mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just did this quickly, we can always split it more later if we want. I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends a macro (sil_register_sources) to the sub-folders that register the sources of the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt defines. Then after including those subdirs, the parent cmake declares the SIL library. So the output is the same, but we have the flexibility of having subdirectories to categorize source files.
1135 lines
38 KiB
C++
1135 lines
38 KiB
C++
//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILLocation.h"
|
|
#include "swift/AST/AnyFunctionRef.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ASTMangler.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/ClangImporter/ClangImporter.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/SIL/SILLinkage.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
using namespace swift;
|
|
|
|
/// Get the method dispatch mechanism for a method.
|
|
MethodDispatch
|
|
swift::getMethodDispatch(AbstractFunctionDecl *method) {
|
|
// Some methods are forced to be statically dispatched.
|
|
if (method->hasForcedStaticDispatch())
|
|
return MethodDispatch::Static;
|
|
|
|
// Import-as-member declarations are always statically referenced.
|
|
if (method->isImportAsMember())
|
|
return MethodDispatch::Static;
|
|
|
|
auto dc = method->getDeclContext();
|
|
|
|
if (dc->getSelfClassDecl()) {
|
|
if (method->isObjCDynamic()) {
|
|
return MethodDispatch::Class;
|
|
}
|
|
|
|
// Final methods can be statically referenced.
|
|
if (method->isFinal())
|
|
return MethodDispatch::Static;
|
|
|
|
// Imported class methods are dynamically dispatched.
|
|
if (method->isObjC() && method->hasClangNode())
|
|
return MethodDispatch::Class;
|
|
|
|
// Members defined directly inside a class are dynamically dispatched.
|
|
if (isa<ClassDecl>(dc)) {
|
|
// Native convenience initializers are not dynamically dispatched unless
|
|
// required.
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(method)) {
|
|
if (!ctor->isRequired() && !ctor->isDesignatedInit()
|
|
&& !requiresForeignEntryPoint(ctor))
|
|
return MethodDispatch::Static;
|
|
}
|
|
return MethodDispatch::Class;
|
|
}
|
|
}
|
|
|
|
// Otherwise, it can be referenced statically.
|
|
return MethodDispatch::Static;
|
|
}
|
|
|
|
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
|
|
// Functions imported from C, Objective-C methods imported from Objective-C,
|
|
// as well as methods in @objc protocols (even protocols defined in Swift)
|
|
// require a foreign to native thunk.
|
|
auto dc = vd->getDeclContext();
|
|
if (auto proto = dyn_cast<ProtocolDecl>(dc))
|
|
if (proto->isObjC())
|
|
return true;
|
|
|
|
if (auto fd = dyn_cast<FuncDecl>(vd))
|
|
return fd->hasClangNode();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
|
|
assert(!isa<AbstractStorageDecl>(vd));
|
|
|
|
if (vd->isObjCDynamic()) {
|
|
return true;
|
|
}
|
|
|
|
if (vd->isObjC() && isa<ProtocolDecl>(vd->getDeclContext()))
|
|
return true;
|
|
|
|
if (vd->isImportAsMember())
|
|
return true;
|
|
|
|
if (vd->hasClangNode())
|
|
return true;
|
|
|
|
if (auto *accessor = dyn_cast<AccessorDecl>(vd)) {
|
|
// Property accessors should be generated alongside the property.
|
|
if (accessor->isGetterOrSetter()) {
|
|
auto *asd = accessor->getStorage();
|
|
if (asd->isObjC() && asd->hasClangNode())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind, bool isForeign,
|
|
AutoDiffDerivativeFunctionIdentifier *derivativeId)
|
|
: loc(vd), kind(kind), isForeign(isForeign), defaultArgIndex(0),
|
|
derivativeFunctionIdentifier(derivativeId) {}
|
|
|
|
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc, bool asForeign)
|
|
: defaultArgIndex(0), derivativeFunctionIdentifier(nullptr) {
|
|
if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
|
|
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
|
|
// Map FuncDecls directly to Func SILDeclRefs.
|
|
loc = fd;
|
|
kind = Kind::Func;
|
|
}
|
|
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
|
|
else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
|
|
loc = cd;
|
|
kind = Kind::Allocator;
|
|
}
|
|
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
|
|
else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
|
|
loc = ed;
|
|
kind = Kind::EnumElement;
|
|
}
|
|
// VarDecl constants require an explicit kind.
|
|
else if (isa<VarDecl>(vd)) {
|
|
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
|
|
}
|
|
// Map DestructorDecls to the Deallocator of the destructor.
