mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
These should hopefully all be uncontroversial, minimal changes to deal with progressing the build to completion on OpenBSD or addressing minor portability issues. This is not the full set of changes to get a successful build; other portability issues will be addressed in future commits. Most of this is just adding the relevant clauses to the ifdefs, but of note in this commit: * StdlibUnittest.swift: the default conditional in _getOSVersion assumes an Apple platform, therefore the explicit conditional and the relevant enums need filling out. The default conditional should be #error, but we'll fix this in a different commit. * tgmath.swift.gyb: inexplicably, OpenBSD is missing just lgammal_r. Tests are updated correspondingly. * ThreadLocalStorage.h: we use the pthread implementation, so it seems we should typedef __swift_thread_key_t as pthread_key_t. However, that's also a tweak for another commit.
365 lines
9.6 KiB
Swift
365 lines
9.6 KiB
Swift
//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
import SwiftShims
|
|
|
|
// Generic functions implementable directly on FloatingPoint.
|
|
@_transparent
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, renamed: "abs")
|
|
public func fabs<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.magnitude
|
|
}
|
|
|
|
@_transparent
|
|
public func sqrt<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.squareRoot()
|
|
}
|
|
|
|
@_transparent
|
|
public func fma<T: FloatingPoint>(_ x: T, _ y: T, _ z: T) -> T {
|
|
return z.addingProduct(x, y)
|
|
}
|
|
|
|
@_transparent
|
|
public func remainder<T: FloatingPoint>(_ x: T, _ y: T) -> T {
|
|
return x.remainder(dividingBy: y)
|
|
}
|
|
|
|
@_transparent
|
|
public func fmod<T: FloatingPoint>(_ x: T, _ y: T) -> T {
|
|
return x.truncatingRemainder(dividingBy: y)
|
|
}
|
|
|
|
@_transparent
|
|
public func ceil<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.up)
|
|
}
|
|
|
|
@_transparent
|
|
public func floor<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.down)
|
|
}
|
|
|
|
@_transparent
|
|
public func round<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded()
|
|
}
|
|
|
|
@_transparent
|
|
public func trunc<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.towardZero)
|
|
}
|
|
|
|
@_transparent
|
|
public func scalbn<T: FloatingPoint>(_ x: T, _ n : Int) -> T {
|
|
return T(sign: .plus, exponent: T.Exponent(n), significand: x)
|
|
}
|
|
|
|
@_transparent
|
|
public func modf<T: FloatingPoint>(_ x: T) -> (T, T) {
|
|
// inf/NaN: return canonicalized x, fractional part zero.
|
|
guard x.isFinite else { return (x+0, 0) }
|
|
let integral = trunc(x)
|
|
let fractional = x - integral
|
|
return (integral, fractional)
|
|
}
|
|
|
|
@_transparent
|
|
public func frexp<T: BinaryFloatingPoint>(_ x: T) -> (T, Int) {
|
|
guard x.isFinite else { return (x+0, 0) }
|
|
guard x != 0 else { return (x, 0) }
|
|
// The C stdlib `frexp` uses a different notion of significand / exponent
|
|
// than IEEE 754, so we need to adjust them by a factor of two.
|
|
return (x.significand / 2, Int(x.exponent + 1))
|
|
}
|
|
|
|
%for T in ['Float','Double']:
|
|
@available(swift, deprecated: 4.2, renamed: "scalbn")
|
|
@_transparent
|
|
public func ldexp(_ x: ${T}, _ n : Int) -> ${T} {
|
|
return ${T}(sign: .plus, exponent: n, significand: x)
|
|
}
|
|
|
|
%end
|
|
|
|
// Floating-point properties that are exposed as functions in the C math
|
|
// library. Mark those function names unavailable and direct users to the
|
|
// properties instead.
|
|
@available(*, unavailable, message: "use the floatingPointClass property.")
|
|
public func fpclassify<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isNormal property.")
|
|
public func isnormal<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isFinite property.")
|
|
public func isfinite<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isInfinite property.")
|
|
public func isinf<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isNaN property.")
|
|
public func isnan<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the sign property.")
|
|
public func signbit<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
|
|
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message: "use the exponent property.")
