclContext();
|
|
|
|
// If we have debug mangled names enabled for anonymous contexts, nest
|
|
// the opaque type descriptor inside an anonymous context for the
|
|
// defining function. This will let type reconstruction in the debugger
|
|
// match the opaque context back into the AST.
|
|
//
|
|
// Otherwise, we can use the module context for nongeneric contexts.
|
|
if (!IGM.IRGen.Opts.EnableAnonymousContextMangledNames
|
|
&& !parent->isGenericContext()) {
|
|
parent = parent->getParentModule();
|
|
}
|
|
|
|
return IGM.getAddrOfContextDescriptorForParent(parent, parent,
|
|
/*fromAnonymous*/ false);
|
|
}
|
|
|
|
ContextDescriptorKind getContextKind() {
|
|
return ContextDescriptorKind::OpaqueType;
|
|
}
|
|
|
|
void emit() {
|
|
asImpl().layout();
|
|
|
|
auto addr = IGM.getAddrOfOpaqueTypeDescriptor(O,
|
|
B.finishAndCreateFuture());
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
|
|
var->setConstant(true);
|
|
IGM.setTrueConstGlobal(var);
|
|
IGM.emitOpaqueTypeDescriptorAccessor(O);
|
|
}
|
|
|
|
uint16_t getKindSpecificFlags() {
|
|
// Store the size of the type and conformances vector in the flags.
|
|
auto opaqueType = O->getDeclaredInterfaceType()
|
|
->castTo<OpaqueTypeArchetypeType>();
|
|
|
|
return 1 + opaqueType->getConformsTo().size();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static void eraseExistingTypeContextDescriptor(IRGenModule &IGM,
|
|
NominalTypeDecl *type) {
|
|
// We may have emitted a partial type context descriptor with some empty
|
|
// fields, and then later discovered we're emitting complete metadata.
|
|
// Remove existing definitions of the type context so that we can regenerate
|
|
// a complete descriptor.
|
|
auto entity = IGM.getAddrOfTypeContextDescriptor(type, DontRequireMetadata);
|
|
entity = entity->stripPointerCasts();
|
|
auto existingContext = dyn_cast<llvm::GlobalVariable>(entity);
|
|
if (existingContext && !existingContext->isDeclaration()) {
|
|
existingContext->setInitializer(nullptr);
|
|
}
|
|
}
|
|
|
|
void irgen::emitLazyTypeContextDescriptor(IRGenModule &IGM,
|
|
NominalTypeDecl *type,
|
|
RequireMetadata_t requireMetadata) {
|
|
eraseExistingTypeContextDescriptor(IGM, type);
|
|
|
|
if (auto sd = dyn_cast<StructDecl>(type)) {
|
|
StructContextDescriptorBuilder(IGM, sd, requireMetadata).emit();
|
|
} else if (auto ed = dyn_cast<EnumDecl>(type)) {
|
|
EnumContextDescriptorBuilder(IGM, ed, requireMetadata).emit();
|
|
} else if (auto cd = dyn_cast<ClassDecl>(type)) {
|
|
ClassContextDescriptorBuilder(IGM, cd, requireMetadata).emit();
|
|
} else {
|
|
llvm_unreachable("type does not have a context descriptor");
|
|
}
|
|
}
|
|
|
|
void irgen::emitLazyTypeMetadata(IRGenModule &IGM, NominalTypeDecl *type) {
|
|
eraseExistingTypeContextDescriptor(IGM, type);
|
|
|
|
if (requiresForeignTypeMetadata(type)) {
|
|
emitForeignTypeMetadata(IGM, type);
|
|
} else if (auto sd = dyn_cast<StructDecl>(type)) {
|
|
emitStructMetadata(IGM, sd);
|
|
} else if (auto ed = dyn_cast<EnumDecl>(type)) {
|
|
emitEnumMetadata(IGM, ed);
|
|
} else if (auto pd = dyn_cast<ProtocolDecl>(type)) {
|
|
IGM.emitProtocolDecl(pd);
|
|
} else {
|
|
llvm_unreachable("should not have enqueued a class decl here!");
|
|
}
|
|
}
|
|
|
|
void irgen::emitLazyMetadataAccessor(IRGenModule &IGM,
|
|
NominalTypeDecl *nominal) {
|
|
GenericArguments genericArgs;
|
|
genericArgs.collectTypes(IGM, nominal);
|
|
|
|
llvm::Function *accessor = IGM.getAddrOfGenericTypeMetadataAccessFunction(
|
|
nominal, genericArgs.Types, ForDefinition);
|
|
|
|
if (IGM.getOptions().optimizeForSize())
|
|
accessor->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
bool isReadNone = (genericArgs.Types.size() <=
|
|
NumDirectGenericTypeMetadataAccessFunctionArgs);
|
|
|
|
emitCacheAccessFunction(
|
|
IGM, accessor, /*cache*/ nullptr, CacheStrategy::None,
|
|
[&](IRGenFunction &IGF, Explosion ¶ms) {
|
|
return emitGenericTypeMetadataAccessFunction(IGF, params, nominal,
|
|
genericArgs);
|
|
},
|
|
isReadNone);
|
|
}
|
|
|
|
void irgen::emitLazySpecializedGenericTypeMetadata(IRGenModule &IGM,
|
|
CanType type) {
|
|
switch (type->getKind()) {
|
|
case TypeKind::Struct:
|
|
case TypeKind::BoundGenericStruct:
|
|
emitSpecializedGenericStructMetadata(IGM, type,
|
|
*type.getStructOrBoundGenericStruct());
|
|
break;
|
|
case TypeKind::Enum:
|
|
case TypeKind::BoundGenericEnum:
|
|
emitSpecializedGenericEnumMetadata(IGM, type,
|
|
*type.getEnumOrBoundGenericEnum());
|
|
break;
|
|
default:
|
|
llvm_unreachable("Cannot statically specialize types of kind other than "
|
|
"struct and enum.");
|
|
}
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfSharedContextDescriptor(LinkEntity entity,
|
|
ConstantInit definition,
|
|
llvm::function_ref<void()> emit) {
|
|
if (!definition) {
|
|
// Generate the definition if it hasn't been generated yet.
|
|
auto existing = GlobalVars.find(entity);
|
|
if (existing == GlobalVars.end() ||
|
|
!existing->second
|
|
|| cast<llvm::GlobalValue>(existing->second)->isDeclaration()) {
|
|
|
|
// In some cases we have multiple declarations in the AST that end up
|
|
// with the same context mangling (a clang module and its overlay,
|
|
// equivalent extensions, etc.). These can share a context descriptor
|
|
// at runtime.
|
|
auto mangledName = entity.mangleAsString();
|
|
if (auto otherDefinition = Module.getGlobalVariable(mangledName)) {
|
|
GlobalVars.insert({entity, otherDefinition});
|
|
return otherDefinition;
|
|
}
|
|
|
|
// Otherwise, emit the descriptor.
|
|
emit();
|
|
}
|
|
}
|
|
|
|
return getAddrOfLLVMVariable(entity,
|
|
definition,
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfModuleContextDescriptor(ModuleDecl *D,
|
|
ConstantInit definition) {
|
|
auto entity = LinkEntity::forModuleDescriptor(D);
|
|
return getAddrOfSharedContextDescriptor(entity, definition,
|
|
[&]{ ModuleContextDescriptorBuilder(*this, D).emit(); });
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfObjCModuleContextDescriptor() {
|
|
if (!ObjCModule)
|
|
ObjCModule = ModuleDecl::create(
|
|
Context.getIdentifier(MANGLING_MODULE_OBJC),
|
|
Context);
|
|
return getAddrOfModuleContextDescriptor(ObjCModule);
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfClangImporterModuleContextDescriptor() {
|
|
if (!ClangImporterModule)
|
|
ClangImporterModule = ModuleDecl::create(
|
|
Context.getIdentifier(MANGLING_MODULE_CLANG_IMPORTER),
|
|
Context);
|
|
return getAddrOfModuleContextDescriptor(ClangImporterModule);
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfExtensionContextDescriptor(ExtensionDecl *ED,
|
|
ConstantInit definition) {
|
|
auto entity = LinkEntity::forExtensionDescriptor(ED);
|
|
return getAddrOfSharedContextDescriptor(entity, definition,
|
|
[&]{ ExtensionContextDescriptorBuilder(*this, ED).emit(); });
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfAnonymousContextDescriptor(
|
|
PointerUnion<DeclContext *, VarDecl *> DC,
|
|
ConstantInit definition) {
|
|
auto entity = LinkEntity::forAnonymousDescriptor(DC);
|
|
return getAddrOfSharedContextDescriptor(entity, definition,
|
|
[&]{ AnonymousContextDescriptorBuilder(*this, DC).emit(); });
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfOriginalModuleContextDescriptor(StringRef Name) {
|
|
return getAddrOfModuleContextDescriptor(OriginalModules.insert({Name,
|
|
ModuleDecl::create(Context.getIdentifier(Name), Context)})
|
|
.first->getValue());
|
|
}
|
|
|
|
static void emitInitializeFieldOffsetVector(IRGenFunction &IGF,
|
|
SILType T,
|
|
llvm::Value *metadata,
|
|
bool isVWTMutable,
|
|
MetadataDependencyCollector *collector) {
|
|
auto &IGM = IGF.IGM;
|
|
|
|
auto *target = T.getNominalOrBoundGenericNominal();
|
|
llvm::Value *fieldVector
|
|
= emitAddressOfFieldOffsetVector(IGF, metadata, target)
|
|
.getAddress();
|
|
|
|
// Collect the stored properties of the type.
|
|
llvm::SmallVector<VarDecl*, 4> storedProperties;
|
|
for (auto prop : target->getStoredProperties()) {
|
|
storedProperties.push_back(prop);
|
|
}
|
|
|
|
// Fill out an array with the field type metadata records.
|
|
Address fields = IGF.createAlloca(
|
|
llvm::ArrayType::get(IGM.Int8PtrPtrTy,
|
|
storedProperties.size()),
|
|
IGM.getPointerAlignment(), "classFields");
|
|
IGF.Builder.CreateLifetimeStart(fields,
|
|
IGM.getPointerSize() * storedProperties.size());
|
|
fields = IGF.Builder.CreateStructGEP(fields, 0, Size(0));
|
|
|
|
unsigned index = 0;
|
|
for (auto prop : storedProperties) {
|
|
auto propTy = T.getFieldType(prop, IGF.getSILModule(),
|
|
TypeExpansionContext::minimal());
|
|
llvm::Value *metadata = emitTypeLayoutRef(IGF, propTy, collector);
|
|
Address field = IGF.Builder.CreateConstArrayGEP(fields, index,
|
|
IGM.getPointerSize());
|
|
IGF.Builder.CreateStore(metadata, field);
|
|
++index;
|
|
}
|
|
|
|
// Ask the runtime to lay out the struct or class.
|
|
auto numFields = IGM.getSize(Size(storedProperties.size()));
|
|
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(target)) {
|
|
// Compute class layout flags.
|
|
ClassLayoutFlags flags = ClassLayoutFlags::Swift5Algorithm;
|
|
|
|
switch (IGM.getClassMetadataStrategy(classDecl)) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Singleton:
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
flags |= ClassLayoutFlags::HasStaticVTable;
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Fixed:
|
|
llvm_unreachable("Emitting metadata init for fixed class metadata?");
|
|
}
|
|
|
|
llvm::Value *dependency;
|
|
|
|
switch (IGM.getClassMetadataStrategy(classDecl)) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
case ClassMetadataStrategy::Singleton:
|
|
// Call swift_initClassMetadata().
|
|
dependency =
|
|
IGF.Builder.CreateCall(IGM.getInitClassMetadata2Fn(),
|
|
{metadata,
|
|
IGM.getSize(Size(uintptr_t(flags))),
|
|
numFields, fields.getAddress(), fieldVector});
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
assert(IGM.Context.LangOpts.EnableObjCInterop);
|
|
|
|
// Call swift_updateClassMetadata(). Note that the static metadata
|
|
// already references the superclass in this case, but we still want
|
|
// to ensure the superclass metadata is initialized first.
|
|
dependency =
|
|
IGF.Builder.CreateCall(IGM.getUpdateClassMetadata2Fn(),
|
|
{metadata,
|
|
IGM.getSize(Size(uintptr_t(flags))),
|
|
numFields, fields.getAddress(), fieldVector});
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Fixed:
|
|
llvm_unreachable("Emitting metadata init for fixed class metadata?");
|
|
}
|
|
|
|
// Collect any possible dependency from initializing the class; generally
|
|
// this involves the superclass.
|
|
assert(collector);
|
|
collector->collect(IGF, dependency);
|
|
|
|
} else {
|
|
assert(isa<StructDecl>(target));
|
|
|
|
// Compute struct layout flags.
|
|
StructLayoutFlags flags = StructLayoutFlags::Swift5Algorithm;
|
|
if (isVWTMutable)
|
|
flags |= StructLayoutFlags::IsVWTMutable;
|
|
|
|
// Call swift_initStructMetadata().
|
|
IGF.Builder.CreateCall(IGM.getInitStructMetadataFn(),
|
|
{metadata, IGM.getSize(Size(uintptr_t(flags))),
|
|
numFields, fields.getAddress(), fieldVector});
|
|
}
|
|
|
|
IGF.Builder.CreateLifetimeEnd(fields,
|
|
IGM.getPointerSize() * storedProperties.size());
|
|
}
|
|
|
|
static void emitInitializeValueMetadata(IRGenFunction &IGF,
|
|
NominalTypeDecl *nominalDecl,
|
|
llvm::Value *metadata,
|
|
bool isVWTMutable,
|
|
MetadataDependencyCollector *collector) {
|
|
auto loweredTy =
|
|
IGF.IGM.getLoweredType(nominalDecl->getDeclaredTypeInContext());
|
|
|
|
if (isa<StructDecl>(nominalDecl)) {
|
|
auto &fixedTI = IGF.IGM.getTypeInfo(loweredTy);
|
|
if (isa<FixedTypeInfo>(fixedTI)) return;
|
|
|
|
emitInitializeFieldOffsetVector(IGF, loweredTy, metadata, isVWTMutable,
|
|
collector);
|
|
} else {
|
|
assert(isa<EnumDecl>(nominalDecl));
|
|
auto &strategy = getEnumImplStrategy(IGF.IGM, loweredTy);
|
|
strategy.initializeMetadata(IGF, metadata, isVWTMutable, loweredTy,
|
|
collector);
|
|
}
|
|
}
|
|
|
|
static void emitInitializeClassMetadata(IRGenFunction &IGF,
|
|
ClassDecl *classDecl,
|
|
const ClassLayout &fieldLayout,
|
|
llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
auto &IGM = IGF.IGM;
|
|
|
|
assert(IGM.getClassMetadataStrategy(classDecl)
|
|
!= ClassMetadataStrategy::Fixed);
|
|
|
|
auto loweredTy =
|
|
IGM.getLoweredType(classDecl->getDeclaredTypeInContext());
|
|
|
|
// Set the superclass, fill out the field offset vector, and copy vtable
|
|
// entries, generic requirements and field offsets from superclasses.