|
|
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
|
|
loc = dtor;
|
|
kind = Kind::Deallocator;
|
|
}
|
|
else {
|
|
llvm_unreachable("invalid loc decl for SILDeclRef!");
|
|
}
|
|
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
|
|
loc = ACE;
|
|
kind = Kind::Func;
|
|
} else {
|
|
llvm_unreachable("impossible SILDeclRef loc");
|
|
}
|
|
|
|
isForeign = asForeign;
|
|
}
|
|
|
|
Optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
|
|
if (auto vd = loc.dyn_cast<ValueDecl*>()) {
|
|
if (auto afd = dyn_cast<AbstractFunctionDecl>(vd)) {
|
|
return AnyFunctionRef(afd);
|
|
} else {
|
|
return None;
|
|
}
|
|
}
|
|
return AnyFunctionRef(loc.get<AbstractClosureExpr*>());
|
|
}
|
|
|
|
bool SILDeclRef::isThunk() const {
|
|
return isForeignToNativeThunk() || isNativeToForeignThunk();
|
|
}
|
|
|
|
bool SILDeclRef::isClangImported() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
|
|
ValueDecl *d = getDecl();
|
|
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
|
|
|
|
if (isa<ClangModuleUnit>(moduleContext)) {
|
|
if (isClangGenerated())
|
|
return true;
|
|
|
|
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
|
|
return !isForeign;
|
|
|
|
if (auto *FD = dyn_cast<FuncDecl>(d))
|
|
if (isa<AccessorDecl>(FD) ||
|
|
isa<NominalTypeDecl>(d->getDeclContext()))
|
|
return !isForeign;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::isClangGenerated() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
|
|
return isClangGenerated(getDecl()->getClangNode());
|
|
}
|
|
|
|
// FIXME: this is a weird predicate.
|
|
bool SILDeclRef::isClangGenerated(ClangNode node) {
|
|
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
|
|
// ie, 'static inline' functions for which we must ask Clang to emit a body
|
|
// for explicitly
|
|
if (!nd->isExternallyVisible())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::isImplicit() const {
|
|
if (hasDecl())
|
|
return getDecl()->isImplicit();
|
|
return getAbstractClosureExpr()->isImplicit();
|
|
}
|
|
|
|
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
|
|
if (getAbstractClosureExpr()) {
|
|
return isSerialized() ? SILLinkage::Shared : SILLinkage::Private;
|
|
}
|
|
|
|
// Add External to the linkage (e.g. Public -> PublicExternal) if this is a
|
|
// declaration not a definition.
|
|
auto maybeAddExternal = [&](SILLinkage linkage) {
|
|
return forDefinition ? linkage : addExternalToLinkage(linkage);
|
|
};
|
|
|
|
// Native function-local declarations have shared linkage.
|
|
// FIXME: @objc declarations should be too, but we currently have no way
|
|
// of marking them "used" other than making them external.
|
|
ValueDecl *d = getDecl();
|
|
DeclContext *moduleContext = d->getDeclContext();
|
|
while (!moduleContext->isModuleScopeContext()) {
|
|
if (!isForeign && moduleContext->isLocalContext()) {
|
|
return isSerialized() ? SILLinkage::Shared : SILLinkage::Private;
|
|
}
|
|
moduleContext = moduleContext->getParent();
|
|
}
|
|
|
|
// Calling convention thunks have shared linkage.
|
|
if (isForeignToNativeThunk())
|
|
return SILLinkage::Shared;
|
|
|
|
// If a function declares a @_cdecl name, its native-to-foreign thunk
|
|
// is exported with the visibility of the function.
|
|
if (isNativeToForeignThunk() && !d->getAttrs().hasAttribute<CDeclAttr>())
|
|
return SILLinkage::Shared;
|
|
|
|
// Declarations imported from Clang modules have shared linkage.
|
|
if (isClangImported())
|
|
return SILLinkage::Shared;
|
|
|
|
// Default argument generators of Public functions have PublicNonABI linkage
|
|
// if the function was type-checked in Swift 4 mode.
|
|
if (kind == SILDeclRef::Kind::DefaultArgGenerator) {
|
|
if (isSerialized())
|
|
return maybeAddExternal(SILLinkage::PublicNonABI);
|
|
}
|
|
|
|
enum class Limit {
|
|
/// No limit.
|
|
None,
|
|
/// The declaration is emitted on-demand; it should end up with internal
|
|
/// or shared linkage.
|
|
OnDemand,
|
|
/// The declaration should never be made public.
|
|
NeverPublic,
|
|
/// The declaration should always be emitted into the client,
|
|
AlwaysEmitIntoClient,
|
|
};
|
|
auto limit = Limit::None;
|
|
|
|
// @_alwaysEmitIntoClient declarations are like the default arguments of
|
|
// public functions; they are roots for dead code elimination and have
|
|
// serialized bodies, but no public symbol in the generated binary.
|
|
if (d->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
|
|
limit = Limit::AlwaysEmitIntoClient;
|
|
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
|
|
auto *storage = accessor->getStorage();
|
|
if (storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
|
|
limit = Limit::AlwaysEmitIntoClient;
|
|
}
|
|
|
|
// ivar initializers and destroyers are completely contained within the class
|
|
// from which they come, and never get seen externally.
|
|
if (isIVarInitializerOrDestroyer()) {
|
|
limit = Limit::NeverPublic;
|
|
}
|
|
|
|
// Stored property initializers get the linkage of their containing type.
|
|
if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer()) {
|
|
// Three cases:
|
|
//
|
|
// 1) Type is formally @_fixed_layout/@frozen. Root initializers can be
|
|
// declared @inlinable. The property initializer must only reference
|
|
// public symbols, and is serialized, so we give it PublicNonABI linkage.
|
|
//
|
|
// 2) Type is not formally @_fixed_layout/@frozen and the module is not
|
|
// resilient. Root initializers can be declared @inlinable. This is the
|
|
// annoying case. We give the initializer public linkage if the type is
|
|
// public.