|
|
public func ilogb<T: BinaryFloatingPoint>(_ x: T) -> Int {
|
|
return Int(x.exponent)
|
|
}
|
|
|
|
%{
|
|
|
|
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
|
|
overlayFloatBits = [32, 80]
|
|
allFloatBits = [32, 64, 80]
|
|
|
|
def floatName(bits):
|
|
if bits == 32:
|
|
return 'Float'
|
|
if bits == 64:
|
|
return 'Double'
|
|
if bits == 80:
|
|
return 'Float80'
|
|
|
|
def cFloatName(bits):
|
|
if bits == 32:
|
|
return 'CFloat'
|
|
if bits == 64:
|
|
return 'CDouble'
|
|
if bits == 80:
|
|
return 'CLongDouble'
|
|
|
|
def cFuncSuffix(bits):
|
|
if bits == 32:
|
|
return 'f'
|
|
if bits == 64:
|
|
return ''
|
|
if bits == 80:
|
|
return 'l'
|
|
|
|
# Each of the following lists is ordered to match math.h
|
|
|
|
# (T) -> T
|
|
# These functions do not have a corresponding LLVM intrinsic
|
|
UnaryFunctions = [
|
|
'acos', 'asin', 'atan', 'tan',
|
|
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
|
|
'expm1',
|
|
'log1p', 'logb',
|
|
'cbrt', 'erf', 'erfc', 'tgamma',
|
|
]
|
|
|
|
# These functions have a corresponding LLVM intrinsic
|
|
# We call this intrinsic via the Builtin method so keep this list in
|
|
# sync with core/BuiltinMath.swift.gyb
|
|
UnaryIntrinsicFunctions = [
|
|
'cos', 'sin',
|
|
'exp', 'exp2',
|
|
'log', 'log10', 'log2',
|
|
'nearbyint', 'rint',
|
|
]
|
|
|
|
# (T, T) -> T
|
|
BinaryFunctions = [
|
|
'atan2', 'hypot', 'pow',
|
|
'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
|
|
]
|
|
|
|
# These functions have special implementations.
|
|
OtherFunctions = [
|
|
'scalbn', 'lgamma', 'remquo', 'nan', 'jn', 'yn'
|
|
]
|
|
|
|
# These functions are imported correctly as-is.
|
|
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
|
|
|
|
# These functions are not supported for various reasons.
|
|
UnhandledFunctions = [
|
|
'math_errhandling', 'scalbln',
|
|
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
|
|
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
|
|
'islessgreater', 'isunordered', '__exp10',
|
|
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
|
|
]
|
|
|
|
|
|
def AllFloatTypes():
|
|
for bits in allFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
|
|
|
|
def OverlayFloatTypes():
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
|
|
|
|
def TypedUnaryFunctions():
|
|
for ufunc in UnaryFunctions:
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
|
|
|
|
def TypedUnaryIntrinsicFunctions():
|
|
for ufunc in UnaryIntrinsicFunctions:
|
|
for bits in allFloatBits:
|
|
yield floatName(bits), ufunc
|
|
|
|
def TypedBinaryFunctions():
|
|
for bfunc in BinaryFunctions:
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
|
|
|
|
}%
|
|
|
|
// Unary functions
|
|
// Note these do not have a corresponding LLVM intrinsic
|
|
% for T, CT, f, ufunc in TypedUnaryFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return ${T}(${ufunc}${f}(${CT}(x)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
|
|
// Unary intrinsic functions
|
|
// Note these have a corresponding LLVM intrinsic
|
|
% for T, ufunc in TypedUnaryIntrinsicFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return _${ufunc}(x)
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
#else
|
|
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
|
|
// Since CoreFoundation also exports libc functions, they will conflict with
|
|
// Swift overlays when building Foundation. For now, just like normal
|
|
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
|
|
% for ufunc in UnaryIntrinsicFunctions:
|
|
% for T, CT, f in OverlayFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return ${T}(${ufunc}${f}(${CT}(x)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
% end
|
|
% end
|
|
#endif
|
|
|
|
// Binary functions
|
|
|
|
% for T, CT, f, bfunc in TypedBinaryFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@_transparent
|
|
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
|
|
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
|
|
% for T, CT, f in AllFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || os(OpenBSD))
|
|
% else:
|
|
// lgamma not available on Windows, apparently?
|
|
#if !os(Windows)
|
|
% end
|
|
@_transparent
|
|
public func lgamma(_ x: ${T}) -> (${T}, Int) {
|
|
var sign = Int32(0)
|
|
let value = lgamma${f}_r(${CT}(x), &sign)
|
|
return (${T}(value), Int(sign))
|
|
}
|
|
#endif
|
|
|
|
% end
|
|
|
|
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
|
|
% for T, CT, f in AllFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@_transparent
|
|
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
|
|
var quo = Int32(0)
|
|
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
|
|
return (${T}(rem), Int(quo))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% for T, CT, f in OverlayFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android))
|
|
% end
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message:
|
|
"use ${T}(nan: ${T}.RawSignificand).")
|
|
@_transparent
|
|
public func nan(_ tag: String) -> ${T} {
|
|
return ${T}(nan${f}(tag))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% # These C functions only support double. The overlay fixes the Int parameter.
|
|
@_transparent
|
|
public func jn(_ n: Int, _ x: Double) -> Double {
|
|
#if os(Windows)
|
|
return _jn(Int32(n), x)
|
|
#else
|
|
return jn(Int32(n), x)
|
|
#endif
|
|
}
|
|
|
|
@_transparent
|
|
public func yn(_ n: Int, _ x: Double) -> Double {
|
|
#if os(Windows)
|
|
return _yn(Int32(n), x)
|
|
#else
|
|
return yn(Int32(n), x)
|
|
#endif
|
|
}
|
|
|
|
% end
|
|
|
|
// ${'Local Variables'}:
|
|
// eval: (read-only-mode 1)
|
|
// End:
|