mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
When deallocating a class instance, we check the retain count of the instance and error if it's greater than 1. Self is allowed to be temporarily passed to other code from deinit, but there's no way to extend the lifetime of the object. Retaining it no longer extensd the lifetime. If self escapes from deinit, the result is a dangling pointer and eventual crash. Instead of crashing randomly due to a dangling pointer, crash deliberately when destroying an object that has escaped. rdar://93848484
1002 lines
35 KiB
C++
1002 lines
35 KiB
C++
//===--- HeapObject.cpp - Swift Language ABI Allocation Support -----------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Allocation ABI Shims While the Language is Bootstrapped
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/Lazy.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/Runtime/Heap.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Runtime/Once.h"
|
|
#include "swift/ABI/System.h"
|
|
#include "MetadataCache.h"
|
|
#include "Private.h"
|
|
#include "RuntimeInvocationsTracking.h"
|
|
#include "WeakReference.h"
|
|
#include "swift/Runtime/Debug.h"
|
|
#include "swift/Runtime/CustomRRABI.h"
|
|
#include "swift/Runtime/InstrumentsSupport.h"
|
|
#include "swift/shims/GlobalObjects.h"
|
|
#include "swift/shims/RuntimeShims.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <new>
|
|
#include <thread>
|
|
#if SWIFT_OBJC_INTEROP
|
|
# include <objc/NSObject.h>
|
|
# include <objc/runtime.h>
|
|
# include <objc/message.h>
|
|
# include <objc/objc.h>
|
|
# include "swift/Runtime/ObjCBridge.h"
|
|
# include <dlfcn.h>
|
|
#endif
|
|
#include "Leaks.h"
|
|
|
|
using namespace swift;
|
|
|
|
// Check to make sure the runtime is being built with a compiler that
|
|
// supports the Swift calling convention.
|
|
//
|
|
// If the Swift calling convention is not in use, functions such as
|
|
// swift_allocBox and swift_makeBoxUnique that rely on their return value
|
|
// being passed in a register to be compatible with Swift may miscompile on
|
|
// some platforms and silently fail.
|
|
#if !__has_attribute(swiftcall)
|
|
#error "The runtime must be built with a compiler that supports swiftcall."
|
|
#endif
|
|
|
|
/// Returns true if the pointer passed to a native retain or release is valid.
|
|
/// If false, the operation should immediately return.
|
|
SWIFT_ALWAYS_INLINE
|
|
static inline bool isValidPointerForNativeRetain(const void *p) {
|
|
#if defined(__arm64__) && (__POINTER_WIDTH__ == 32)
|
|
// arm64_32 is special since it has 32-bit pointers but __arm64__ is true.
|
|
// Catch it early since __POINTER_WIDTH__ is generally non-portable.
|
|
return p != nullptr;
|
|
#elif defined(__ANDROID__) && defined(__aarch64__)
|
|
// Check the top of the second byte instead, since Android AArch64 reserves
|
|
// the top byte for its own pointer tagging since Android 11.
|
|
return (intptr_t)((uintptr_t)p << 8) > 0;
|
|
#elif defined(__x86_64__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) || defined(__s390x__) || (defined(__riscv) && __riscv_xlen == 64) || (defined(__powerpc64__) && defined(__LITTLE_ENDIAN__))
|
|
// On these platforms, except s390x, the upper half of address space is reserved for the
|
|
// kernel, so we can assume that pointer values in this range are invalid.
|
|
// On s390x it is theoretically possible to have high bit set but in practice
|
|
// it is unlikely.
|
|
return (intptr_t)p > 0;
|
|
#else
|
|
return p != nullptr;
|
|
#endif
|
|
}
|
|
|
|
// Call the appropriate implementation of the `name` function, passing `args`
|
|
// to the call. This checks for an override in the function pointer. If an
|
|
// override is present, it calls that override. Otherwise it directly calls
|
|
// the default implementation. This allows the compiler to inline the default
|
|
// implementation and avoid the performance penalty of indirecting through
|
|
// the function pointer in the common case.
|
|
//
|
|
// NOTE: the memcpy and asm("") naming shenanigans are to convince the compiler
|
|
// not to emit a bunch of ptrauth instructions just to perform the comparison.
|
|
// We only want to authenticate the function pointer if we actually call it.