|
|
//
|
|
// 3) Type is resilient. The property initializer is never public because
|
|
// root initializers cannot be @inlinable.
|
|
//
|
|
// FIXME: Get rid of case 2 somehow.
|
|
if (isSerialized())
|
|
return maybeAddExternal(SILLinkage::PublicNonABI);
|
|
|
|
d = cast<NominalTypeDecl>(d->getDeclContext());
|
|
|
|
// FIXME: This should always be true.
|
|
if (d->getModuleContext()->isResilient())
|
|
limit = Limit::NeverPublic;
|
|
}
|
|
|
|
// The global addressor is never public for resilient globals.
|
|
if (kind == Kind::GlobalAccessor) {
|
|
if (cast<VarDecl>(d)->isResilient()) {
|
|
limit = Limit::NeverPublic;
|
|
}
|
|
}
|
|
|
|
// Forced-static-dispatch functions are created on-demand and have
|
|
// at best shared linkage.
|
|
if (auto fn = dyn_cast<FuncDecl>(d)) {
|
|
if (fn->hasForcedStaticDispatch()) {
|
|
limit = Limit::OnDemand;
|
|
}
|
|
}
|
|
|
|
auto effectiveAccess = d->getEffectiveAccess();
|
|
|
|
// Private setter implementations for an internal storage declaration should
|
|
// be internal as well, so that a dynamically-writable
|
|
// keypath can be formed from other files.
|
|
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
|
|
if (accessor->isSetter()
|
|
&& accessor->getStorage()->getEffectiveAccess() == AccessLevel::Internal)
|
|
effectiveAccess = AccessLevel::Internal;
|
|
}
|
|
|
|
switch (effectiveAccess) {
|
|
case AccessLevel::Private:
|
|
case AccessLevel::FilePrivate:
|
|
return maybeAddExternal(SILLinkage::Private);
|
|
|
|
case AccessLevel::Internal:
|
|
if (limit == Limit::OnDemand)
|
|
return SILLinkage::Shared;
|
|
return maybeAddExternal(SILLinkage::Hidden);
|
|
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Open:
|
|
if (limit == Limit::OnDemand)
|
|
return SILLinkage::Shared;
|
|
if (limit == Limit::NeverPublic)
|
|
return maybeAddExternal(SILLinkage::Hidden);
|
|
if (limit == Limit::AlwaysEmitIntoClient)
|
|
return maybeAddExternal(SILLinkage::PublicNonABI);
|
|
return maybeAddExternal(SILLinkage::Public);
|
|
}
|
|
llvm_unreachable("unhandled access");
|
|
}
|
|
|
|
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
|
|
unsigned defaultArgIndex) {
|
|
SILDeclRef result;
|
|
result.loc = loc;
|
|
result.kind = Kind::DefaultArgGenerator;
|
|
result.defaultArgIndex = defaultArgIndex;
|
|
return result;
|
|
}
|
|
|
|
bool SILDeclRef::hasClosureExpr() const {
|
|
return loc.is<AbstractClosureExpr *>()
|
|
&& isa<ClosureExpr>(getAbstractClosureExpr());
|
|
}
|
|
|
|
bool SILDeclRef::hasAutoClosureExpr() const {
|
|
return loc.is<AbstractClosureExpr *>()
|
|
&& isa<AutoClosureExpr>(getAbstractClosureExpr());
|
|
}
|
|
|
|
bool SILDeclRef::hasFuncDecl() const {
|
|
return loc.is<ValueDecl *>() && isa<FuncDecl>(getDecl());
|
|
}
|
|
|
|
ClosureExpr *SILDeclRef::getClosureExpr() const {
|
|
return dyn_cast<ClosureExpr>(getAbstractClosureExpr());
|
|
}
|
|
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
|
|
return dyn_cast<AutoClosureExpr>(getAbstractClosureExpr());
|
|
}
|
|
|
|
FuncDecl *SILDeclRef::getFuncDecl() const {
|
|
return dyn_cast<FuncDecl>(getDecl());
|
|
}
|
|
|
|
bool SILDeclRef::isSetter() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
|
|
return accessor->isSetter();
|
|
return false;
|
|
}
|
|
|
|
AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
|
|
return dyn_cast<AbstractFunctionDecl>(getDecl());
|
|
}
|
|
|
|
/// True if the function should be treated as transparent.
|
|
bool SILDeclRef::isTransparent() const {
|
|
if (isEnumElement())
|
|
return true;
|
|
|
|
if (isStoredPropertyInitializer())
|
|
return true;
|
|
|
|
if (hasAutoClosureExpr()) {
|
|
auto *ace = getAutoClosureExpr();
|
|
if (ace->getThunkKind() == AutoClosureExpr::Kind::None)
|
|
return true;
|
|
}
|
|
|
|
if (hasDecl()) {
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
|
|
return AFD->isTransparent();
|
|
|
|
if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
|
|
return ASD->isTransparent();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// True if the function should have its body serialized.
|
|
IsSerialized_t SILDeclRef::isSerialized() const {
|
|
DeclContext *dc;
|
|
if (auto closure = getAbstractClosureExpr()) {
|
|
dc = closure->getLocalContext();
|
|
|
|
// Otherwise, ask the AST if we're inside an @inlinable context.