|
|
emitInitializeFieldOffsetVector(IGF, loweredTy,
|
|
metadata, /*VWT is mutable*/ false,
|
|
collector);
|
|
|
|
// Realizing the class with the ObjC runtime will copy back to the
|
|
// field offset globals for us; but if ObjC interop is disabled, we
|
|
// have to do that ourselves, assuming we didn't just emit them all
|
|
// correctly in the first place.
|
|
if (!IGM.ObjCInterop) {
|
|
for (auto prop : classDecl->getStoredProperties()) {
|
|
auto fieldInfo = fieldLayout.getFieldAccessAndElement(prop);
|
|
if (fieldInfo.first == FieldAccess::NonConstantDirect) {
|
|
Address offsetA = IGM.getAddrOfFieldOffset(prop, ForDefinition);
|
|
|
|
// We can't use emitClassFieldOffset() here because that creates
|
|
// an invariant load, which could be hoisted above the point
|
|
// where the metadata becomes fully initialized
|
|
auto slot =
|
|
emitAddressOfClassFieldOffset(IGF, metadata, classDecl, prop);
|
|
auto offsetVal = IGF.emitInvariantLoad(slot);
|
|
IGF.Builder.CreateStore(offsetVal, offsetA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static MetadataKind getMetadataKind(NominalTypeDecl *nominalDecl) {
|
|
if (isa<StructDecl>(nominalDecl))
|
|
return MetadataKind::Struct;
|
|
|
|
assert(isa<EnumDecl>(nominalDecl));
|
|
return (nominalDecl->isOptionalDecl()
|
|
? MetadataKind::Optional
|
|
: MetadataKind::Enum);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/** Metadata Emission ********************************************************/
|
|
/*****************************************************************************/
|
|
|
|
namespace {
|
|
/// An adapter class which turns a metadata layout class into a
|
|
/// generic metadata layout class.
|
|
template <class Impl, class DeclType>
|
|
class GenericMetadataBuilderBase {
|
|
protected:
|
|
IRGenModule &IGM;
|
|
DeclType *Target;
|
|
ConstantStructBuilder &B;
|
|
|
|
/// Set to true if the metadata record for the generic type has fields
|
|
/// outside of the generic parameter vector.
|
|
bool HasDependentMetadata = false;
|
|
|
|
/// Set to true if the value witness table for the generic type is dependent
|
|
/// on its generic parameters. Implies HasDependentMetadata.
|
|
bool HasDependentVWT = false;
|
|
|
|
GenericMetadataBuilderBase(IRGenModule &IGM, DeclType *Target,
|
|
ConstantStructBuilder &B)
|
|
: IGM(IGM), Target(Target), B(B) {}
|
|
|
|
/// Emit the instantiation cache variable for the template.
|
|
void emitInstantiationCache() {
|
|
auto cache = cast<llvm::GlobalVariable>(
|
|
IGM.getAddrOfTypeMetadataInstantiationCache(Target, ForDefinition));
|
|
auto init =
|
|
llvm::ConstantAggregateZero::get(cache->getValueType());
|
|
cache->setInitializer(init);
|
|
}
|
|
|
|
Impl &asImpl() { return *static_cast<Impl*>(this); }
|
|
|
|
/// Emit the create function for the template.
|
|
void emitInstantiationFunction() {
|
|
// using MetadataInstantiator =
|
|
// Metadata *(TypeContextDescriptor *type,
|
|
// const void * const *arguments,
|
|
// const GenericMetadataPattern *pattern);
|
|
llvm::Function *f =
|
|
IGM.getAddrOfTypeMetadataInstantiationFunction(Target, ForDefinition);
|
|
f->setAttributes(IGM.constructInitialAttributes());
|
|
f->setDoesNotThrow();
|
|
IGM.setHasFramePointer(f, false);
|
|
|
|
IRGenFunction IGF(IGM, f);
|
|
|
|
// Skip instrumentation when building for TSan to avoid false positives.
|
|
// The synchronization for this happens in the Runtime and we do not see it.
|
|
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
|
|
f->removeFnAttr(llvm::Attribute::SanitizeThread);
|
|
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, f);
|
|
|
|
Explosion params = IGF.collectParameters();
|
|
llvm::Value *descriptor = params.claimNext();
|
|
llvm::Value *args = params.claimNext();
|
|
llvm::Value *templatePointer = params.claimNext();
|
|
|
|
// Bind the generic arguments.
|
|
if (Target->isGenericContext()) {
|
|
Address argsArray(args, IGM.getPointerAlignment());
|
|
emitPolymorphicParametersFromArray(IGF, Target, argsArray,
|
|
MetadataState::Abstract);
|
|
}
|
|
|
|
// Allocate the metadata.
|
|
llvm::Value *metadata =
|
|
asImpl().emitAllocateMetadata(IGF, descriptor, args, templatePointer);
|
|
|
|
IGF.Builder.CreateRet(metadata);
|
|
}
|
|
|
|
void emitCompletionFunction() {
|
|
// using MetadataCompleter =
|
|
// MetadataDependency(Metadata *type,
|
|
// MetadataCompletionContext *context,
|
|
// const GenericMetadataPattern *pattern);
|
|
emitMetadataCompletionFunction(IGM, Target,
|
|
[&](IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
// Bind the generic arguments.
|
|
// FIXME: this will be problematic if we ever try to bind superclass
|
|
// types from type metadata!
|
|
assert(Target->isGenericContext());
|
|
auto type = Target->getDeclaredTypeInContext()->getCanonicalType();
|
|
IGF.bindLocalTypeDataFromTypeMetadata(type, IsExact, metadata,
|
|
MetadataState::Abstract);
|
|
|
|
// A dependent VWT means that we have dependent metadata.
|
|
if (HasDependentVWT)
|
|
HasDependentMetadata = true;
|
|
|
|
if (HasDependentMetadata)
|
|
asImpl().emitInitializeMetadata(IGF, metadata, false, collector);
|
|
});
|
|
}
|
|
|
|
/// The information necessary to fill in a GenericMetadataPartialPattern
|
|
/// structure.
|
|
struct PartialPattern {
|
|
llvm::Constant *Data;
|
|
Size DataOffset;
|
|
Size DataSize;
|
|
};
|
|
void addPartialPattern(PartialPattern pattern) {
|
|
// RelativeDirectPointer<void*> Pattern;
|
|
B.addRelativeAddress(pattern.Data);
|
|
|
|
// uint16_t OffsetInWords;
|
|
B.addInt16(IGM.getOffsetInWords(pattern.DataOffset));
|
|
|
|
// uint16_t SizeInWords;
|
|
B.addInt16(IGM.getOffsetInWords(pattern.DataSize));
|
|
}
|
|
|
|
public:
|
|
void createMetadataAccessFunction() {
|
|
(void) getGenericTypeMetadataAccessFunction(IGM, Target, ForDefinition);
|
|
}
|
|
|
|
void layout() {
|
|
asImpl().layoutHeader();
|
|
|
|
// See also: [pre-5.2-extra-data-zeroing]
|
|
if (asImpl().hasExtraDataPattern()) {
|
|
asImpl().addExtraDataPattern();
|
|
}
|
|
|
|
// Immediate-members pattern. This is only valid for classes.
|
|
if (asImpl().hasImmediateMembersPattern()) {
|
|
asImpl().addImmediateMembersPattern();
|
|
}
|
|
|
|
// We're done with the pattern now.
|
|
#ifndef NDEBUG
|
|
auto finalOffset = B.getNextOffsetFromGlobal();
|
|
#endif
|
|
|
|
asImpl().emitInstantiationDefinitions();
|
|
|
|
assert(finalOffset == B.getNextOffsetFromGlobal() &&
|
|
"emitInstantiationDefinitions added members to the pattern!");
|
|
}
|
|
|
|
// Emit the fields of GenericMetadataPattern.
|
|
void layoutHeader() {
|
|
// RelativePointer<MetadataInstantiator> InstantiationFunction;
|
|
asImpl().addInstantiationFunction();
|
|
|
|
// RelativePointer<MetadataCompleter> CompletionFunction;
|
|
asImpl().addCompletionFunction();
|
|
|
|
// ClassMetadataPatternFlags PatternFlags;
|
|
asImpl().addPatternFlags();
|
|
}
|
|
|
|
void addInstantiationFunction() {
|
|
auto function = IGM.getAddrOfTypeMetadataInstantiationFunction(Target,
|
|
NotForDefinition);
|
|
B.addRelativeAddress(function);
|
|
}
|
|
|
|
void addCompletionFunction() {
|
|
if (!asImpl().hasCompletionFunction()) {
|
|
B.addInt32(0);
|
|
return;
|
|
}
|
|
|
|
auto function = IGM.getAddrOfTypeMetadataCompletionFunction(Target,
|
|
NotForDefinition);
|
|
B.addRelativeAddress(function);
|
|
}
|
|
|
|
void addPatternFlags() {
|
|
GenericMetadataPatternFlags flags = asImpl().getPatternFlags();
|
|
B.addInt32(flags.getOpaqueValue());
|
|
}
|
|
|
|
GenericMetadataPatternFlags getPatternFlags() {
|
|
GenericMetadataPatternFlags flags;
|
|
|
|
if (asImpl().hasExtraDataPattern())
|
|
flags.setHasExtraDataPattern(true);
|
|
|
|
return flags;
|
|
}
|
|
|
|
bool hasExtraDataPattern() {
|
|
return false;
|
|
}
|
|
void addExtraDataPattern() {
|
|
asImpl().addPartialPattern(asImpl().buildExtraDataPattern());
|
|
}
|
|
PartialPattern buildExtraDataPattern() {
|
|
llvm_unreachable("no extra data pattern!");
|
|
}
|
|
|
|
bool hasImmediateMembersPattern() {
|
|
return false;
|
|
}
|
|
void addImmediateMembersPattern() {
|
|
asImpl().addPartialPattern(asImpl().buildImmediateMembersPattern());
|
|
}
|
|
PartialPattern buildImmediateMembersPattern() {
|
|
llvm_unreachable("no immediate members pattern!");
|
|
}
|
|
|
|
void emitInstantiationDefinitions() {
|
|
// Force the emission of the nominal type descriptor, although we
|
|
// don't use it yet.
|
|
(void) asImpl().emitNominalTypeDescriptor();
|
|
|
|
// Emit the instantiation function.
|
|
asImpl().emitInstantiationFunction();
|
|
|
|
// Emit the completion function.
|
|
if (asImpl().hasCompletionFunction())
|
|
asImpl().emitCompletionFunction();
|
|
|
|
// Emit the instantiation cache.
|
|
asImpl().emitInstantiationCache();
|
|
}
|
|
};
|
|
|
|
template <class Impl, class DeclType>
|
|
class GenericValueMetadataBuilderBase
|
|
: public GenericMetadataBuilderBase<Impl, DeclType> {
|
|
using super = GenericMetadataBuilderBase<Impl, DeclType>;
|
|
protected:
|
|
using super::IGM;
|
|
using super::asImpl;
|
|
using super::Target;
|
|
using super::B;
|
|
|
|
template <class... T>
|
|
GenericValueMetadataBuilderBase(IRGenModule &IGM, DeclType *Target,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, Target, B) {}
|
|
|
|
SILType getLoweredType() {
|
|
return IGM.getLoweredType(Target->getDeclaredTypeInContext());
|
|
}
|
|
|
|
public:
|
|
/// Emit the fields of a GenericValueMetadataPattern.
|
|
void layoutHeader() {
|
|
super::layoutHeader();
|
|
|
|
// RelativeIndirectablePointer<const ValueWitnessTable> ValueWitnesses;
|
|
asImpl().addValueWitnessTable();
|
|
|
|
}
|
|
|
|
GenericMetadataPatternFlags getPatternFlags() {
|
|
auto flags = super::getPatternFlags();
|
|
|
|
flags.value_setMetadataKind(getMetadataKind(Target));
|
|
|
|
assert(!asImpl().hasImmediateMembersPattern());
|
|
|
|
return flags;
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
ConstantReference table =
|
|
asImpl().emitValueWitnessTable(/*relative*/ true);
|
|
B.addRelativeAddress(table);
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
bool isVWTMutable,
|
|
MetadataDependencyCollector *collector) {
|
|
emitInitializeValueMetadata(IGF, Target, metadata,
|
|
isVWTMutable, collector);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Create an access function for the given type which triggers the
|
|
/// in-place initialization path.
|
|
static void
|
|
createSingletonInitializationMetadataAccessFunction(IRGenModule &IGM,
|
|
NominalTypeDecl *typeDecl,
|
|
CanType type) {
|
|
assert(!typeDecl->isGenericContext());
|
|
|
|
(void) createTypeMetadataAccessFunction(IGM, type,
|
|
CacheStrategy::SingletonInitialization,
|
|
[&](IRGenFunction &IGF,
|
|
DynamicMetadataRequest request,
|
|
llvm::Constant *cacheVariable) {
|
|
llvm::Value *descriptor =
|
|
IGF.IGM.getAddrOfTypeContextDescriptor(typeDecl, RequireMetadata);
|
|
auto responsePair =
|
|
IGF.Builder.CreateCall(IGF.IGM.getGetSingletonMetadataFn(),
|
|
{request.get(IGF), descriptor});
|
|
return MetadataResponse::handle(IGF, request, responsePair);
|
|
});
|
|
}
|
|
|
|
/// Create an access function for the given non-generic type.
|
|
static void createNonGenericMetadataAccessFunction(IRGenModule &IGM,
|
|
NominalTypeDecl *typeDecl) {
|
|
assert(!typeDecl->isGenericContext());
|
|
auto type = typeDecl->getDeclaredType()->getCanonicalType();
|
|
|
|
// If the type requires the in-place initialization pattern, use it.
|
|
if (needsSingletonMetadataInitialization(IGM, typeDecl)) {
|
|
createSingletonInitializationMetadataAccessFunction(IGM, typeDecl, type);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, use the lazy pattern, which should be emitted using a
|
|
// direct reference to the metadata.
|
|
createDirectTypeMetadataAccessFunction(IGM, type, /*allow existing*/ false);
|
|
}
|
|
|
|
// Classes
|
|
|
|
/// Emit the base-offset variable for the class.
|
|
static void emitClassMetadataBaseOffset(IRGenModule &IGM,
|
|
ClassDecl *classDecl) {
|
|
// Otherwise, we know the offset at compile time, even if our
|
|
// clients do not, so just emit a constant.
|
|
auto &layout = IGM.getClassMetadataLayout(classDecl);
|
|
|
|
// Only classes defined in resilient modules, or those that have
|
|
// a resilient superclass need this.
|
|
if (!layout.hasResilientSuperclass() &&
|
|
!IGM.hasResilientMetadata(classDecl, ResilienceExpansion::Minimal)) {
|
|
return;
|
|
}
|
|
|
|
auto *offsetAddr =
|
|
IGM.getAddrOfClassMetadataBounds(classDecl, ForDefinition);
|
|
auto *offsetVar = cast<llvm::GlobalVariable>(offsetAddr);
|
|
|
|
if (layout.hasResilientSuperclass()) {
|
|
// If the superclass is resilient to us, we have to compute and
|
|
// initialize the global when we initialize the metadata.