|
|
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
|
|
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
|
|
size_t requiredSize,
|
|
size_t requiredAlignmentMask)
|
|
asm("__swift_allocObject_");
|
|
static HeapObject *_swift_retain_(HeapObject *object) asm("__swift_retain_");
|
|
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n)
|
|
asm("__swift_retain_n_");
|
|
static void _swift_release_(HeapObject *object) asm("__swift_release_");
|
|
static void _swift_release_n_(HeapObject *object, uint32_t n)
|
|
asm("__swift_release_n_");
|
|
static HeapObject *_swift_tryRetain_(HeapObject *object)
|
|
asm("__swift_tryRetain_");
|
|
#define CALL_IMPL(name, args) do { \
|
|
void *fptr; \
|
|
memcpy(&fptr, (void *)&_ ## name, sizeof(fptr)); \
|
|
extern char _ ## name ## _as_char asm("__" #name "_"); \
|
|
fptr = __ptrauth_swift_runtime_function_entry_strip(fptr); \
|
|
if (SWIFT_UNLIKELY(fptr != &_ ## name ## _as_char)) \
|
|
return _ ## name args; \
|
|
return _ ## name ## _ args; \
|
|
} while(0)
|
|
|
|
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
|
|
size_t requiredSize,
|
|
size_t requiredAlignmentMask) {
|
|
assert(isAlignmentMask(requiredAlignmentMask));
|
|
auto object = reinterpret_cast<HeapObject *>(
|
|
swift_slowAlloc(requiredSize, requiredAlignmentMask));
|
|
|
|
// NOTE: this relies on the C++17 guaranteed semantics of no null-pointer
|
|
// check on the placement new allocator which we have observed on Windows,
|
|
// Linux, and macOS.
|
|
::new (object) HeapObject(metadata);
|
|
|
|
// If leak tracking is enabled, start tracking this object.
|
|
SWIFT_LEAKS_START_TRACKING_OBJECT(object);
|
|
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_allocObject);
|
|
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_allocObject(HeapMetadata const *metadata,
|
|
size_t requiredSize,
|
|
size_t requiredAlignmentMask) {
|
|
CALL_IMPL(swift_allocObject, (metadata, requiredSize, requiredAlignmentMask));
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_allocObject)(
|
|
HeapMetadata const *metadata, size_t requiredSize,
|
|
size_t requiredAlignmentMask) = _swift_allocObject_;
|
|
|
|
HeapObject *
|
|
swift::swift_initStackObject(HeapMetadata const *metadata,
|
|
HeapObject *object) {
|
|
object->metadata = metadata;
|
|
object->refCounts.initForNotFreeing();
|
|
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_initStackObject);
|
|
return object;
|
|
}
|
|
|
|
struct InitStaticObjectContext {
|
|
HeapObject *object;
|
|
HeapMetadata const *metadata;
|
|
};
|
|
|
|
// TODO: We could generate inline code for the fast-path, i.e. the metadata
|
|
// pointer is already set. That would be a performance/codesize tradeoff.
|
|
HeapObject *
|
|
swift::swift_initStaticObject(HeapMetadata const *metadata,
|
|
HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_initStaticObject);
|
|
// The token is located at a negative offset from the object header.
|
|
swift_once_t *token = ((swift_once_t *)object) - 1;
|
|
|
|
// We have to initialize the header atomically. Otherwise we could reset the
|
|
// refcount to 1 while another thread already incremented it - and would
|
|
// decrement it to 0 afterwards.
|
|
InitStaticObjectContext Ctx = { object, metadata };
|
|
swift::once(
|
|
*token,
|
|
[](void *OpaqueCtx) {
|
|
InitStaticObjectContext *Ctx = (InitStaticObjectContext *)OpaqueCtx;
|
|
Ctx->object->metadata = Ctx->metadata;
|
|
Ctx->object->refCounts.initImmortal();
|
|
},
|
|
&Ctx);
|
|
|
|
return object;
|
|
}
|
|
|
|
void
|
|
swift::swift_verifyEndOfLifetime(HeapObject *object) {
|
|
if (object->refCounts.getCount() != 0)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Stack object escaped\n");
|
|
|
|
if (object->refCounts.getUnownedCount() != 1)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Unowned reference to stack object\n");
|
|
|
|
if (object->refCounts.getWeakCount() != 0)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Weak reference to stack object\n");
|
|
}
|
|
|
|
/// Allocate a reference-counted object on the heap that
|
|
/// occupies <size> bytes of maximally-aligned storage. The object is
|
|
/// uninitialized except for its header.