|
|
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal) {
|
|
if (isForeign)
|
|
return IsSerializable;
|
|
|
|
return IsSerialized;
|
|
}
|
|
|
|
return IsNotSerialized;
|
|
}
|
|
|
|
if (isIVarInitializerOrDestroyer())
|
|
return IsNotSerialized;
|
|
|
|
auto *d = getDecl();
|
|
|
|
// Default argument generators are serialized if the containing
|
|
// declaration is public.
|
|
if (isDefaultArgGenerator()) {
|
|
auto scope =
|
|
d->getFormalAccessScope(/*useDC=*/nullptr,
|
|
/*treatUsableFromInlineAsPublic=*/true);
|
|
|
|
if (scope.isPublic())
|
|
return IsSerialized;
|
|
return IsNotSerialized;
|
|
}
|
|
|
|
// Stored property initializers are inlinable if the type is explicitly
|
|
// marked as @frozen.
|
|
if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer()) {
|
|
auto *nominal = cast<NominalTypeDecl>(d->getDeclContext());
|
|
auto scope =
|
|
nominal->getFormalAccessScope(/*useDC=*/nullptr,
|
|
/*treatUsableFromInlineAsPublic=*/true);
|
|
if (!scope.isPublic())
|
|
return IsNotSerialized;
|
|
if (nominal->isFormallyResilient())
|
|
return IsNotSerialized;
|
|
return IsSerialized;
|
|
}
|
|
|
|
// Note: if 'd' is a function, then 'dc' is the function itself, not
|
|
// its parent context.
|
|
dc = d->getInnermostDeclContext();
|
|
|
|
// Local functions are serializable if their parent function is
|
|
// serializable.
|
|
if (d->getDeclContext()->isLocalContext()) {
|
|
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
|
|
return IsSerializable;
|
|
|
|
return IsNotSerialized;
|
|
}
|
|
|
|
// Anything else that is not public is not serializable.
|
|
if (d->getEffectiveAccess() < AccessLevel::Public)
|
|
return IsNotSerialized;
|
|
|
|
// 'read' and 'modify' accessors synthesized on-demand are serialized if
|
|
// visible outside the module.
|
|
if (auto fn = dyn_cast<FuncDecl>(d))
|
|
if (!isClangImported() &&
|
|
fn->hasForcedStaticDispatch())
|
|
return IsSerialized;
|
|
|
|
if (isForeignToNativeThunk())
|
|
return IsSerializable;
|
|
|
|
// The allocating entry point for designated initializers are serialized
|
|
// if the class is @usableFromInline or public.
|
|
if (kind == SILDeclRef::Kind::Allocator) {
|
|
auto *ctor = cast<ConstructorDecl>(d);
|
|
if (ctor->isDesignatedInit() &&
|
|
ctor->getDeclContext()->getSelfClassDecl()) {
|
|
if (!ctor->hasClangNode())
|
|
return IsSerialized;
|
|
}
|
|
}
|
|
|
|
if (isForeign) {
|
|
// @objc thunks for methods are not serializable since they're only
|
|
// referenced from the method table.
|
|
if (d->getDeclContext()->isTypeContext())
|
|
return IsNotSerialized;
|
|
|
|
// @objc thunks for top-level functions are serializable since they're
|
|
// referenced from @convention(c) conversions inside inlinable
|
|
// functions.
|
|
return IsSerializable;
|
|
}
|
|
|
|
// Declarations imported from Clang modules are serialized if
|
|
// referenced from an inlinable context.
|
|
if (isClangImported())
|
|
return IsSerializable;
|
|
|
|
// Otherwise, ask the AST if we're inside an @inlinable context.
|
|
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
|
|
return IsSerialized;
|
|
|
|
return IsNotSerialized;
|
|
}
|
|
|
|
/// True if the function has an @inline(never) attribute.
|
|
bool SILDeclRef::isNoinline() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
|
|
auto *decl = getDecl();
|
|
if (auto *attr = decl->getAttrs().getAttribute<InlineAttr>())
|
|
if (attr->getKind() == InlineKind::Never)
|
|
return true;
|
|
|
|
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
|
|
auto *storage = accessorDecl->getStorage();
|
|
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
|
|
if (attr->getKind() == InlineKind::Never)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// True if the function has the @inline(__always) attribute.
|
|
bool SILDeclRef::isAlwaysInline() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
|
|
auto *decl = getDecl();
|
|
if (auto attr = decl->getAttrs().getAttribute<InlineAttr>())
|
|
if (attr->getKind() == InlineKind::Always)
|
|
return true;
|
|
|
|
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
|
|
auto *storage = accessorDecl->getStorage();
|
|
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
|
|
if (attr->getKind() == InlineKind::Always)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::hasEffectsAttribute() const {
|
|
if (!hasDecl())
|
|
return false;
|
|
return getDecl()->getAttrs().hasAttribute<EffectsAttr>();
|
|
}
|
|
|
|
EffectsKind SILDeclRef::getEffectsAttribute() const {
|
|
assert(hasEffectsAttribute());
|
|
EffectsAttr *MA = getDecl()->getAttrs().getAttribute<EffectsAttr>();
|
|
return MA->getKind();
|
|
}
|
|
|
|
bool SILDeclRef::isForeignToNativeThunk() const {
|
|
// Non-decl entry points are never natively foreign, so they would never
|
|
// have a foreign-to-native thunk.