|
|
auto init = llvm::ConstantAggregateZero::get(offsetVar->getValueType());
|
|
|
|
offsetVar->setInitializer(init);
|
|
offsetVar->setConstant(false);
|
|
return;
|
|
}
|
|
|
|
auto immediateMembersOffset = layout.getStartOfImmediateMembers();
|
|
auto size = layout.getSize();
|
|
auto negativeSizeInWords = size.AddressPoint / IGM.getPointerSize();
|
|
auto positiveSizeInWords = size.getOffsetToEnd() / IGM.getPointerSize();
|
|
|
|
auto initTy = cast<llvm::StructType>(offsetVar->getValueType());
|
|
auto *init = llvm::ConstantStruct::get(initTy, {
|
|
llvm::ConstantInt::get(IGM.SizeTy, immediateMembersOffset.getValue()),
|
|
llvm::ConstantInt::get(IGM.Int32Ty, negativeSizeInWords),
|
|
llvm::ConstantInt::get(IGM.Int32Ty, positiveSizeInWords)
|
|
});
|
|
|
|
offsetVar->setInitializer(init);
|
|
offsetVar->setConstant(true);
|
|
}
|
|
|
|
static Optional<llvm::Constant *>
|
|
getAddrOfDestructorFunction(IRGenModule &IGM, ClassDecl *classDecl) {
|
|
auto dtorRef = SILDeclRef(classDecl->getDestructor(),
|
|
SILDeclRef::Kind::Deallocator);
|
|
SILFunction *dtorFunc = IGM.getSILModule().lookUpFunction(dtorRef);
|
|
if (!dtorFunc) return llvm::None;
|
|
return IGM.getAddrOfSILFunction(dtorFunc, NotForDefinition);
|
|
}
|
|
|
|
static void emitFieldOffsetGlobals(IRGenModule &IGM,
|
|
ClassDecl *classDecl,
|
|
const ClassLayout &fragileLayout,
|
|
const ClassLayout &resilientLayout) {
|
|
for (auto prop : classDecl->getStoredProperties()) {
|
|
auto fieldInfo = fragileLayout.getFieldAccessAndElement(prop);
|
|
auto access = fieldInfo.first;
|
|
auto element = fieldInfo.second;
|
|
|
|
llvm::Constant *fieldOffsetOrZero;
|
|
|
|
if (element.hasByteOffset()) {
|
|
// Use a fixed offset if we have one.
|
|
fieldOffsetOrZero = IGM.getSize(element.getByteOffset());
|
|
} else {
|
|
// Otherwise, leave a placeholder for the runtime to populate at runtime.
|
|
fieldOffsetOrZero = IGM.getSize(Size(0));
|
|
}
|
|
|
|
switch (access) {
|
|
case FieldAccess::ConstantDirect:
|
|
case FieldAccess::NonConstantDirect: {
|
|
// Emit a global variable storing the constant field offset.
|
|
// If the superclass was imported from Objective-C, the offset
|
|
// does not include the superclass size; we rely on the
|
|
// Objective-C runtime sliding it down.
|
|
//
|
|
// TODO: Don't emit the symbol if field has a fixed offset and size
|
|
// in all resilience domains
|
|
auto offsetAddr = IGM.getAddrOfFieldOffset(prop, ForDefinition);
|
|
auto offsetVar = cast<llvm::GlobalVariable>(offsetAddr.getAddress());
|
|
offsetVar->setInitializer(fieldOffsetOrZero);
|
|
|
|
// If the offset is constant in the resilient layout, it will not change
|
|
// at runtime, and the global can be true const.
|
|
//
|
|
// If it is constant in the fragile layout only, newer Objective-C
|
|
// runtimes will still update them in place, so make sure to check the
|
|
// correct layout.
|
|
//
|
|
// The one exception to this rule is with empty fields with
|
|
// ObjC-resilient heritage. The ObjC runtime will attempt to slide
|
|
// these offsets if it slides the rest of the class, and in doing so
|
|
// it will compute a different offset than we computed statically.
|
|
// But this is ultimately unimportant because we do not care about the
|
|
// offset of an empty field.
|
|
auto resilientInfo = resilientLayout.getFieldAccessAndElement(prop);
|
|
if (resilientInfo.first == FieldAccess::ConstantDirect &&
|
|
(!resilientInfo.second.isEmpty() ||
|
|
!resilientLayout.mayRuntimeAssignNonZeroOffsetsToEmptyFields())) {
|
|
// If it is constant in the resilient layout, it should be constant in
|
|
// the fragile layout also.
|
|
assert(access == FieldAccess::ConstantDirect);
|
|
assert(element.hasByteOffset());
|
|
offsetVar->setConstant(true);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case FieldAccess::ConstantIndirect:
|
|
// No global variable is needed.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static ClassFlags getClassFlags(ClassDecl *classDecl) {
|
|
auto flags = ClassFlags();
|
|
|
|
// Set a flag if the class uses Swift refcounting.
|
|
auto type = classDecl->getDeclaredType()->getCanonicalType();
|
|
if (type->getReferenceCounting() == ReferenceCounting::Native) {
|
|
flags |= ClassFlags::UsesSwiftRefcounting;
|
|
}
|
|
|
|
// Set a flag if the class has a custom ObjC name.
|
|
DeclAttributes attrs = classDecl->getAttrs();
|
|
if (auto objc = attrs.getAttribute<ObjCAttr>()) {
|
|
if (objc->getName())
|
|
flags |= ClassFlags::HasCustomObjCName;
|
|
}
|
|
if (attrs.hasAttribute<ObjCRuntimeNameAttr>())
|
|
flags |= ClassFlags::HasCustomObjCName;
|
|
|
|
return flags;
|
|
}
|
|
|
|
namespace {
|
|
/// Base class for layout of non-generic class metadata.
|
|
template<class Impl>
|
|
class ClassMetadataBuilderBase : public ClassMetadataVisitor<Impl> {
|
|
using super = ClassMetadataVisitor<Impl>;
|
|
|
|
protected:
|
|
using super::IGM;
|
|
using super::Target;
|
|
|
|
ConstantStructBuilder &B;
|
|
|
|
const ClassLayout &FieldLayout;
|
|
const ClassMetadataLayout &MetadataLayout;
|
|
const SILVTable *VTable;
|
|
|
|
Size AddressPoint;
|
|
|
|
public:
|
|
ClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *theClass,
|
|
ConstantStructBuilder &builder,
|
|
const ClassLayout &fieldLayout)
|
|
: super(IGM, theClass), B(builder),
|
|
FieldLayout(fieldLayout),
|
|
MetadataLayout(IGM.getClassMetadataLayout(theClass)),
|
|
VTable(IGM.getSILModule().lookUpVTable(theClass)) {}
|
|
|
|
public:
|
|
void noteAddressPoint() {
|
|
ClassMetadataVisitor<Impl>::noteAddressPoint();
|
|
AddressPoint = B.getNextOffsetFromGlobal();
|
|
}
|
|
|
|
void addClassFlags() {
|
|
B.addInt32((uint32_t) getClassFlags(Target));
|
|
}
|
|
|
|
void noteResilientSuperclass() {}
|
|
|
|
void noteStartOfImmediateMembers(ClassDecl *theClass) {}
|
|
|
|
void addValueWitnessTable() {
|
|
switch (IGM.getClassMetadataStrategy(Target)) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
case ClassMetadataStrategy::Singleton:
|
|
// The runtime fills in the value witness table for us.
|
|
B.add(llvm::ConstantPointerNull::get(IGM.WitnessTablePtrTy));
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
case ClassMetadataStrategy::Fixed: {
|
|
// FIXME: Should this check HasImported instead?
|
|
auto type = (Target->checkAncestry(AncestryFlags::ObjC)
|
|
? IGM.Context.getAnyObjectType()
|
|
: IGM.Context.TheNativeObjectType);
|
|
auto wtable = IGM.getAddrOfValueWitnessTable(type);
|
|
B.add(wtable);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The 'metadata flags' field in a class is actually a pointer to
|
|
/// the metaclass object for the class.
|
|
///
|
|
/// NONAPPLE: This is only really required for ObjC interop; maybe
|
|
/// suppress this for classes that don't need to be exposed to
|
|
/// ObjC, e.g. for non-Apple platforms?
|
|
void addMetadataFlags() {
|
|
static_assert(unsigned(MetadataKind::Class) == 0,
|
|
"class metadata kind is non-zero?");
|
|
|
|
if (IGM.ObjCInterop) {
|
|
// Get the metaclass pointer as an intptr_t.
|
|
auto metaclass = IGM.getAddrOfMetaclassObject(Target,
|
|
NotForDefinition);
|
|
auto flags =
|
|
llvm::ConstantExpr::getPtrToInt(metaclass, IGM.MetadataKindTy);
|
|
B.add(flags);
|
|
} else {
|
|
// On non-objc platforms just fill it with a null, there
|
|
// is no Objective-C metaclass.
|
|
// FIXME: Remove this to save metadata space.
|
|
// rdar://problem/18801263
|
|
B.addInt(IGM.MetadataKindTy, unsigned(MetadataKind::Class));
|
|
}
|
|
}
|
|
|
|
void addSuperclass() {
|
|
// If we might have generic ancestry, leave a placeholder since
|
|
// swift_initClassMetdata() will fill in the superclass.
|
|
switch (IGM.getClassMetadataStrategy(Target)) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
case ClassMetadataStrategy::Singleton:
|
|
B.addNullPointer(IGM.TypeMetadataPtrTy);
|
|
return;
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
case ClassMetadataStrategy::Fixed:
|
|
break;
|
|
}
|
|
|
|
// If this is a root class, use SwiftObject as our formal parent.
|
|
if (!Target->hasSuperclass()) {
|
|
// This is only required for ObjC interoperation.
|
|
if (!IGM.ObjCInterop) {
|
|
B.addNullPointer(IGM.TypeMetadataPtrTy);
|
|
return;
|
|
}
|
|
|
|
// We have to do getAddrOfObjCClass ourselves here because
|
|
// the ObjC runtime base needs to be ObjC-mangled but isn't
|
|
// actually imported from a clang module.
|
|
B.add(IGM.getAddrOfObjCClass(
|
|
IGM.getObjCRuntimeBaseForSwiftRootClass(Target),
|
|
NotForDefinition));
|
|
return;
|
|
}
|
|
|
|
Type type = Target->mapTypeIntoContext(Target->getSuperclass());
|
|
auto *metadata = tryEmitConstantHeapMetadataRef(
|
|
IGM, type->getCanonicalType(),
|
|
/*allowUninit*/ false);
|
|
assert(metadata != nullptr);
|
|
B.add(metadata);
|
|
}
|
|
|
|
void addDestructorFunction() {
|
|
if (auto ptr = getAddrOfDestructorFunction(IGM, Target)) {
|
|
B.addSignedPointer(*ptr,
|
|
IGM.getOptions().PointerAuth.HeapDestructors,
|
|
PointerAuthEntity::Special::HeapDestructor);
|
|
} else {
|
|
// In case the optimizer removed the function. See comment in
|
|
// addMethod().
|
|
B.addNullPointer(IGM.FunctionPtrTy);
|
|
}
|
|
}
|
|
|
|
void addIVarDestroyer() {
|
|
auto dtorFunc = IGM.getAddrOfIVarInitDestroy(Target,
|
|
/*isDestroyer=*/ true,
|
|
/*isForeign=*/ false,
|
|
NotForDefinition);
|
|
if (dtorFunc) {
|
|
B.addSignedPointer(*dtorFunc,
|
|
IGM.getOptions().PointerAuth.HeapDestructors,
|
|
PointerAuthEntity::Special::HeapDestructor);
|
|
} else {
|
|
B.addNullPointer(IGM.FunctionPtrTy);
|
|
}
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
return ClassContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
B.addSignedPointer(emitNominalTypeDescriptor(),
|
|
IGM.getOptions().PointerAuth.TypeDescriptors,
|
|
PointerAuthEntity::Special::TypeDescriptor);
|
|
}
|
|
|
|
bool canBeConstant() {
|
|
// TODO: the metadata global can actually be constant in a very
|
|
// special case: it's not a pattern, ObjC interoperation isn't
|
|
// required, there are no class fields, and there is nothing that
|
|
// needs to be runtime-adjusted.
|
|
return false;
|
|
}
|
|
|
|
void addInstanceAddressPoint() {
|
|
// Right now, we never allocate fields before the address point.
|
|
B.addInt32(0);
|
|
}
|
|
|
|
void addInstanceSize() {
|
|
if (FieldLayout.isFixedLayout()) {
|
|
B.addInt32(FieldLayout.getSize().getValue());
|
|
} else {
|
|
// Leave a zero placeholder to be filled at runtime
|
|
B.addInt32(0);
|
|
}
|
|
}
|
|
|
|
void addInstanceAlignMask() {
|
|
if (FieldLayout.isFixedLayout()) {
|
|
B.addInt16(FieldLayout.getAlignMask().getValue());
|
|
} else {
|
|
// Leave a zero placeholder to be filled at runtime
|
|
B.addInt16(0);
|
|
}
|
|
}
|
|
|
|
void addRuntimeReservedBits() {
|
|
B.addInt16(0);
|
|
}
|
|
|
|
void addClassSize() {
|
|
auto size = MetadataLayout.getSize();
|
|
B.addInt32(size.FullSize.getValue());
|
|
}
|
|
|
|
void addClassAddressPoint() {
|
|
// FIXME: Wrong
|
|
auto size = MetadataLayout.getSize();
|
|
B.addInt32(size.AddressPoint.getValue());
|
|
}
|
|
|
|
void addClassCacheData() {
|
|
// We initially fill in these fields with addresses taken from
|
|
// the ObjC runtime.
|
|
// FIXME: Remove null data altogether rdar://problem/18801263
|
|
B.add(IGM.getObjCEmptyCachePtr());
|
|
B.add(IGM.getObjCEmptyVTablePtr());
|
|
}
|
|
|
|
void addClassDataPointer() {
|
|
if (!IGM.ObjCInterop) {
|
|
// with no Objective-C runtime, just give an empty pointer with the
|
|
// swift bit set.
|
|
// FIXME: Remove null data altogether rdar://problem/18801263
|
|
B.addInt(IGM.IntPtrTy, 1);
|
|
return;
|
|
}
|
|
|
|
// Derive the RO-data.
|
|
llvm::Constant *data = emitClassPrivateData(IGM, Target);
|
|
|
|
// Set a low bit to indicate this class has Swift metadata.
|
|
auto bit = llvm::ConstantInt::get(IGM.IntPtrTy,
|
|
IGM.UseDarwinPreStableABIBit ? 1 : 2);
|
|
|
|
// Emit data + bit.
|
|
data = llvm::ConstantExpr::getPtrToInt(data, IGM.IntPtrTy);
|
|
data = llvm::ConstantExpr::getAdd(data, bit);
|
|
B.add(data);
|
|
}
|
|
|
|
void addMethod(SILDeclRef fn) {
|
|
// Find the vtable entry.
|
|
assert(VTable && "no vtable?!");
|
|
auto entry = VTable->getEntry(IGM.getSILModule(), fn);
|
|
|
|
// The class is fragile. Emit a direct reference to the vtable entry.
|
|
llvm::Constant *ptr;
|
|
if (entry) {
|
|
ptr = IGM.getAddrOfSILFunction(entry->Implementation,
|
|
NotForDefinition);
|
|
} else {
|
|
// The method is removed by dead method elimination.