|
|
if (!hasDecl())
|
|
return false;
|
|
if (requiresForeignToNativeThunk(getDecl()))
|
|
return !isForeign;
|
|
// ObjC initializing constructors and factories are foreign.
|
|
// We emit a special native allocating constructor though.
|
|
if (isa<ConstructorDecl>(getDecl())
|
|
&& (kind == Kind::Initializer
|
|
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
|
|
&& getDecl()->hasClangNode())
|
|
return !isForeign;
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::isNativeToForeignThunk() const {
|
|
// We can have native-to-foreign thunks over closures.
|
|
if (!hasDecl())
|
|
return isForeign;
|
|
// We can have native-to-foreign thunks over global or local native functions.
|
|
// TODO: Static functions too.
|
|
if (auto func = dyn_cast<FuncDecl>(getDecl())) {
|
|
if (!func->getDeclContext()->isTypeContext()
|
|
&& !func->hasClangNode())
|
|
return isForeign;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Use the Clang importer to mangle a Clang declaration.
|
|
static void mangleClangDecl(raw_ostream &buffer,
|
|
const clang::NamedDecl *clangDecl,
|
|
ASTContext &ctx) {
|
|
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
|
|
importer->getMangledName(buffer, clangDecl);
|
|
}
|
|
|
|
std::string SILDeclRef::mangle(ManglingKind MKind) const {
|
|
using namespace Mangle;
|
|
ASTMangler mangler;
|
|
|
|
if (derivativeFunctionIdentifier) {
|
|
std::string originalMangled = asAutoDiffOriginalFunction().mangle(MKind);
|
|
auto *silParameterIndices = autodiff::getLoweredParameterIndices(
|
|
derivativeFunctionIdentifier->getParameterIndices(),
|
|
getDecl()->getInterfaceType()->castTo<AnyFunctionType>());
|
|
auto &ctx = getDecl()->getASTContext();
|
|
auto *resultIndices = IndexSubset::get(ctx, 1, {0});
|
|
AutoDiffConfig silConfig(
|
|
silParameterIndices, resultIndices,
|
|
derivativeFunctionIdentifier->getDerivativeGenericSignature());
|
|
auto derivativeFnKind = derivativeFunctionIdentifier->getKind();
|
|
return mangler.mangleAutoDiffDerivativeFunctionHelper(
|
|
originalMangled, derivativeFnKind, silConfig);
|
|
}
|
|
|
|
// As a special case, Clang functions and globals don't get mangled at all.
|
|
if (hasDecl()) {
|
|
if (auto clangDecl = getDecl()->getClangDecl()) {
|
|
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()) {
|
|
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
|
|
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
|
|
std::string s(1, '\01');
|
|
s += asmLabel->getLabel();
|
|
return s;
|
|
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>() ||
|
|
getDecl()->getASTContext().LangOpts.EnableCXXInterop) {
|
|
std::string storage;
|
|
llvm::raw_string_ostream SS(storage);
|
|
mangleClangDecl(SS, namedClangDecl, getDecl()->getASTContext());
|
|
return SS.str();
|
|
}
|
|
return namedClangDecl->getName().str();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
|
|
switch (MKind) {
|
|
case SILDeclRef::ManglingKind::Default:
|
|
if (isForeign) {
|
|
SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
|
|
} else if (isForeignToNativeThunk()) {
|
|
SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
|
|
}
|
|
break;
|
|
case SILDeclRef::ManglingKind::DynamicThunk:
|
|
SKind = ASTMangler::SymbolKind::DynamicThunk;
|
|
break;
|
|
}
|
|
|
|
switch (kind) {
|
|
case SILDeclRef::Kind::Func:
|
|
if (!hasDecl())
|
|
return mangler.mangleClosureEntity(getAbstractClosureExpr(), SKind);
|
|
|
|
// As a special case, functions can have manually mangled names.
|
|
// Use the SILGen name only for the original non-thunked, non-curried entry
|
|
// point.
|
|
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
|
|
if (!NameA->Name.empty() &&
|
|
!isForeignToNativeThunk() && !isNativeToForeignThunk()) {
|
|
return NameA->Name.str();
|
|
}
|
|
|
|
// Use a given cdecl name for native-to-foreign thunks.
|
|
if (auto CDeclA = getDecl()->getAttrs().getAttribute<CDeclAttr>())
|
|
if (isNativeToForeignThunk()) {
|
|
return CDeclA->Name.str();
|
|
}
|
|
|
|
// Otherwise, fall through into the 'other decl' case.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case SILDeclRef::Kind::EnumElement:
|
|
return mangler.mangleEntity(getDecl(), SKind);
|
|
|
|
case SILDeclRef::Kind::Deallocator:
|
|
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
|
|
/*isDeallocating*/ true,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::Destroyer:
|
|
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
|
|
/*isDeallocating*/ false,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::Allocator:
|
|
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
|
|
/*allocating*/ true,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::Initializer:
|
|
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
|
|
/*allocating*/ false,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::IVarInitializer:
|
|
case SILDeclRef::Kind::IVarDestroyer:
|
|
return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
|
|
kind == SILDeclRef::Kind::IVarDestroyer,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::GlobalAccessor:
|
|
return mangler.mangleAccessorEntity(AccessorKind::MutableAddress,
|
|
cast<AbstractStorageDecl>(getDecl()),
|
|
/*isStatic*/ false,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::DefaultArgGenerator:
|
|
return mangler.mangleDefaultArgumentEntity(
|
|
cast<DeclContext>(getDecl()),
|
|
defaultArgIndex,
|
|
SKind);
|
|
|
|
case SILDeclRef::Kind::StoredPropertyInitializer:
|
|
return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);
|
|
|
|
case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
|
|
return mangler.mangleBackingInitializerEntity(cast<VarDecl>(getDecl()),
|
|
SKind);
|
|
}
|
|
|
|
llvm_unreachable("bad entity kind!");
|
|
}
|
|
|
|
// Returns true if the given JVP/VJP SILDeclRef requires a new vtable entry.
|
|
// FIXME(TF-1213): Also consider derived declaration `@derivative` attributes.
|
|
static bool derivativeFunctionRequiresNewVTableEntry(SILDeclRef declRef) {
|
|
assert(declRef.derivativeFunctionIdentifier &&
|
|
"Expected a derivative function SILDeclRef");
|
|
auto overridden = declRef.getOverridden();
|
|
if (!overridden)
|
|
return false;
|
|
// Get the derived `@differentiable` attribute.
|
|
auto *derivedDiffAttr = *llvm::find_if(
|
|
declRef.getDecl()->getAttrs().getAttributes<DifferentiableAttr>(),
|
|
[&](const DifferentiableAttr *derivedDiffAttr) {
|
|
return derivedDiffAttr->getParameterIndices() ==
|
|
declRef.derivativeFunctionIdentifier->getParameterIndices();
|
|
});
|
|
assert(derivedDiffAttr && "Expected `@differentiable` attribute");
|
|
// Otherwise, if the base `@differentiable` attribute specifies a derivative
|
|
// function, then the derivative is inherited and no new vtable entry is
|
|
// needed. Return false.
|
|
auto baseDiffAttrs =
|
|
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
|
|
for (auto *baseDiffAttr : baseDiffAttrs) {
|
|
if (baseDiffAttr->getParameterIndices() ==
|
|
declRef.derivativeFunctionIdentifier->getParameterIndices())
|
|
return false;
|
|
}
|
|
// Otherwise, if there is no base `@differentiable` attribute exists, then a
|
|
// new vtable entry is needed. Return true.
|
|
return true;
|
|
}
|
|
|
|
bool SILDeclRef::requiresNewVTableEntry() const {
|
|
if (derivativeFunctionIdentifier)
|
|
if (derivativeFunctionRequiresNewVTableEntry(*this))
|
|
return true;
|
|
if (cast<AbstractFunctionDecl>(getDecl())->needsNewVTableEntry())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::requiresNewWitnessTableEntry() const {
|
|
return requiresNewWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
|
|
}
|
|
|
|
bool SILDeclRef::requiresNewWitnessTableEntry(AbstractFunctionDecl *func) {
|
|
return func->getOverriddenDecls().empty();
|
|
}
|
|
|
|
SILDeclRef SILDeclRef::getOverridden() const {
|
|
if (!hasDecl())
|
|
return SILDeclRef();
|
|
auto overridden = getDecl()->getOverriddenDecl();
|
|
if (!overridden)
|
|
return SILDeclRef();
|
|
return withDecl(overridden);
|
|
}
|
|
|
|
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
|
|
if (auto overridden = getOverridden()) {
|
|
// If we overrode a foreign decl or dynamic method, if this is an
|
|
// accessor for a property that overrides an ObjC decl, or if it is an
|
|
// @NSManaged property, then it won't be in the vtable.
|
|
if (overridden.getDecl()->hasClangNode())
|
|
return SILDeclRef();
|
|
|
|
// An @objc convenience initializer can be "overridden" in the sense that
|
|
// its selector is reclaimed by a subclass's convenience init with the
|
|
// same name. The AST models this as an override for the purposes of
|
|
// ObjC selector validation, but it isn't for Swift method dispatch
|
|
// purposes.
|
|
if (overridden.kind == SILDeclRef::Kind::Allocator) {
|
|
auto overriddenCtor = cast<ConstructorDecl>(overridden.getDecl());
|
|
if (!overriddenCtor->isDesignatedInit()
|
|
&& !overriddenCtor->isRequired())
|
|
return SILDeclRef();
|
|
}
|
|
|
|
// Initializing entry points for initializers won't be in the vtable.
|
|
// For Swift designated initializers, they're only used in super.init
|
|
// chains, which can always be statically resolved. Other native Swift
|
|
// initializers only have allocating entry points. ObjC initializers always
|
|
// have the initializing entry point (corresponding to the -init method)
|
|
// but those are never in the vtable.
|
|
if (overridden.kind == SILDeclRef::Kind::Initializer) {
|
|
return SILDeclRef();
|
|
}
|
|
|
|
// Overrides of @objc dynamic declarations are not in the vtable.
|
|
if (overridden.getDecl()->isObjCDynamic()) {
|
|
return SILDeclRef();
|
|
}
|
|
|
|
if (auto *accessor = dyn_cast<AccessorDecl>(overridden.getDecl())) {
|
|
auto *asd = accessor->getStorage();
|
|
if (asd->hasClangNode())
|
|
return SILDeclRef();
|
|
if (asd->isObjCDynamic()) {
|
|
return SILDeclRef();
|
|
}
|
|
}
|
|
|
|
// If we overrode a decl from an extension, it won't be in a vtable
|
|
// either. This can occur for extensions to ObjC classes.