|
|
// It should be never called. We add a pointer to an error function.
|
|
ptr = llvm::ConstantExpr::getBitCast(IGM.getDeletedMethodErrorFn(),
|
|
IGM.FunctionPtrTy);
|
|
}
|
|
|
|
auto &schema = IGM.getOptions().PointerAuth.SwiftClassMethods;
|
|
B.addSignedPointer(ptr, schema, fn);
|
|
}
|
|
|
|
void addPlaceholder(MissingMemberDecl *m) {
|
|
assert(m->getNumberOfVTableEntries() == 0
|
|
&& "cannot generate metadata with placeholders in it");
|
|
}
|
|
|
|
void addMethodOverride(SILDeclRef baseRef, SILDeclRef declRef) {}
|
|
|
|
void createMetadataAccessFunction() {
|
|
assert(!Target->isGenericContext());
|
|
emitClassMetadataBaseOffset(IGM, Target);
|
|
createNonGenericMetadataAccessFunction(IGM, Target);
|
|
|
|
if (IGM.getClassMetadataStrategy(Target) == ClassMetadataStrategy::Fixed)
|
|
return;
|
|
|
|
emitMetadataCompletionFunction(
|
|
IGM, Target,
|
|
[&](IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
emitInitializeClassMetadata(IGF, Target, FieldLayout, metadata,
|
|
collector);
|
|
});
|
|
}
|
|
};
|
|
|
|
/// A builder for non-generic class metadata which does not require any
|
|
/// runtime initialization, or that only requires runtime initialization
|
|
/// on newer Objective-C runtimes.
|
|
class FixedClassMetadataBuilder :
|
|
public ClassMetadataBuilderBase<FixedClassMetadataBuilder> {
|
|
using super = ClassMetadataBuilderBase<FixedClassMetadataBuilder>;
|
|
using super::IGM;
|
|
using super::B;
|
|
|
|
public:
|
|
FixedClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
ConstantStructBuilder &builder,
|
|
const ClassLayout &fieldLayout)
|
|
: super(IGM, theClass, builder, fieldLayout) {}
|
|
|
|
void addFieldOffset(VarDecl *var) {
|
|
SILType baseType = SILType::getPrimitiveObjectType(
|
|
var->getDeclContext()->getDeclaredTypeInContext()
|
|
->getCanonicalType());
|
|
B.addInt(IGM.SizeTy, getClassFieldOffset(IGM, baseType, var).getValue());
|
|
}
|
|
|
|
void addFieldOffsetPlaceholders(MissingMemberDecl *placeholder) {
|
|
llvm_unreachable("Fixed class metadata cannot have missing members");
|
|
}
|
|
|
|
void addGenericArgument(GenericRequirement requirement,
|
|
ClassDecl *forClass) {
|
|
llvm_unreachable("Fixed class metadata cannot have generic parameters");
|
|
}
|
|
|
|
void addGenericWitnessTable(GenericRequirement requirement,
|
|
ClassDecl *forClass) {
|
|
llvm_unreachable("Fixed class metadata cannot have generic requirements");
|
|
}
|
|
};
|
|
|
|
/// A builder for non-generic class metadata with resiliently-sized
|
|
/// fields or generic ancestry.
|
|
class SingletonClassMetadataBuilder :
|
|
public ClassMetadataBuilderBase<SingletonClassMetadataBuilder> {
|
|
using super = ClassMetadataBuilderBase<SingletonClassMetadataBuilder>;
|
|
using super::IGM;
|
|
using super::B;
|
|
|
|
public:
|
|
SingletonClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
ConstantStructBuilder &builder,
|
|
const ClassLayout &fieldLayout)
|
|
: super(IGM, theClass, builder, fieldLayout) {}
|
|
|
|
void addFieldOffset(VarDecl *var) {
|
|
// Field offsets are either copied from the superclass or calculated
|
|
// at runtime.
|
|
B.addInt(IGM.SizeTy, 0);
|
|
}
|
|
|
|
void addFieldOffsetPlaceholders(MissingMemberDecl *placeholder) {
|
|
for (unsigned i = 0,
|
|
e = placeholder->getNumberOfFieldOffsetVectorEntries();
|
|
i < e; ++i) {
|
|
// Emit placeholder values for some number of stored properties we
|
|
// know exist but aren't able to reference directly.
|
|
B.addInt(IGM.SizeTy, 0);
|
|
}
|
|
}
|
|
|
|
void addGenericArgument(GenericRequirement requirement,
|
|
ClassDecl *forClass) {
|
|
// Filled in at runtime.
|
|
B.addNullPointer(IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
void addGenericWitnessTable(GenericRequirement requirement,
|
|
ClassDecl *forClass) {
|
|
// Filled in at runtime.
|
|
B.addNullPointer(IGM.WitnessTablePtrTy);
|
|
}
|
|
};
|
|
|
|
/// A builder for metadata patterns for non-generic class with
|
|
/// resilient ancestry.
|
|
class ResilientClassMetadataBuilder {
|
|
IRGenModule &IGM;
|
|
ClassDecl *Target;
|
|
ConstantStructBuilder &B;
|
|
const ClassLayout &FieldLayout;
|
|
|
|
public:
|
|
ResilientClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
ConstantStructBuilder &builder,
|
|
const ClassLayout &fieldLayout)
|
|
: IGM(IGM), Target(theClass), B(builder), FieldLayout(fieldLayout) {}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
return ClassContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
}
|
|
|
|
void layout() {
|
|
emitNominalTypeDescriptor();
|
|
|
|
addRelocationFunction();
|
|
addDestructorFunction();
|
|
addIVarDestroyer();
|
|
addClassFlags();
|
|
addClassDataPointer();
|
|
addMetaclass();
|
|
}
|
|
|
|
void addRelocationFunction() {
|
|
// We don't use this yet, but it's available as a future customization
|
|
// point.
|
|
B.addRelativeAddressOrNull(nullptr);
|
|
}
|
|
|
|
void addDestructorFunction() {
|
|
auto function = getAddrOfDestructorFunction(IGM, Target);
|
|
B.addRelativeAddressOrNull(function ? *function : nullptr);
|
|
}
|
|
|
|
void addIVarDestroyer() {
|
|
auto function = IGM.getAddrOfIVarInitDestroy(Target,
|
|
/*isDestroyer=*/ true,
|
|
/*isForeign=*/ false,
|
|
NotForDefinition);
|
|
B.addRelativeAddressOrNull(function ? *function : nullptr);
|
|
}
|
|
|
|
void addClassFlags() {
|
|
B.addInt32((uint32_t) getClassFlags(Target));
|
|
}
|
|
|
|
void addClassDataPointer() {
|
|
auto data = (IGM.ObjCInterop
|
|
? emitClassPrivateData(IGM, Target)
|
|
: nullptr);
|
|
B.addRelativeAddressOrNull(data);
|
|
}
|
|
|
|
void addMetaclass() {
|
|
auto metaclass = (IGM.ObjCInterop
|
|
? IGM.getAddrOfMetaclassObject(Target, NotForDefinition)
|
|
: nullptr);
|
|
B.addRelativeAddressOrNull(metaclass);
|
|
}
|
|
|
|
void createMetadataAccessFunction() {
|
|
assert(IGM.getClassMetadataStrategy(Target)
|
|
== ClassMetadataStrategy::Resilient);
|
|
|
|
assert(!Target->isGenericContext());
|
|
emitClassMetadataBaseOffset(IGM, Target);
|
|
createNonGenericMetadataAccessFunction(IGM, Target);
|
|
|
|
emitMetadataCompletionFunction(
|
|
IGM, Target,
|
|
[&](IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
emitInitializeClassMetadata(IGF, Target, FieldLayout, metadata,
|
|
collector);
|
|
});
|
|
}
|
|
};
|
|
|
|
/// A builder for GenericClassMetadataPattern objects.
|
|
class GenericClassMetadataBuilder :
|
|
public GenericMetadataBuilderBase<GenericClassMetadataBuilder,
|
|
ClassDecl>
|
|
{
|
|
using super = GenericMetadataBuilderBase;
|
|
|
|
const ClassLayout &FieldLayout;
|
|
|
|
Optional<ConstantAggregateBuilderBase::PlaceholderPosition>
|
|
ClassRODataOffset, MetaclassObjectOffset, MetaclassRODataOffset;
|
|
public:
|
|
GenericClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
ConstantStructBuilder &B,
|
|
const ClassLayout &fieldLayout)
|
|
: super(IGM, theClass, B), FieldLayout(fieldLayout)
|
|
{
|
|
// We need special initialization of metadata objects to trick the ObjC
|
|
// runtime into initializing them.
|
|
HasDependentMetadata = true;
|
|
}
|
|
|
|
void layoutHeader() {
|
|
super::layoutHeader();
|
|
|
|
// RelativePointer<HeapObjectDestroyer> Destroy;
|
|
addDestructorFunction();
|
|
|
|
// RelativePointer<ClassIVarDestroyer> IVarDestroyer;
|
|
addIVarDestroyer();
|
|
|
|
// ClassFlags Flags;
|
|
B.addInt32((uint32_t) getClassFlags(Target));
|
|
|
|
// uint16_t ClassRODataOffset;
|
|
if (IGM.ObjCInterop)
|
|
ClassRODataOffset = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
else
|
|
B.addInt16(0);
|
|
|
|
// uint16_t MetaclassObjectOffset;
|
|
if (IGM.ObjCInterop)
|
|
MetaclassObjectOffset = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
else
|
|
B.addInt16(0);
|
|
|
|
// uint16_t MetadataRODataOffset;
|
|
if (IGM.ObjCInterop)
|
|
MetaclassRODataOffset = B.addPlaceholderWithSize(IGM.Int16Ty);
|
|
else
|
|
B.addInt16(0);
|
|
|
|
// uint16_t Reserved;
|
|
B.addInt16(0);
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
return ClassContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
}
|
|
|
|
GenericMetadataPatternFlags getPatternFlags() {
|
|
auto flags = super::getPatternFlags();
|
|
|
|
flags.class_setHasImmediateMembersPattern(hasImmediateMembersPattern());
|
|
|
|
return flags;
|
|
}
|
|
|
|
void emitInstantiationDefinitions() {
|
|
// Emit the base-offset variable.
|
|
emitClassMetadataBaseOffset(IGM, Target);
|
|
|
|
super::emitInstantiationDefinitions();
|
|
}
|
|
|
|
void addDestructorFunction() {
|
|
auto function = getAddrOfDestructorFunction(IGM, Target);
|
|
B.addRelativeAddressOrNull(function ? *function : nullptr);
|
|
}
|
|
|
|
void addIVarDestroyer() {
|
|
auto function = IGM.getAddrOfIVarInitDestroy(Target,
|
|
/*isDestroyer=*/ true,
|
|
/*isForeign=*/ false,
|
|
NotForDefinition);
|
|
B.addRelativeAddressOrNull(function ? *function : nullptr);
|
|
}
|
|
|
|
bool hasExtraDataPattern() {
|
|
return IGM.ObjCInterop;
|
|
}
|
|
|
|
PartialPattern buildExtraDataPattern() {
|
|
ConstantInitBuilder subBuilder(IGM);
|
|
auto subB = subBuilder.beginStruct();
|
|
subB.setPacked(true);
|
|
|
|
// The offset of the pattern bytes in the overall extra-data section.
|
|
// Any bytes before this will be zeroed. Currently we don't take
|
|
// advantage of this.
|
|
Size patternOffset = Size(0);
|
|
|
|
if (IGM.ObjCInterop) {
|
|
// Add the metaclass object.
|
|
B.fillPlaceholderWithInt(*MetaclassObjectOffset, IGM.Int16Ty,
|
|
IGM.getOffsetInWords(patternOffset + subB.getNextOffsetFromGlobal()));
|
|
addMetaclassObject(subB);
|
|
|
|
// Add the RO-data objects.
|
|
auto roDataPoints =
|
|
emitClassPrivateDataFields(IGM, subB, Target);
|
|
B.fillPlaceholderWithInt(*ClassRODataOffset, IGM.Int16Ty,
|
|
IGM.getOffsetInWords(patternOffset + roDataPoints.first));
|
|
B.fillPlaceholderWithInt(*MetaclassRODataOffset, IGM.Int16Ty,
|
|
IGM.getOffsetInWords(patternOffset + roDataPoints.second));
|
|
}
|
|
|
|
auto patternSize = subB.getNextOffsetFromGlobal();
|
|
|
|
auto global = subB.finishAndCreateGlobal("", IGM.getPointerAlignment(),
|
|
/*constant*/ true);
|
|
|
|
return { global, patternOffset, patternSize };
|
|
}
|
|
|
|
void addMetaclassObject(ConstantStructBuilder &B) {
|
|
// isa
|
|
ClassDecl *rootClass = getRootClassForMetaclass(IGM, Target);
|
|
auto isa = IGM.getAddrOfMetaclassObject(rootClass, NotForDefinition);
|
|
B.add(isa);
|
|
// super, which is dependent if the superclass is generic
|
|
B.addNullPointer(IGM.ObjCClassPtrTy);
|
|
// cache
|
|
B.add(IGM.getObjCEmptyCachePtr());
|
|
// vtable
|
|
B.add(IGM.getObjCEmptyVTablePtr());
|
|
// rodata, which is always dependent
|
|
B.addInt(IGM.IntPtrTy, 0);
|
|
}
|
|
|
|
bool hasImmediateMembersPattern() {
|
|
// TODO: use the real field offsets if they're known statically.