|
|
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
|
|
return SILDeclRef();
|
|
|
|
// JVPs/VJPs are overridden only if the base declaration has a
|
|
// `@differentiable` attribute with the same parameter indices.
|
|
if (derivativeFunctionIdentifier) {
|
|
auto overriddenAttrs =
|
|
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
|
|
for (const auto *attr : overriddenAttrs) {
|
|
if (attr->getParameterIndices() !=
|
|
derivativeFunctionIdentifier->getParameterIndices())
|
|
continue;
|
|
auto *overriddenDerivativeId = overridden.derivativeFunctionIdentifier;
|
|
overridden.derivativeFunctionIdentifier =
|
|
AutoDiffDerivativeFunctionIdentifier::get(
|
|
overriddenDerivativeId->getKind(),
|
|
overriddenDerivativeId->getParameterIndices(),
|
|
attr->getDerivativeGenericSignature(),
|
|
getDecl()->getASTContext());
|
|
return overridden;
|
|
}
|
|
return SILDeclRef();
|
|
}
|
|
return overridden;
|
|
}
|
|
return SILDeclRef();
|
|
}
|
|
|
|
SILDeclRef SILDeclRef::getOverriddenWitnessTableEntry() const {
|
|
auto bestOverridden =
|
|
getOverriddenWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
|
|
return withDecl(bestOverridden);
|
|
}
|
|
|
|
AbstractFunctionDecl *SILDeclRef::getOverriddenWitnessTableEntry(
|
|
AbstractFunctionDecl *func) {
|
|
if (!isa<ProtocolDecl>(func->getDeclContext()))
|
|
return func;
|
|
|
|
AbstractFunctionDecl *bestOverridden = nullptr;
|
|
|
|
SmallVector<AbstractFunctionDecl *, 4> stack;
|
|
SmallPtrSet<AbstractFunctionDecl *, 4> visited;
|
|
stack.push_back(func);
|
|
visited.insert(func);
|
|
|
|
while (!stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
auto overriddenDecls = current->getOverriddenDecls();
|
|
if (overriddenDecls.empty()) {
|
|
// This entry introduced a witness table entry. Determine whether it is
|
|
// better than the best entry we've seen thus far.
|
|
if (!bestOverridden ||
|
|
ProtocolDecl::compare(
|
|
cast<ProtocolDecl>(current->getDeclContext()),
|
|
cast<ProtocolDecl>(bestOverridden->getDeclContext()))
|
|
< 0) {
|
|
bestOverridden = cast<AbstractFunctionDecl>(current);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Add overridden declarations to the stack.
|
|
for (auto overridden : overriddenDecls) {
|
|
auto overriddenFunc = cast<AbstractFunctionDecl>(overridden);
|
|
if (visited.insert(overriddenFunc).second)
|
|
stack.push_back(overriddenFunc);
|
|
}
|
|
}
|
|
|
|
return bestOverridden;
|
|
}
|
|
|
|
SILDeclRef SILDeclRef::getOverriddenVTableEntry() const {
|
|
SILDeclRef cur = *this, next = *this;
|
|
do {
|
|
cur = next;
|
|
if (cur.requiresNewVTableEntry())
|
|
return cur;
|
|
next = cur.getNextOverriddenVTableEntry();
|
|
} while (next);
|
|
|
|
return cur;
|
|
}
|
|
|
|
SILLocation SILDeclRef::getAsRegularLocation() const {
|
|
if (hasDecl())
|
|
return RegularLocation(getDecl());
|
|
return RegularLocation(getAbstractClosureExpr());
|
|
}
|
|
|
|
SubclassScope SILDeclRef::getSubclassScope() const {
|
|
if (!hasDecl())
|
|
return SubclassScope::NotApplicable;
|
|
|
|
auto *decl = getDecl();
|
|
|
|
if (!isa<AbstractFunctionDecl>(decl))
|
|
return SubclassScope::NotApplicable;
|
|
|
|
DeclContext *context = decl->getDeclContext();
|
|
|
|
// Only methods in non-final classes go in the vtable.
|
|
auto *classType = dyn_cast<ClassDecl>(context);
|
|
if (!classType || classType->isFinal())
|
|
return SubclassScope::NotApplicable;
|
|
|
|
// If a method appears in the vtable of a class, we must give it's symbol
|
|
// special consideration when computing visibility because the SIL-level
|
|
// linkage does not map to the symbol's visibility in a straightforward
|
|
// way.
|
|
//
|
|
// In particular, the rules are:
|
|
// - If the class metadata is not resilient, then all method symbols must
|
|
// be visible from any translation unit where a subclass might be defined,
|
|
// because the subclass metadata will re-emit all vtable entries.
|
|
//
|
|
// - For resilient classes, we do the opposite: generally, a method's symbol
|
|
// can be hidden from other translation units, because we want to enforce
|
|
// that resilient access patterns are used for method calls and overrides.
|
|
//
|
|
// Constructors and final methods are the exception here, because they can
|
|
// be called directly.
|
|
|
|
// FIXME: This is too narrow. Any class with resilient metadata should
|
|
// probably have this, at least for method overrides that don't add new
|
|
// vtable entries.
|
|
bool isResilientClass = classType->isResilient();
|
|
|
|
if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (isResilientClass)
|
|
return SubclassScope::NotApplicable;
|
|
// Initializing entry points do not appear in the vtable.
|
|
if (kind == SILDeclRef::Kind::Initializer)
|
|
return SubclassScope::NotApplicable;
|
|
// Non-required convenience inits do not appear in the vtable.
|
|
if (!CD->isRequired() && !CD->isDesignatedInit())
|
|
return SubclassScope::NotApplicable;
|
|
} else if (isa<DestructorDecl>(decl)) {
|
|
// Destructors do not appear in the vtable.
|
|
return SubclassScope::NotApplicable;
|
|
} else {
|
|
assert(isa<FuncDecl>(decl));
|
|
}
|
|
|
|
// Various forms of thunks don't go in the vtable.
|
|
if (isThunk() || isForeign)
|
|
return SubclassScope::NotApplicable;
|
|
|
|
// Default arg generators don't go in the vtable.
|
|
if (isDefaultArgGenerator())
|
|
return SubclassScope::NotApplicable;
|
|
|
|
if (decl->isFinal()) {
|
|
// Final methods only go in the vtable if they override something.
|
|
if (!decl->getOverriddenDecl())
|
|
return SubclassScope::NotApplicable;
|
|
|
|
// In the resilient case, we're going to be making symbols _less_
|
|
// visible, so make sure we stop now; final methods can always be
|
|
// called directly.
|
|
if (isResilientClass)
|
|
return SubclassScope::Internal;
|
|
}
|
|
|
|
assert(decl->getEffectiveAccess() <= classType->getEffectiveAccess() &&
|
|
"class must be as visible as its members");
|
|
|
|
if (isResilientClass) {
|
|
// The symbol should _only_ be reached via the vtable, so we're
|
|
// going to make it hidden.
|
|
return SubclassScope::Resilient;
|
|
}
|
|
|
|
switch (classType->getEffectiveAccess()) {
|
|
case AccessLevel::Private:
|
|
case AccessLevel::FilePrivate:
|
|
// If the class is private, it can only be subclassed from the same
|
|
// SILModule, so we don't need to do anything.
|
|
return SubclassScope::NotApplicable;
|
|
case AccessLevel::Internal:
|
|
case AccessLevel::Public:
|
|
// If the class is internal or public, it can only be subclassed from
|
|
// the same AST Module, but possibly a different SILModule.
|
|
return SubclassScope::Internal;
|
|
case AccessLevel::Open:
|
|
// If the class is open, it can be subclassed from a different
|
|
// AST Module. All method symbols are public.
|
|
return SubclassScope::External;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled access level in switch.");
|
|
}
|
|
|
|
unsigned SILDeclRef::getParameterListCount() const {
|
|
if (!hasDecl() || kind == Kind::DefaultArgGenerator)
|
|
return 1;
|
|
|
|
auto *vd = getDecl();
|
|
|
|
if (isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd)) {
|
|
// For functions and enum elements, the number of parameter lists is the
|
|
// same as in their interface type.
|
|
return vd->getNumCurryLevels();
|
|
} else if (isa<ClassDecl>(vd)) {
|
|
return 2;
|
|
} else if (isa<VarDecl>(vd)) {
|
|
return 1;
|
|
} else {
|
|
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
|
|
}
|
|
}
|
|
|
|
static bool isDesignatedConstructorForClass(ValueDecl *decl) {
|
|
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(decl))
|
|
if (ctor->getDeclContext()->getSelfClassDecl())
|
|
return ctor->isDesignatedInit();
|
|
return false;
|
|
}
|
|
|
|
bool SILDeclRef::canBeDynamicReplacement() const {
|
|
if (kind == SILDeclRef::Kind::Destroyer ||
|
|
kind == SILDeclRef::Kind::DefaultArgGenerator)
|
|
return false;
|
|
if (kind == SILDeclRef::Kind::Initializer)
|
|
return isDesignatedConstructorForClass(getDecl());
|
|
if (kind == SILDeclRef::Kind::Allocator)
|
|
return !isDesignatedConstructorForClass(getDecl());
|
|
return true;
|
|
}
|
|
|
|
bool SILDeclRef::isDynamicallyReplaceable() const {
|
|
if (kind == SILDeclRef::Kind::DefaultArgGenerator)
|
|
return false;
|
|
if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer())
|
|
return false;
|
|
|
|
// Class allocators are not dynamic replaceable.
|
|
if (kind == SILDeclRef::Kind::Allocator &&
|
|
isDesignatedConstructorForClass(getDecl()))
|
|
return false;
|
|
|
|
if (kind == SILDeclRef::Kind::Destroyer ||
|
|
(kind == SILDeclRef::Kind::Initializer &&
|
|
!isDesignatedConstructorForClass(getDecl())) ||
|
|
kind == SILDeclRef::Kind::GlobalAccessor) {
|
|
return false;
|
|
}
|
|
|
|
if (!hasDecl())
|
|
return false;
|
|
|
|
auto decl = getDecl();
|
|
return decl->isNativeDynamic();
|
|
}
|