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *emitAllocateMetadata(IRGenFunction &IGF,
|
|
llvm::Value *descriptor,
|
|
llvm::Value *arguments,
|
|
llvm::Value *templatePointer) {
|
|
// Sign the descriptor.
|
|
auto schema = IGF.IGM.getOptions().PointerAuth.TypeDescriptorsAsArguments;
|
|
if (schema) {
|
|
auto authInfo = PointerAuthInfo::emit(
|
|
IGF, schema, nullptr,
|
|
PointerAuthEntity::Special::TypeDescriptorAsArgument);
|
|
descriptor = emitPointerAuthSign(IGF, descriptor, authInfo);
|
|
}
|
|
|
|
auto metadata =
|
|
IGF.Builder.CreateCall(IGM.getAllocateGenericClassMetadataFn(),
|
|
{descriptor, arguments, templatePointer});
|
|
|
|
return metadata;
|
|
}
|
|
|
|
bool hasCompletionFunction() {
|
|
// TODO: recognize cases where this is not required.
|
|
// For example, under ObjCInterop mode we can move class realization
|
|
// into the allocation phase if the superclass is trivial and there's
|
|
// no layout to do.
|
|
return true;
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
bool isVWTMutable,
|
|
MetadataDependencyCollector *collector) {
|
|
assert(!HasDependentVWT && "class should never have dependent VWT");
|
|
emitInitializeClassMetadata(IGF, Target, FieldLayout,
|
|
metadata, collector);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit the ObjC-compatible class symbol for a class.
|
|
/// Since LLVM and many system linkers do not have a notion of relative symbol
|
|
/// references, we emit the symbol as a global asm block.
|
|
static void emitObjCClassSymbol(IRGenModule &IGM,
|
|
ClassDecl *classDecl,
|
|
llvm::Constant *metadata) {
|
|
auto entity = LinkEntity::forObjCClass(classDecl);
|
|
LinkInfo link = LinkInfo::get(IGM, entity, ForDefinition);
|
|
|
|
// Create the alias.
|
|
auto *ptrTy = cast<llvm::PointerType>(metadata->getType());
|
|
auto *alias = llvm::GlobalAlias::create(
|
|
ptrTy->getElementType(), ptrTy->getAddressSpace(), link.getLinkage(),
|
|
link.getName(), metadata, &IGM.Module);
|
|
ApplyIRLinkage({link.getLinkage(), link.getVisibility(), link.getDLLStorage()})
|
|
.to(alias);
|
|
}
|
|
|
|
/// Emit the type metadata or metadata template for a class.
|
|
void irgen::emitClassMetadata(IRGenModule &IGM, ClassDecl *classDecl,
|
|
const ClassLayout &fragileLayout,
|
|
const ClassLayout &resilientLayout) {
|
|
assert(!classDecl->isForeign());
|
|
PrettyStackTraceDecl stackTraceRAII("emitting metadata for", classDecl);
|
|
|
|
emitFieldOffsetGlobals(IGM, classDecl, fragileLayout, resilientLayout);
|
|
|
|
// Set up a dummy global to stand in for the metadata object while we produce
|
|
// relative references.
|
|
ConstantInitBuilder builder(IGM);
|
|
auto init = builder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
bool canBeConstant;
|
|
|
|
auto strategy = IGM.getClassMetadataStrategy(classDecl);
|
|
|
|
switch (strategy) {
|
|
case ClassMetadataStrategy::Resilient: {
|
|
if (classDecl->isGenericContext()) {
|
|
GenericClassMetadataBuilder builder(IGM, classDecl, init,
|
|
resilientLayout);
|
|
builder.layout();
|
|
canBeConstant = true;
|
|
|
|
builder.createMetadataAccessFunction();
|
|
break;
|
|
}
|
|
|
|
ResilientClassMetadataBuilder builder(IGM, classDecl, init,
|
|
resilientLayout);
|
|
builder.layout();
|
|
canBeConstant = true;
|
|
|
|
builder.createMetadataAccessFunction();
|
|
break;
|
|
}
|
|
|
|
case ClassMetadataStrategy::Singleton:
|
|
case ClassMetadataStrategy::Update: {
|
|
SingletonClassMetadataBuilder builder(IGM, classDecl, init,
|
|
resilientLayout);
|
|
builder.layout();
|
|
canBeConstant = builder.canBeConstant();
|
|
|
|
builder.createMetadataAccessFunction();
|
|
break;
|
|
}
|
|
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
case ClassMetadataStrategy::Fixed: {
|
|
FixedClassMetadataBuilder builder(IGM, classDecl, init,
|
|
fragileLayout);
|
|
builder.layout();
|
|
canBeConstant = builder.canBeConstant();
|
|
|
|
builder.createMetadataAccessFunction();
|
|
break;
|
|
}
|
|
}
|
|
|
|
CanType declaredType = classDecl->getDeclaredType()->getCanonicalType();
|
|
|
|
StringRef section{};
|
|
if (classDecl->isObjC() &&
|
|
IGM.TargetInfo.OutputObjectFormat == llvm::Triple::MachO)
|
|
section = "__DATA,__objc_data, regular";
|
|
|
|
bool isPattern = (strategy == ClassMetadataStrategy::Resilient);
|
|
auto var = IGM.defineTypeMetadata(declaredType, isPattern, canBeConstant,
|
|
init.finishAndCreateFuture(), section);
|
|
|
|
// If the class does not require dynamic initialization, or if it only
|
|
// requires dynamic initialization on a newer Objective-C runtime, add it
|
|
// to the Objctive-C class list.
|
|
if (IGM.ObjCInterop) {
|
|
switch (strategy) {
|
|
case ClassMetadataStrategy::Resilient:
|
|
// Even non-@objc classes can have Objective-C categories attached, so
|
|
// we always emit a resilient class stub as long as -enable-objc-interop
|
|
// is set.
|
|
if (hasObjCResilientClassStub(IGM, classDecl)) {
|
|
emitObjCResilientClassStub(IGM, classDecl);
|
|
|
|
if (classDecl->isObjC()) {
|
|
auto *stub = IGM.getAddrOfObjCResilientClassStub(
|
|
classDecl, NotForDefinition,
|
|
TypeMetadataAddress::AddressPoint);
|
|
emitObjCClassSymbol(IGM, classDecl, stub);
|
|
}
|
|
}
|
|
break;
|
|
case ClassMetadataStrategy::Singleton:
|
|
break;
|
|
|
|
case ClassMetadataStrategy::Update:
|
|
case ClassMetadataStrategy::FixedOrUpdate:
|
|
case ClassMetadataStrategy::Fixed:
|
|
if (classDecl->isObjC())
|
|
emitObjCClassSymbol(IGM, classDecl, var);
|
|
|
|
IGM.addObjCClass(var,
|
|
classDecl->getAttrs().hasAttribute<ObjCNonLazyRealizationAttr>());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Value *IRGenFunction::emitInvariantLoad(Address address,
|
|
const llvm::Twine &name) {
|
|
auto load = Builder.CreateLoad(address, name);
|
|
setInvariantLoad(load);
|
|
return load;
|
|
}
|
|
|
|
void IRGenFunction::setInvariantLoad(llvm::LoadInst *load) {
|
|
load->setMetadata(IGM.InvariantMetadataID, IGM.InvariantNode);
|
|
}
|
|
|
|
void IRGenFunction::setDereferenceableLoad(llvm::LoadInst *load,
|
|
unsigned size) {
|
|
auto sizeConstant = llvm::ConstantInt::get(IGM.Int64Ty, size);
|
|
auto sizeNode = llvm::MDNode::get(IGM.LLVMContext,
|
|
llvm::ConstantAsMetadata::get(sizeConstant));
|
|
load->setMetadata(IGM.DereferenceableID, sizeNode);
|
|
}
|
|
|
|
/// Emit a load from the given metadata at a constant index.
|
|
///
|
|
/// The load is marked invariant. This function should not be called
|
|
/// on metadata objects that are in the process of being initialized.
|
|
static llvm::LoadInst *
|
|
emitInvariantLoadFromMetadataAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value **slotPtr,
|
|
int index,
|
|
llvm::Type *objectTy,
|
|
const Twine &suffix = Twine::createNull()) {
|
|
auto result = emitLoadFromMetadataAtIndex(IGF, metadata, slotPtr,
|
|
index, objectTy, suffix);
|
|
IGF.setInvariantLoad(result);
|
|
return result;
|
|
}
|
|
|
|
/// Given a type metadata pointer, load its value witness table.
|
|
llvm::Value *
|
|
IRGenFunction::emitValueWitnessTableRefForMetadata(llvm::Value *metadata) {
|
|
auto witness = emitInvariantLoadFromMetadataAtIndex(*this, metadata, nullptr,
|
|
-1, IGM.WitnessTablePtrTy,
|
|
".valueWitnesses");
|
|
// A value witness table is dereferenceable to the number of value witness
|
|
// pointers.
|
|
|
|
// TODO: If we know the type statically has extra inhabitants, we know
|
|
// there are more witnesses.
|
|
auto numValueWitnesses
|
|
= unsigned(ValueWitness::Last_RequiredValueWitness) + 1;
|
|
setDereferenceableLoad(witness,
|
|
IGM.getPointerSize().getValue() * numValueWitnesses);
|
|
return witness;
|
|
}
|
|
|
|
/// Given a lowered SIL type, load a value witness table that represents its
|
|
/// layout.
|
|
llvm::Value *
|
|
IRGenFunction::emitValueWitnessTableRef(SILType type,
|
|
llvm::Value **metadataSlot) {
|
|
return emitValueWitnessTableRef(type, MetadataState::Complete, metadataSlot);
|
|
}
|
|
|
|
llvm::Value *
|
|
IRGenFunction::emitValueWitnessTableRef(SILType type,
|
|
DynamicMetadataRequest request,
|
|
llvm::Value **metadataSlot) {
|
|
assert(request.canResponseStatusBeIgnored());
|
|
assert(!request.isStaticallyAbstract() &&
|
|
"cannot make an abstract request for a value witness table");
|
|
|
|
// See if we have a cached projection we can use.
|
|
if (auto cached = tryGetLocalTypeDataForLayout(type,
|
|
LocalTypeDataKind::forValueWitnessTable())) {
|
|
if (metadataSlot)
|
|
*metadataSlot = emitTypeMetadataRefForLayout(type, request);
|
|
return cached;
|
|
}
|
|
|
|
auto metadata = emitTypeMetadataRefForLayout(type, request);
|
|
if (metadataSlot) *metadataSlot = metadata;
|
|
auto vwtable = emitValueWitnessTableRefForMetadata(metadata);
|
|
setScopedLocalTypeDataForLayout(type,
|
|
LocalTypeDataKind::forValueWitnessTable(),
|
|
vwtable);
|
|
return vwtable;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value types (structs and enums)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A helper class for laying out value metadata.
|
|
template <class Base>
|
|
class ValueMetadataBuilderBase : public Base {
|
|
protected:
|
|
using Base::IGM;
|
|
using Base::Target;
|
|
using Base::asImpl;
|
|
|
|
using Base::Base;
|
|
|
|
public:
|
|
SILType getLoweredType() {
|
|
return IGM.getLoweredType(Target->getDeclaredTypeInContext());
|
|
}
|
|
|
|
/// Create the runtime data structures and functions necessary to
|
|
/// support in-place metadata initialization on this type.
|
|
void maybeCreateSingletonMetadataInitialization() {
|
|
if (!needsSingletonMetadataInitialization(IGM, Target))
|
|
return;
|
|
|
|
emitMetadataCompletionFunction(IGM, Target,
|
|
[&](IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
emitInitializeValueMetadata(IGF, Target, metadata,
|
|
/*vwt mutable*/true, collector);
|
|
});
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Structs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// An adapter for laying out struct metadata.
|
|
template <class Impl>
|
|
class StructMetadataBuilderBase
|
|
: public ValueMetadataBuilderBase<StructMetadataVisitor<Impl>> {
|
|
using super = ValueMetadataBuilderBase<StructMetadataVisitor<Impl>>;
|
|
|
|
bool HasUnfilledFieldOffset = false;
|
|
|
|
protected:
|
|
using ConstantBuilder = ConstantStructBuilder;
|
|
ConstantBuilder &B;
|
|
using NominalDecl = StructDecl;
|
|
using super::IGM;
|
|
using super::Target;
|
|
using super::asImpl;
|
|
using super::getLoweredType;
|
|
|
|
StructMetadataBuilderBase(IRGenModule &IGM, StructDecl *theStruct,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, theStruct), B(B) {
|
|
}
|
|
|
|
public:
|
|
void noteStartOfTypeSpecificMembers() {}
|
|
|
|
void addMetadataFlags() {
|
|
B.addInt(IGM.MetadataKindTy, unsigned(getMetadataKind(Target)));
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
auto descriptor =
|
|
StructContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
return descriptor;
|
|
}
|
|
|
|
llvm::Constant *getNominalTypeDescriptor() {
|
|
return emitNominalTypeDescriptor();
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
auto descriptor = asImpl().getNominalTypeDescriptor();
|
|
B.addSignedPointer(descriptor,
|
|
IGM.getOptions().PointerAuth.TypeDescriptors,
|
|
PointerAuthEntity::Special::TypeDescriptor);
|
|
}
|
|
|
|
ConstantReference emitValueWitnessTable(bool relativeReference) {
|
|
auto type = this->Target->getDeclaredType()->getCanonicalType();
|
|
return irgen::emitValueWitnessTable(IGM, type, false, relativeReference);
|
|
}
|
|
|
|
ConstantReference getValueWitnessTable(bool relativeReference) {
|
|
return emitValueWitnessTable(relativeReference);
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
B.add(asImpl().getValueWitnessTable(false).getValue());
|
|
}
|
|
|
|
void addFieldOffset(VarDecl *var) {
|
|
assert(var->hasStorage() &&
|
|
"storing field offset for computed property?!");
|
|
SILType structType = asImpl().getLoweredType();
|
|
|
|
llvm::Constant *offset =
|
|
emitPhysicalStructMemberFixedOffset(IGM, structType, var);
|
|
// If we have a fixed offset, add it. Otherwise, leave zero as a
|
|
// placeholder.
|
|
if (offset) {
|
|
B.add(offset);
|
|
} else {
|
|
asImpl().flagUnfilledFieldOffset();
|
|
B.addInt(IGM.Int32Ty, 0);
|
|
}
|
|
}
|
|
|
|
void noteEndOfFieldOffsets() {
|
|
B.addAlignmentPadding(super::IGM.getPointerAlignment());
|
|
}
|
|
|
|
void addGenericArgument(GenericRequirement requirement) {
|
|
llvm_unreachable("Concrete type metadata cannot have generic parameters");
|
|
}
|
|
|
|
void addGenericWitnessTable(GenericRequirement requirement) {
|
|
llvm_unreachable("Concrete type metadata cannot have generic requirements");
|
|
}
|
|
|
|
bool hasTrailingFlags() {
|
|
return IGM.shouldPrespecializeGenericMetadata();
|
|
}
|
|
|
|
void addTrailingFlags() {
|
|
auto flags = asImpl().getTrailingFlags();
|
|
|
|
B.addInt(IGM.Int64Ty, flags.getOpaqueValue());
|
|
}
|
|
|
|
MetadataTrailingFlags getTrailingFlags() {
|
|
MetadataTrailingFlags flags;
|
|
|
|
return flags;
|
|
}
|
|
|
|
void flagUnfilledFieldOffset() {
|
|
HasUnfilledFieldOffset = true;
|
|
}
|
|
|
|
bool canBeConstant() {
|
|
return !HasUnfilledFieldOffset;
|
|
}
|
|
};
|
|
|
|
class StructMetadataBuilder
|
|
: public StructMetadataBuilderBase<StructMetadataBuilder> {
|
|
public:
|
|
StructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct,
|
|
ConstantStructBuilder &B)
|
|
: StructMetadataBuilderBase(IGM, theStruct, B) {}
|
|
|
|
void createMetadataAccessFunction() {
|
|
createNonGenericMetadataAccessFunction(IGM, Target);
|
|
maybeCreateSingletonMetadataInitialization();
|
|
}
|
|
};
|
|
|
|
/// Emit a value witness table for a fixed-layout generic type, or a template
|
|
/// if the value witness table is dependent on generic parameters.
|
|
static ConstantReference
|
|
getValueWitnessTableForGenericValueType(IRGenModule &IGM,
|
|
NominalTypeDecl *decl,
|
|
bool &dependent) {
|
|
CanType unboundType
|
|
= decl->getDeclaredType()->getCanonicalType();
|
|
|
|
dependent = hasDependentValueWitnessTable(IGM, unboundType);
|
|
return emitValueWitnessTable(IGM, unboundType, dependent,
|
|
/*relative reference*/ true);
|
|
}
|
|
|
|
/// A builder for metadata templates.
|
|
class GenericStructMetadataBuilder :
|
|
public GenericValueMetadataBuilderBase<GenericStructMetadataBuilder,
|
|
StructDecl> {
|
|
using super = GenericValueMetadataBuilderBase;
|
|
|
|
public:
|
|
GenericStructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, theStruct, B) {}
|
|
|
|
llvm::Value *emitAllocateMetadata(IRGenFunction &IGF,
|
|
llvm::Value *descriptor,
|
|
llvm::Value *arguments,
|
|
llvm::Value *templatePointer) {
|
|
auto &layout = IGM.getMetadataLayout(Target);
|
|
auto extraSize = layout.getSize().getOffsetToEnd()
|
|
- IGM.getOffsetOfStructTypeSpecificMetadataMembers();
|
|
auto extraSizeV = IGM.getSize(extraSize);
|
|
|
|
// Sign the descriptor.
|
|
auto schema = IGF.IGM.getOptions().PointerAuth.TypeDescriptorsAsArguments;
|
|
if (schema) {
|
|
auto authInfo = PointerAuthInfo::emit(
|
|
IGF, schema, nullptr,
|
|
PointerAuthEntity::Special::TypeDescriptorAsArgument);
|
|
descriptor = emitPointerAuthSign(IGF, descriptor, authInfo);
|
|
}
|
|
|
|
return IGF.Builder.CreateCall(IGM.getAllocateGenericValueMetadataFn(),
|
|
{descriptor, arguments, templatePointer,
|
|
extraSizeV});
|
|
}
|
|
|
|
void flagUnfilledFieldOffset() {
|
|
// We just assume this might happen.
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
return StructContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
}
|
|
|
|
GenericMetadataPatternFlags getPatternFlags() {
|
|
auto flags = super::getPatternFlags();
|
|
|
|
if (IGM.shouldPrespecializeGenericMetadata()) {
|
|
flags.setHasTrailingFlags(true);
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
ConstantReference emitValueWitnessTable(bool relativeReference) {
|
|
assert(relativeReference && "should only relative reference");
|
|
return getValueWitnessTableForGenericValueType(IGM, Target,
|
|
HasDependentVWT);
|
|
}
|
|
|
|
bool hasExtraDataPattern() {
|
|
auto &ti = IGM.getTypeInfo(getLoweredType());
|
|
if (!isa<FixedTypeInfo>(ti))
|
|
return false;
|
|
|
|
if (Target->getStoredProperties().empty())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Fill in a constant field offset vector if possible.
|
|
PartialPattern buildExtraDataPattern() {
|
|
ConstantInitBuilder builder(IGM);
|
|
auto init = builder.beginArray(IGM.Int32Ty);
|
|
|
|
struct Scanner : StructMetadataScanner<Scanner> {
|
|
SILType Type;
|
|
ConstantArrayBuilder &B;
|
|
Scanner(IRGenModule &IGM, StructDecl *target, SILType type,
|
|
ConstantArrayBuilder &B)
|
|
: StructMetadataScanner(IGM, target), Type(type), B(B) {}
|
|
|
|
void addFieldOffset(VarDecl *field) {
|
|
auto offset = emitPhysicalStructMemberFixedOffset(IGM, Type, field);
|
|
if (offset) {
|
|
B.add(offset);
|
|
return;
|
|
}
|
|
assert(IGM.getTypeInfo(
|
|
Type.getFieldType(field, IGM.getSILModule(),
|
|
TypeExpansionContext::minimal()))
|
|
.isKnownEmpty(ResilienceExpansion::Maximal));
|
|
B.addInt32(0);
|
|
}
|
|
|
|
void noteEndOfFieldOffsets() {
|
|
B.addAlignmentPadding(IGM.getPointerAlignment());
|
|
}
|
|
};
|
|
Scanner(IGM, Target, getLoweredType(), init).layout();
|
|
Size vectorSize = init.getNextOffsetFromGlobal();
|
|
|
|
auto global = init.finishAndCreateGlobal("", IGM.getPointerAlignment(),
|
|
/*constant*/ true);
|
|
|
|
auto &layout = IGM.getMetadataLayout(Target);
|
|
return { global,
|
|
layout.getFieldOffsetVectorOffset().getStatic()
|
|
- IGM.getOffsetOfStructTypeSpecificMetadataMembers(),
|
|
vectorSize };
|
|
}
|
|
|
|
void addTrailingFlags() { this->B.addInt(IGM.Int64Ty, 0); }
|
|
|
|
bool hasCompletionFunction() {
|
|
return !isa<FixedTypeInfo>(IGM.getTypeInfo(getLoweredType()));
|
|
}
|
|
};
|
|
|
|
template <template <typename> class MetadataBuilderBase, typename Impl>
|
|
class SpecializedGenericNominalMetadataBuilderBase
|
|
: public MetadataBuilderBase<Impl> {
|
|
using super = MetadataBuilderBase<Impl>;
|
|
|
|
CanType type;
|
|
|
|
protected:
|
|
using super::asImpl;
|
|
using super::getLoweredType;
|
|
using super::IGM;
|
|
using super::Target;
|
|
using typename super::ConstantBuilder;
|
|
using typename super::NominalDecl;
|
|
|
|
public:
|
|
SpecializedGenericNominalMetadataBuilderBase(IRGenModule &IGM, CanType type,
|
|
NominalDecl &decl,
|
|
ConstantBuilder &B)
|
|
: super(IGM, &decl, B), type(type) {}
|
|
|
|
void noteStartOfTypeSpecificMembers() {}
|
|
|
|
llvm::Constant *getNominalTypeDescriptor() {
|
|
return IGM.getAddrOfTypeContextDescriptor(Target, RequireMetadata);
|
|
}
|
|
|
|
SILType getLoweredType() { return SILType::getPrimitiveObjectType(type); }
|
|
|
|
ConstantReference emitValueWitnessTable(bool relativeReference) {
|
|
return irgen::emitValueWitnessTable(IGM, type, false, relativeReference);
|
|
}
|
|
|
|
ConstantReference getValueWitnessTable(bool relativeReference) {
|
|
return emitValueWitnessTable(relativeReference);
|
|
}
|
|
|
|
void addGenericArgument(GenericRequirement requirement) {
|
|
auto t = requirement.TypeParameter.subst(genericSubstitutions());
|
|
ConstantReference ref = IGM.getAddrOfTypeMetadata(
|
|
CanType(t), SymbolReferenceKind::Relative_Direct);
|
|
this->B.add(ref.getDirectValue());
|
|
}
|
|
|
|
void addGenericWitnessTable(GenericRequirement requirement) {
|
|
auto conformance = genericSubstitutions().lookupConformance(
|
|
requirement.TypeParameter->getCanonicalType(), requirement.Protocol);
|
|
ProtocolConformance *concreteConformance = conformance.getConcrete();
|
|
|
|
llvm::Constant *addr;
|
|
|
|
Type argument = requirement.TypeParameter.subst(genericSubstitutions());
|
|
auto argumentNominal = argument->getAnyNominal();
|
|
if (argumentNominal && argumentNominal->isGenericContext()) {
|
|
// TODO: Statically specialize the witness table pattern for t's
|
|
// conformance.
|
|
llvm_unreachable("Statically specializing metadata at generic types is "
|
|
"not supported.");
|
|
} else {
|
|
RootProtocolConformance *rootConformance =
|
|
concreteConformance->getRootConformance();
|
|
addr = IGM.getAddrOfWitnessTable(rootConformance);
|
|
}
|
|
|
|
this->B.add(addr);
|
|
}
|
|
|
|
SubstitutionMap genericSubstitutions() {
|
|
return type->getContextSubstitutionMap(IGM.getSwiftModule(),
|
|
type->getAnyNominal());
|
|
}
|
|
|
|
MetadataTrailingFlags getTrailingFlags() {
|
|
MetadataTrailingFlags flags = super::getTrailingFlags();
|
|
|
|
flags.setIsStaticSpecialization(true);
|
|
flags.setIsCanonicalStaticSpecialization(true);
|
|
|
|
return flags;
|
|
}
|
|
};
|
|
|
|
// FIXME: rdar://problem/58884416:
|
|
//
|
|
// Without this template typealias, the following errors are produced
|
|
// when compiling on Linux and Windows, respectively:
|
|
//
|
|
// template argument for template template parameter must be a class
|
|
// template or type alias template
|
|
//
|
|
// invalid template argument for template parameter
|
|
// 'MetadataBuilderBase', expected a class template
|
|
//
|
|
// Once those issues are resolved, delete this typealias and directly
|
|
// use StructMetadataBuilderBase in
|
|
// SpecializedGenericNominalMetadataBuilderBase.
|
|
template <typename T>
|
|
using WorkaroundRestateStructMetadataBuilderBase =
|
|
StructMetadataBuilderBase<T>;
|
|
|
|
class SpecializedGenericStructMetadataBuilder
|
|
: public SpecializedGenericNominalMetadataBuilderBase<
|
|
WorkaroundRestateStructMetadataBuilderBase,
|
|
SpecializedGenericStructMetadataBuilder> {
|
|
using super = SpecializedGenericNominalMetadataBuilderBase<
|
|
WorkaroundRestateStructMetadataBuilderBase,
|
|
SpecializedGenericStructMetadataBuilder>;
|
|
|
|
public:
|
|
SpecializedGenericStructMetadataBuilder(IRGenModule &IGM, CanType type,
|
|
StructDecl &decl,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, type, decl, B) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Emit the type metadata or metadata template for a struct.
|
|
void irgen::emitStructMetadata(IRGenModule &IGM, StructDecl *structDecl) {
|
|
PrettyStackTraceDecl stackTraceRAII("emitting metadata for", structDecl);
|
|
ConstantInitBuilder initBuilder(IGM);
|
|
auto init = initBuilder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
bool isPattern;
|
|
bool canBeConstant;
|
|
if (structDecl->isGenericContext()) {
|
|
GenericStructMetadataBuilder builder(IGM, structDecl, init);
|
|
builder.layout();
|
|
isPattern = true;
|
|
canBeConstant = true;
|
|
|
|
builder.createMetadataAccessFunction();
|
|
} else {
|
|
StructMetadataBuilder builder(IGM, structDecl, init);
|
|
builder.layout();
|
|
isPattern = false;
|
|
canBeConstant = builder.canBeConstant();
|
|
|
|
builder.createMetadataAccessFunction();
|
|
}
|
|
|
|
CanType declaredType = structDecl->getDeclaredType()->getCanonicalType();
|
|
|
|
IGM.defineTypeMetadata(declaredType, isPattern, canBeConstant,
|
|
init.finishAndCreateFuture());
|
|
}
|
|
|
|
void irgen::emitSpecializedGenericStructMetadata(IRGenModule &IGM, CanType type,
|
|
StructDecl &decl) {
|
|
Type ty = type.getPointer();
|
|
auto &context = type->getNominalOrBoundGenericNominal()->getASTContext();
|
|
PrettyStackTraceType stackTraceRAII(
|
|
context, "emitting prespecialized metadata for", ty);
|
|
ConstantInitBuilder initBuilder(IGM);
|
|
auto init = initBuilder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
bool isPattern = false;
|
|
|
|
SpecializedGenericStructMetadataBuilder builder(IGM, type, decl, init);
|
|
builder.layout();
|
|
|
|
bool canBeConstant = builder.canBeConstant();
|
|
IGM.defineTypeMetadata(type, isPattern, canBeConstant,
|
|
init.finishAndCreateFuture());
|
|
}
|
|
|
|
// Enums
|
|
|
|
static Optional<Size> getConstantPayloadSize(IRGenModule &IGM,
|
|
EnumDecl *enumDecl,
|
|
CanType enumTy) {
|
|
auto &enumTI = IGM.getTypeInfoForUnlowered(enumTy);
|
|
if (!enumTI.isFixedSize(ResilienceExpansion::Maximal)) {
|
|
return None;
|
|
}
|
|
|
|
assert((!enumTI.isFixedSize(ResilienceExpansion::Minimal) || enumDecl->isGenericContext()) &&
|
|
"non-generic, non-resilient enums don't need payload size in metadata");
|
|
auto &strategy = getEnumImplStrategy(IGM, enumTy);
|
|
return Size(strategy.getPayloadSizeForMetadata());
|
|
}
|
|
|
|
static Optional<Size> getConstantPayloadSize(IRGenModule &IGM,
|
|
EnumDecl *enumDecl) {
|
|
auto enumTy = enumDecl->getDeclaredTypeInContext()->getCanonicalType();
|
|
return getConstantPayloadSize(IGM, enumDecl, enumTy);
|
|
}
|
|
|
|
namespace {
|
|
|
|
template<class Impl>
|
|
class EnumMetadataBuilderBase
|
|
: public ValueMetadataBuilderBase<EnumMetadataVisitor<Impl>> {
|
|
using super = ValueMetadataBuilderBase<EnumMetadataVisitor<Impl>>;
|
|
bool HasUnfilledPayloadSize = false;
|
|
|
|
protected:
|
|
using ConstantBuilder = ConstantStructBuilder;
|
|
using NominalDecl = EnumDecl;
|
|
ConstantBuilder &B;
|
|
using super::asImpl;
|
|
using super::IGM;
|
|
using super::Target;
|
|
|
|
EnumMetadataBuilderBase(IRGenModule &IGM, EnumDecl *theEnum,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, theEnum), B(B) {
|
|
}
|
|
|
|
public:
|
|
void noteStartOfTypeSpecificMembers() {}
|
|
|
|
void addMetadataFlags() {
|
|
B.addInt(IGM.MetadataKindTy, unsigned(getMetadataKind(Target)));
|
|
}
|
|
|
|
ConstantReference emitValueWitnessTable(bool relativeReference) {
|
|
auto type = Target->getDeclaredType()->getCanonicalType();
|
|
return irgen::emitValueWitnessTable(IGM, type, false, relativeReference);
|
|
}
|
|
|
|
ConstantReference getValueWitnessTable(bool relativeReference) {
|
|
return emitValueWitnessTable(relativeReference);
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
B.add(asImpl().getValueWitnessTable(false).getValue());
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
auto descriptor =
|
|
EnumContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
return descriptor;
|
|
}
|
|
|
|
llvm::Constant *getNominalTypeDescriptor() {
|
|
return emitNominalTypeDescriptor();
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
B.addSignedPointer(asImpl().getNominalTypeDescriptor(),
|
|
IGM.getOptions().PointerAuth.TypeDescriptors,
|
|
PointerAuthEntity::Special::TypeDescriptor);
|
|
}
|
|
|
|
void addGenericArgument(GenericRequirement requirement) {
|
|
llvm_unreachable("Concrete type metadata cannot have generic parameters");
|
|
}
|
|
|
|
void addGenericWitnessTable(GenericRequirement requirement) {
|
|
llvm_unreachable("Concrete type metadata cannot have generic requirements");
|
|
}
|
|
|
|
bool hasTrailingFlags() { return IGM.shouldPrespecializeGenericMetadata(); }
|
|
|
|
void addTrailingFlags() {
|
|
auto flags = asImpl().getTrailingFlags();
|
|
|
|
B.addInt(IGM.Int64Ty, flags.getOpaqueValue());
|
|
}
|
|
|
|
MetadataTrailingFlags getTrailingFlags() {
|
|
MetadataTrailingFlags flags;
|
|
|
|
return flags;
|
|
}
|
|
|
|
Optional<Size> getPayloadSize() {
|
|
return getConstantPayloadSize(IGM, Target);
|
|
}
|
|
|
|
void addPayloadSize() {
|
|
auto payloadSize = asImpl().getPayloadSize();
|
|
if (!payloadSize) {
|
|
B.addInt(IGM.IntPtrTy, 0);
|
|
HasUnfilledPayloadSize = true;
|
|
return;
|
|
}
|
|
|
|
B.addInt(IGM.IntPtrTy, payloadSize->getValue());
|
|
}
|
|
|
|
bool canBeConstant() {
|
|
return !HasUnfilledPayloadSize;
|
|
}
|
|
};
|
|
|
|
// FIXME: rdar://problem/58884416
|
|
//
|
|
// Without this template typealias, the following errors are produced
|
|
// when compiling on Linux and Windows, respectively:
|
|
//
|
|
// template argument for template template parameter must be a class
|
|
// template or type alias template
|
|
//
|
|
// invalid template argument for template parameter
|
|
// 'MetadataBuilderBase', expected a class template
|
|
//
|
|
// Once those issues are resolved, delete this typealias and directly
|
|
// use EnumMetadataBuilderBase in
|
|
// SpecializedGenericNominalMetadataBuilderBase.
|
|
template <typename T>
|
|
using WorkaroundRestateEnumMetadataBuilderBase = EnumMetadataBuilderBase<T>;
|
|
|
|
class SpecializedGenericEnumMetadataBuilder
|
|
: public SpecializedGenericNominalMetadataBuilderBase<
|
|
WorkaroundRestateEnumMetadataBuilderBase,
|
|
SpecializedGenericEnumMetadataBuilder> {
|
|
|
|
using super = SpecializedGenericNominalMetadataBuilderBase<
|
|
WorkaroundRestateEnumMetadataBuilderBase,
|
|
SpecializedGenericEnumMetadataBuilder>;
|
|
|
|
CanType type;
|
|
|
|
public:
|
|
SpecializedGenericEnumMetadataBuilder(IRGenModule &IGM, CanType type,
|
|
EnumDecl &decl, ConstantBuilder &B)
|
|
: super(IGM, type, decl, B), type(type) {};
|
|
|
|
Optional<Size> getPayloadSize() {
|
|
return getConstantPayloadSize(IGM, Target, type);
|
|
}
|
|
};
|
|
|
|
class EnumMetadataBuilder
|
|
: public EnumMetadataBuilderBase<EnumMetadataBuilder> {
|
|
public:
|
|
EnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum,
|
|
ConstantStructBuilder &B)
|
|
: EnumMetadataBuilderBase(IGM, theEnum, B) {}
|
|
|
|
void createMetadataAccessFunction() {
|
|
createNonGenericMetadataAccessFunction(IGM, Target);
|
|
maybeCreateSingletonMetadataInitialization();
|
|
}
|
|
};
|
|
|
|
class GenericEnumMetadataBuilder
|
|
: public GenericValueMetadataBuilderBase<GenericEnumMetadataBuilder,
|
|
EnumDecl> {
|
|
using super = GenericValueMetadataBuilderBase;
|
|
|
|
public:
|
|
GenericEnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum,
|
|
ConstantStructBuilder &B)
|
|
: super(IGM, theEnum, B) {}
|
|
|
|
llvm::Value *emitAllocateMetadata(IRGenFunction &IGF,
|
|
llvm::Value *descriptor,
|
|
llvm::Value *arguments,
|
|
llvm::Value *templatePointer) {
|
|
auto &layout = IGM.getMetadataLayout(Target);
|
|
auto extraSize = layout.getSize().getOffsetToEnd()
|
|
- IGM.getOffsetOfEnumTypeSpecificMetadataMembers();
|
|
auto extraSizeV = IGM.getSize(extraSize);
|
|
|
|
// Sign the descriptor.
|
|
auto schema = IGF.IGM.getOptions().PointerAuth.TypeDescriptorsAsArguments;
|
|
if (schema) {
|
|
auto authInfo = PointerAuthInfo::emit(
|
|
IGF, schema, nullptr,
|
|
PointerAuthEntity::Special::TypeDescriptorAsArgument);
|
|
descriptor = emitPointerAuthSign(IGF, descriptor, authInfo);
|
|
}
|
|
|
|
auto metadata =
|
|
IGF.Builder.CreateCall(IGM.getAllocateGenericValueMetadataFn(),
|
|
{descriptor, arguments, templatePointer,
|
|
extraSizeV});
|
|
|
|
// Initialize the payload-size field if we have a constant value for it.
|
|
// This is so small that we just do it inline instead of bothering
|
|
// with a pattern.
|
|
if (layout.hasPayloadSizeOffset()) {
|
|
if (auto size = getConstantPayloadSize(IGM, Target)) {
|
|
auto offset = layout.getPayloadSizeOffset();
|
|
auto slot = IGF.emitAddressAtOffset(metadata, offset, IGM.SizeTy,
|
|
IGM.getPointerAlignment());
|
|
IGF.Builder.CreateStore(IGM.getSize(*size), slot);
|
|
}
|
|
}
|
|
|
|
return metadata;
|
|
}
|
|
|
|
llvm::Constant *emitNominalTypeDescriptor() {
|
|
return EnumContextDescriptorBuilder(IGM, Target, RequireMetadata).emit();
|
|
}
|
|
|
|
GenericMetadataPatternFlags getPatternFlags() {
|
|
auto flags = super::getPatternFlags();
|
|
|
|
if (IGM.shouldPrespecializeGenericMetadata()) {
|
|
flags.setHasTrailingFlags(true);
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
ConstantReference emitValueWitnessTable(bool relativeReference) {
|
|
assert(relativeReference && "should only relative reference");
|
|
return getValueWitnessTableForGenericValueType(IGM, Target,
|
|
HasDependentVWT);
|
|
}
|
|
|
|
bool hasCompletionFunction() {
|
|
return !isa<FixedTypeInfo>(IGM.getTypeInfo(getLoweredType()));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void irgen::emitEnumMetadata(IRGenModule &IGM, EnumDecl *theEnum) {
|
|
PrettyStackTraceDecl stackTraceRAII("emitting metadata for", theEnum);
|
|
ConstantInitBuilder initBuilder(IGM);
|
|
auto init = initBuilder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
bool isPattern;
|
|
bool canBeConstant;
|
|
if (theEnum->isGenericContext()) {
|
|
GenericEnumMetadataBuilder builder(IGM, theEnum, init);
|
|
builder.layout();
|
|
isPattern = true;
|
|
canBeConstant = true;
|
|
|
|
builder.createMetadataAccessFunction();
|
|
} else {
|
|
EnumMetadataBuilder builder(IGM, theEnum, init);
|
|
builder.layout();
|
|
isPattern = false;
|
|
canBeConstant = builder.canBeConstant();
|
|
|
|
builder.createMetadataAccessFunction();
|
|
}
|
|
|
|
CanType declaredType = theEnum->getDeclaredType()->getCanonicalType();
|
|
|
|
IGM.defineTypeMetadata(declaredType, isPattern, canBeConstant,
|
|
init.finishAndCreateFuture());
|
|
}
|
|
|
|
void irgen::emitSpecializedGenericEnumMetadata(IRGenModule &IGM, CanType type,
|
|
EnumDecl &decl) {
|
|
Type ty = type.getPointer();
|
|
auto &context = type->getNominalOrBoundGenericNominal()->getASTContext();
|
|
PrettyStackTraceType stackTraceRAII(
|
|
context, "emitting prespecialized metadata for", ty);
|
|
ConstantInitBuilder initBuilder(IGM);
|
|
auto init = initBuilder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
bool isPattern = false;
|
|
|
|
SpecializedGenericEnumMetadataBuilder builder(IGM, type, decl, init);
|
|
builder.layout();
|
|
|
|
bool canBeConstant = builder.canBeConstant();
|
|
IGM.defineTypeMetadata(type, isPattern, canBeConstant,
|
|
init.finishAndCreateFuture());
|
|
}
|
|
|
|
llvm::Value *IRGenFunction::emitObjCSelectorRefLoad(StringRef selector) {
|
|
llvm::Constant *loadSelRef = IGM.getAddrOfObjCSelectorRef(selector);
|
|
llvm::Value *loadSel =
|
|
Builder.CreateLoad(Address(loadSelRef, IGM.getPointerAlignment()));
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector. For non-JIT'd code, the linker will
|
|
// do it for us.
|
|
if (IGM.IRGen.Opts.UseJIT) {
|
|
loadSel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), loadSel);
|
|
}
|
|
|
|
return loadSel;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Foreign types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// An adapter that turns a metadata layout class into a foreign metadata
|
|
/// layout class.
|
|
///
|
|
/// Foreign metadata is generated for declarations that are
|
|
/// synthesized by the Clang importer from C declarations, meaning they don't
|
|
/// have a single Swift binary that is responsible for their emission.
|
|
/// In this case, we emit the record into every binary that needs it, with
|
|
/// a header with a unique identifier string that the runtime can use to pick
|
|
/// the first-used instance as the canonical instance for a process.
|
|
template<typename Impl, typename Base>
|
|
class ForeignMetadataBuilderBase : public Base {
|
|
using super = Base;
|
|
|
|
protected:
|
|
using super::IGM;
|
|
using super::Target;
|
|
using super::asImpl;
|
|
using super::B;
|
|
|
|
template <class... T>
|
|
ForeignMetadataBuilderBase(T &&...args) : super(std::forward<T>(args)...) {}
|
|
|
|
Size AddressPoint = Size::invalid();
|
|
bool CanBeConstant = true;
|
|
|
|
public:
|
|
void noteAddressPoint() {
|
|
AddressPoint = B.getNextOffsetFromGlobal();
|
|
}
|
|
|
|
bool canBeConstant() {
|
|
return CanBeConstant;
|
|
}
|
|
|
|
Size getOffsetOfAddressPoint() const { return AddressPoint; }
|
|
|
|
void createMetadataAccessFunction() {
|
|
if (asImpl().needsMetadataCompletionFunction())
|
|
asImpl().createMetadataCompletionFunction();
|
|
|
|
auto type = cast<NominalType>(asImpl().getTargetType());
|
|
|
|
(void) createTypeMetadataAccessFunction(IGM, type, CacheStrategy::Lazy,
|
|
[&](IRGenFunction &IGF,
|
|
DynamicMetadataRequest request,
|
|
llvm::Constant *cacheVariable) {
|
|
auto candidate = IGF.IGM.getAddrOfTypeMetadata(type);
|
|
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetForeignTypeMetadataFn(),
|
|
{request.get(IGF), candidate});
|
|
call->addAttribute(llvm::AttributeList::FunctionIndex,
|
|
llvm::Attribute::NoUnwind);
|
|
call->addAttribute(llvm::AttributeList::FunctionIndex,
|
|
llvm::Attribute::ReadNone);
|
|
|
|
return MetadataResponse::handle(IGF, request, call);
|
|
});
|
|
}
|
|
|
|
bool needsMetadataCompletionFunction() {
|
|
return needsForeignMetadataCompletionFunction(IGM, Target);
|
|
}
|
|
|
|
void createMetadataCompletionFunction() {
|
|
// Note that we can't call this until we've finished laying out the
|
|
// metadata because otherwise we'll try to reenter when we ask for
|
|
// the metadata candidate.
|
|
emitMetadataCompletionFunction(IGM, Target,
|
|
[&](IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
asImpl().emitInitializeMetadata(IGF, metadata, collector);
|
|
});
|
|
}
|
|
};
|
|
|
|
class ForeignClassMetadataBuilder;
|
|
class ForeignClassMetadataBuilderBase :
|
|
public ForeignClassMetadataVisitor<ForeignClassMetadataBuilder> {
|
|
protected:
|
|
ConstantStructBuilder &B;
|
|
|
|
ForeignClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *target,
|
|
ConstantStructBuilder &B)
|
|
: ForeignClassMetadataVisitor(IGM, target), B(B) {}
|
|
};
|
|
|
|
/// A builder for ForeignClassMetadata.
|
|
class ForeignClassMetadataBuilder :
|
|
public ForeignMetadataBuilderBase<ForeignClassMetadataBuilder,
|
|
ForeignClassMetadataBuilderBase> {
|
|
public:
|
|
ForeignClassMetadataBuilder(IRGenModule &IGM, ClassDecl *target,
|
|
ConstantStructBuilder &B)
|
|
: ForeignMetadataBuilderBase(IGM, target, B) {
|
|
if (IGM.getOptions().LazyInitializeClassMetadata)
|
|
CanBeConstant = false;
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF, llvm::Value *metadata,
|
|
MetadataDependencyCollector *collector) {
|
|
if (!Target->hasSuperclass()) {
|
|
assert(IGM.getOptions().LazyInitializeClassMetadata &&
|
|
"should have superclass if not lazy initializing class metadata");
|
|
return;
|
|
}
|
|
|
|
// Emit a reference to the superclass.
|
|
auto superclass = IGF.emitAbstractTypeMetadataRef(
|
|
Target->getSuperclass()->getCanonicalType());
|
|
|
|
// Dig out the address of the superclass field and store.
|
|
auto &layout = IGF.IGM.getForeignMetadataLayout(Target);
|
|
Address addr(metadata, IGM.getPointerAlignment());
|
|
addr = IGF.Builder.CreateElementBitCast(addr, IGM.TypeMetadataPtrTy);
|
|
auto superclassField =
|
|
createPointerSizedGEP(IGF, addr,
|
|
layout.getSuperClassOffset().getStaticOffset());
|
|
IGF.Builder.CreateStore(superclass, superclassField);
|
|
}
|
|
|
|
// Visitor methods.
|
|
|
|
void addValueWitnessTable() {
|
|
// The runtime will fill in the default VWT during allocation for the
|
|
// foreign class metadata.
|
|
//
|
|
// As of Swift 5.1, the runtime will fill in a default VWT during
|
|
// allocation of foreign class metadata. We rely on this for correctness
|
|
// on COFF, where we can't necessarily reference the stanard VWT from the
|
|
// metadata candidate, but it is a good optimization everywhere.
|
|
//
|
|
// The default VWT uses ObjC-compatible reference counting if ObjC interop
|
|
// is enabled and Swift-compatible reference counting otherwise. That is
|
|
// currently always good enough for foreign classes, so we can
|
|
// unconditionally rely on the default VWT.
|
|
//
|
|
// FIXME: take advantage of this on other targets when targeting a
|
|
// sufficiently recent runtime.
|
|
if (IGM.getOptions().LazyInitializeClassMetadata)
|
|
return B.addNullPointer(IGM.WitnessTablePtrTy);
|
|
|
|
// Without Objective-C interop, foreign classes must still use
|
|
// Swift native reference counting.
|
|
auto type = (IGM.ObjCInterop
|
|
? IGM.Context.getAnyObjectType()
|
|
: IGM.Context.TheNativeObjectType);
|
|
auto wtable = IGM.getAddrOfValueWitnessTable(type);
|
|
B.add(wtable);
|
|
}
|
|
|
|
void addMetadataFlags() {
|
|
B.addInt(IGM.MetadataKindTy, (unsigned) MetadataKind::ForeignClass);
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
auto descriptor =
|
|
ClassContextDescriptorBuilder(this->IGM, Target, RequireMetadata).emit();
|
|
B.addSignedPointer(descriptor,
|
|
IGM.getOptions().PointerAuth.TypeDescriptors,
|
|
PointerAuthEntity::Special::TypeDescriptor);
|
|
}
|
|
|
|
void addSuperclass() {
|
|
// Always leave the superclass pointer unfilled. We'll have to
|
|
// unique it during initialization anyway, so we might as well spare
|
|
// ourselves the load-time work.
|
|
B.addNullPointer(IGM.TypeMetadataPtrTy);
|
|
|
|
// But remember if we might need to change it.
|
|
if (Target->hasSuperclass())
|
|
CanBeConstant = false;
|
|
}
|
|
|
|
void addReservedWord() {
|
|
B.addNullPointer(IGM.Int8PtrTy);
|
|
}
|
|
};
|
|
|
|
/// A builder for ForeignStructMetadata.
|
|
class ForeignStructMetadataBuilder :
|
|
public ForeignMetadataBuilderBase<ForeignStructMetadataBuilder,
|
|
StructMetadataBuilderBase<ForeignStructMetadataBuilder>>
|
|
{
|
|
public:
|
|
ForeignStructMetadataBuilder(IRGenModule &IGM, StructDecl *target,
|
|
ConstantStructBuilder &builder)
|
|
: ForeignMetadataBuilderBase(IGM, target, builder) {}
|
|
|
|
CanType getTargetType() const {
|
|
return Target->getDeclaredType()->getCanonicalType();
|
|
}
|
|
|
|
void createMetadataCompletionFunction() {
|
|
llvm_unreachable("foreign structs never require completion");
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
B.add(emitValueWitnessTable(/*relative*/ false).getValue());
|
|
}
|
|
|
|
void flagUnfilledFieldOffset() {
|
|
llvm_unreachable("foreign type with non-fixed layout?");
|
|
}
|
|
};
|
|
|
|
/// A builder for ForeignEnumMetadata.
|
|
class ForeignEnumMetadataBuilder :
|
|
public ForeignMetadataBuilderBase<ForeignEnumMetadataBuilder,
|
|
EnumMetadataBuilderBase<ForeignEnumMetadataBuilder>>
|
|
{
|
|
public:
|
|
ForeignEnumMetadataBuilder(IRGenModule &IGM, EnumDecl *target,
|
|
ConstantStructBuilder &builder)
|
|
: ForeignMetadataBuilderBase(IGM, target, builder) {}
|
|
|
|
CanType getTargetType() const {
|
|
return Target->getDeclaredType()->getCanonicalType();
|
|
}
|
|
|
|
void createMetadataCompletionFunction() {
|
|
llvm_unreachable("foreign enums never require completion");
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
B.add(emitValueWitnessTable(/*relative*/ false).getValue());
|
|
}
|
|
|
|
void addPayloadSize() const {
|
|
llvm_unreachable("nongeneric enums shouldn't need payload size in metadata");
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool irgen::requiresForeignTypeMetadata(CanType type) {
|
|
if (NominalTypeDecl *nominal = type->getAnyNominal()) {
|
|
return requiresForeignTypeMetadata(nominal);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool irgen::requiresForeignTypeMetadata(NominalTypeDecl *decl) {
|
|
if (auto *clas = dyn_cast<ClassDecl>(decl)) {
|
|
switch (clas->getForeignClassKind()) {
|
|
case ClassDecl::ForeignKind::Normal:
|
|
case ClassDecl::ForeignKind::RuntimeOnly:
|
|
return false;
|
|
case ClassDecl::ForeignKind::CFType:
|
|
return true;
|
|
}
|
|
llvm_unreachable("bad foreign class kind");
|
|
}
|
|
|
|
return isa<ClangModuleUnit>(decl->getModuleScopeContext()) &&
|
|
!isa<ProtocolDecl>(decl);
|
|
}
|
|
|
|
void irgen::emitForeignTypeMetadata(IRGenModule &IGM, NominalTypeDecl *decl) {
|
|
auto type = decl->getDeclaredType()->getCanonicalType();
|
|
|
|
// Create a temporary base for relative references.
|
|
ConstantInitBuilder builder(IGM);
|
|
auto init = builder.beginStruct();
|
|
init.setPacked(true);
|
|
|
|
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
|
|
assert(classDecl->getForeignClassKind() == ClassDecl::ForeignKind::CFType);
|
|
|
|
ForeignClassMetadataBuilder builder(IGM, classDecl, init);
|
|
builder.layout();
|
|
|
|
IGM.defineTypeMetadata(type, /*isPattern=*/false,
|
|
builder.canBeConstant(),
|
|
init.finishAndCreateFuture());
|
|
builder.createMetadataAccessFunction();
|
|
} else if (auto structDecl = dyn_cast<StructDecl>(decl)) {
|
|
assert(isa<ClangModuleUnit>(structDecl->getModuleScopeContext()));
|
|
|
|
ForeignStructMetadataBuilder builder(IGM, structDecl, init);
|
|
builder.layout();
|
|
|
|
IGM.defineTypeMetadata(type, /*isPattern=*/false,
|
|
builder.canBeConstant(),
|
|
init.finishAndCreateFuture());
|
|
builder.createMetadataAccessFunction();
|
|
} else if (auto enumDecl = dyn_cast<EnumDecl>(decl)) {
|
|
assert(enumDecl->hasClangNode());
|
|
|
|
ForeignEnumMetadataBuilder builder(IGM, enumDecl, init);
|
|
builder.layout();
|
|
|
|
IGM.defineTypeMetadata(type, /*isPattern=*/false,
|
|
builder.canBeConstant(),
|
|
init.finishAndCreateFuture());
|
|
builder.createMetadataAccessFunction();
|
|
} else {
|
|
llvm_unreachable("foreign metadata for unexpected type?!");
|
|
}
|
|
}
|
|
|
|
// Protocols
|
|
|
|
/// Get the runtime identifier for a special protocol, if any.
|
|
SpecialProtocol irgen::getSpecialProtocolID(ProtocolDecl *P) {
|
|
auto known = P->getKnownProtocolKind();
|
|
if (!known)
|
|
return SpecialProtocol::None;
|
|
switch (*known) {
|
|
case KnownProtocolKind::Error:
|
|
return SpecialProtocol::Error;
|
|
|
|
// The other known protocols aren't special at runtime.
|
|
case KnownProtocolKind::Sequence:
|
|
case KnownProtocolKind::IteratorProtocol:
|
|
case KnownProtocolKind::RawRepresentable:
|
|
case KnownProtocolKind::Equatable:
|
|
case KnownProtocolKind::Hashable:
|
|
case KnownProtocolKind::CaseIterable:
|
|
case KnownProtocolKind::Comparable:
|
|
case KnownProtocolKind::SIMDScalar:
|
|
case KnownProtocolKind::BinaryInteger:
|
|
case KnownProtocolKind::ObjectiveCBridgeable:
|
|
case KnownProtocolKind::DestructorSafeContainer:
|
|
case KnownProtocolKind::SwiftNewtypeWrapper:
|
|
case KnownProtocolKind::ExpressibleByArrayLiteral:
|
|
case KnownProtocolKind::ExpressibleByBooleanLiteral:
|
|
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
|
|
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral:
|
|
case KnownProtocolKind::ExpressibleByFloatLiteral:
|
|
case KnownProtocolKind::ExpressibleByIntegerLiteral:
|
|
case KnownProtocolKind::ExpressibleByStringInterpolation:
|
|
case KnownProtocolKind::ExpressibleByStringLiteral:
|
|
case KnownProtocolKind::ExpressibleByNilLiteral:
|
|
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral:
|
|
case KnownProtocolKind::ExpressibleByColorLiteral:
|
|
case KnownProtocolKind::ExpressibleByImageLiteral:
|
|
case KnownProtocolKind::ExpressibleByFileReferenceLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinBooleanLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinExtendedGraphemeClusterLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinFloatLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinIntegerLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinStringLiteral:
|
|
case KnownProtocolKind::ExpressibleByBuiltinUnicodeScalarLiteral:
|
|
case KnownProtocolKind::OptionSet:
|
|
case KnownProtocolKind::BridgedNSError:
|
|
case KnownProtocolKind::BridgedStoredNSError:
|
|
case KnownProtocolKind::CFObject:
|
|
case KnownProtocolKind::ErrorCodeProtocol:
|
|
case KnownProtocolKind::CodingKey:
|
|
case KnownProtocolKind::Encodable:
|
|
case KnownProtocolKind::Decodable:
|
|
case KnownProtocolKind::StringInterpolationProtocol:
|
|
case KnownProtocolKind::AdditiveArithmetic:
|
|
case KnownProtocolKind::Differentiable:
|
|
return SpecialProtocol::None;
|
|
}
|
|
|
|
llvm_unreachable("Not a valid KnownProtocolKind.");
|
|
}
|
|
|
|
/// Emit global structures associated with the given protocol. This comprises
|
|
/// the protocol descriptor, and for ObjC interop, references to the descriptor
|
|
/// that the ObjC runtime uses for uniquing.
|
|
void IRGenModule::emitProtocolDecl(ProtocolDecl *protocol) {
|
|
PrettyStackTraceDecl stackTraceRAII("emitting metadata for", protocol);
|
|
|
|
// Emit remote reflection metadata for the protocol.
|
|
emitFieldDescriptor(protocol);
|
|
|
|
// If the protocol is Objective-C-compatible, go through the path that
|
|
// produces an ObjC-compatible protocol_t.
|
|
if (protocol->isObjC()) {
|
|
// In JIT mode, we need to create protocol descriptors using the ObjC
|
|
// runtime in JITted code.
|
|
if (IRGen.Opts.UseJIT)
|
|
return;
|
|
|
|
// Native ObjC protocols are emitted on-demand in ObjC and uniqued by the
|
|
// runtime; we don't need to try to emit a unique descriptor symbol for them.
|
|
if (protocol->hasClangNode())
|
|
return;
|
|
|
|
getObjCProtocolGlobalVars(protocol);
|
|
return;
|
|
}
|
|
|
|
SILDefaultWitnessTable *defaultWitnesses = nullptr;
|
|
if (isResilient(protocol, ResilienceExpansion::Minimal))
|
|
defaultWitnesses = getSILModule().lookUpDefaultWitnessTable(protocol);
|
|
|
|
{
|
|
ProtocolDescriptorBuilder builder(*this, protocol, defaultWitnesses);
|
|
builder.emit();
|
|
}
|
|
|
|
// Note that we emitted this protocol.
|
|
SwiftProtocols.push_back(protocol);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic requirements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Add a generic requirement to the given constant struct builder.
|
|
static void addGenericRequirement(IRGenModule &IGM, ConstantStructBuilder &B,
|
|
GenericRequirementsMetadata &metadata,
|
|
GenericSignature sig,
|
|
GenericRequirementFlags flags,
|
|
Type paramType,
|
|
llvm::function_ref<void ()> addReference) {
|
|
if (flags.hasKeyArgument())
|
|
++metadata.NumGenericKeyArguments;
|
|
if (flags.hasExtraArgument())
|
|
++metadata.NumGenericExtraArguments;
|
|
|
|
B.addInt(IGM.Int32Ty, flags.getIntValue());
|
|
auto typeName =
|
|
IGM.getTypeRef(paramType, nullptr, MangledTypeRefRole::Metadata).first;
|
|
B.addRelativeAddress(typeName);
|
|
addReference();
|
|
}
|
|
|
|
GenericRequirementsMetadata irgen::addGenericRequirements(
|
|
IRGenModule &IGM, ConstantStructBuilder &B,
|
|
GenericSignature sig,
|
|
ArrayRef<Requirement> requirements) {
|
|
assert(sig);
|
|
GenericRequirementsMetadata metadata;
|
|
for (auto &requirement : requirements) {
|
|
++metadata.NumRequirements;
|
|
|
|
switch (auto kind = requirement.getKind()) {
|
|
case RequirementKind::Layout:
|
|
switch (auto layoutKind =
|
|
requirement.getLayoutConstraint()->getKind()) {
|
|
case LayoutConstraintKind::Class: {
|
|
// Encode the class constraint.
|
|
auto flags = GenericRequirementFlags(GenericRequirementKind::Layout,
|
|
/*key argument*/ false,
|
|
/*extra argument*/ false);
|
|
addGenericRequirement(IGM, B, metadata, sig, flags,
|
|
requirement.getFirstType(),
|
|
[&]{ B.addInt32((uint32_t)GenericRequirementLayoutKind::Class); });
|
|
break;
|
|
}
|
|
default:
|
|
// No other layout constraints are supported in source-level Swift
|
|
// today.
|
|
llvm_unreachable("shouldn't show up in ABI");
|
|
}
|
|
break;
|
|
|
|
case RequirementKind::Conformance: {
|
|
auto protocol = requirement.getSecondType()->castTo<ProtocolType>()
|
|
->getDecl();
|
|
bool needsWitnessTable =
|
|
Lowering::TypeConverter::protocolRequiresWitnessTable(protocol);
|
|
auto flags = GenericRequirementFlags(GenericRequirementKind::Protocol,
|
|
/*key argument*/needsWitnessTable,
|
|
/*extra argument*/false);
|
|
auto descriptorRef =
|
|
IGM.getConstantReferenceForProtocolDescriptor(protocol);
|
|
addGenericRequirement(IGM, B, metadata, sig, flags,
|
|
requirement.getFirstType(),
|
|
[&]{
|
|
unsigned tag = unsigned(descriptorRef.isIndirect());
|
|
if (protocol->isObjC())
|
|
tag |= 0x02;
|
|
|
|
B.addTaggedRelativeOffset(IGM.RelativeAddressTy,
|
|
descriptorRef.getValue(),
|
|
tag);
|
|
});
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass: {
|
|
auto abiKind = kind == RequirementKind::SameType
|
|
? GenericRequirementKind::SameType
|
|
: GenericRequirementKind::BaseClass;
|
|
|
|
auto flags = GenericRequirementFlags(abiKind, false, false);
|
|
auto typeName =
|
|
IGM.getTypeRef(requirement.getSecondType(), nullptr,
|
|
MangledTypeRefRole::Metadata).first;
|
|
|
|
addGenericRequirement(IGM, B, metadata, sig, flags,
|
|
requirement.getFirstType(),
|
|
[&]{ B.addRelativeAddress(typeName); });
|
|
|
|
// ABI TODO: Same type and superclass constraints also imply
|
|
// "same conformance" constraints on any protocol requirements of
|
|
// the constrained type, which we should emit.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return metadata;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other metadata.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::Value *irgen::emitMetatypeInstanceType(IRGenFunction &IGF,
|
|
llvm::Value *metatypeMetadata) {
|
|
// The instance type field of MetatypeMetadata is immediately after
|
|
// the isa field.
|
|
return emitInvariantLoadFromMetadataAtIndex(IGF, metatypeMetadata, nullptr, 1,
|
|
IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
void IRGenModule::emitOpaqueTypeDecl(OpaqueTypeDecl *D) {
|
|
// Emit the opaque type descriptor.
|
|
OpaqueTypeDescriptorBuilder(*this, D).emit();
|
|
}
|