|
|
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
|
|
HeapObject* swift_bufferAllocate(
|
|
HeapMetadata const* bufferType, size_t size, size_t alignMask)
|
|
{
|
|
return swift::swift_allocObject(bufferType, size, alignMask);
|
|
}
|
|
|
|
namespace {
|
|
/// Heap object destructor for a generic box allocated with swift_allocBox.
|
|
static SWIFT_CC(swift) void destroyGenericBox(SWIFT_CONTEXT HeapObject *o) {
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
// Destroy the object inside.
|
|
auto *value = metadata->project(o);
|
|
metadata->BoxedType->vw_destroy(value);
|
|
|
|
// Deallocate the box.
|
|
swift_deallocObject(o, metadata->getAllocSize(),
|
|
metadata->getAllocAlignMask());
|
|
}
|
|
|
|
class BoxCacheEntry {
|
|
public:
|
|
FullMetadata<GenericBoxHeapMetadata> Data;
|
|
|
|
BoxCacheEntry(const Metadata *type)
|
|
: Data{HeapMetadataHeader{{destroyGenericBox}, {/*vwtable*/ nullptr}},
|
|
GenericBoxHeapMetadata{MetadataKind::HeapGenericLocalVariable,
|
|
GenericBoxHeapMetadata::getHeaderOffset(type),
|
|
type}} {
|
|
}
|
|
|
|
intptr_t getKeyIntValueForDump() {
|
|
return reinterpret_cast<intptr_t>(Data.BoxedType);
|
|
}
|
|
|
|
bool matchesKey(const Metadata *type) const { return type == Data.BoxedType; }
|
|
|
|
friend llvm::hash_code hash_value(const BoxCacheEntry &value) {
|
|
return llvm::hash_value(value.Data.BoxedType);
|
|
}
|
|
|
|
static size_t getExtraAllocationSize(const Metadata *key) {
|
|
return 0;
|
|
}
|
|
size_t getExtraAllocationSize() const {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static SimpleGlobalCache<BoxCacheEntry, BoxesTag> Boxes;
|
|
|
|
BoxPair swift::swift_makeBoxUnique(OpaqueValue *buffer, const Metadata *type,
|
|
size_t alignMask) {
|
|
auto *inlineBuffer = reinterpret_cast<ValueBuffer*>(buffer);
|
|
HeapObject *box = reinterpret_cast<HeapObject *>(inlineBuffer->PrivateData[0]);
|
|
|
|
if (!swift_isUniquelyReferenced_nonNull_native(box)) {
|
|
auto refAndObjectAddr = BoxPair(swift_allocBox(type));
|
|
// Compute the address of the old object.
|
|
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
|
|
auto *oldObjectAddr = reinterpret_cast<OpaqueValue *>(
|
|
reinterpret_cast<char *>(box) + headerOffset);
|
|
// Copy the data.
|
|
type->vw_initializeWithCopy(refAndObjectAddr.buffer, oldObjectAddr);
|
|
inlineBuffer->PrivateData[0] = refAndObjectAddr.object;
|
|
// Release ownership of the old box.
|
|
swift_release(box);
|
|
return refAndObjectAddr;
|
|
} else {
|
|
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
|
|
auto *objectAddr = reinterpret_cast<OpaqueValue *>(
|
|
reinterpret_cast<char *>(box) + headerOffset);
|
|
return BoxPair{box, objectAddr};
|
|
}
|
|
}
|
|
|
|
BoxPair swift::swift_allocBox(const Metadata *type) {
|
|
// Get the heap metadata for the box.
|
|
auto metadata = &Boxes.getOrInsert(type).first->Data;
|
|
|
|
// Allocate and project the box.
|
|
auto allocation = swift_allocObject(metadata, metadata->getAllocSize(),
|
|
metadata->getAllocAlignMask());
|
|
auto projection = metadata->project(allocation);
|
|
|
|
return BoxPair{allocation, projection};
|
|
}
|
|
|
|
void swift::swift_deallocBox(HeapObject *o) {
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
// Move the object to the deallocating state (+1 -> +0).
|
|
o->refCounts.decrementFromOneNonAtomic();
|
|
swift_deallocObject(o, metadata->getAllocSize(),
|
|
metadata->getAllocAlignMask());
|
|
}
|
|
|
|
OpaqueValue *swift::swift_projectBox(HeapObject *o) {
|
|
// The compiler will use a nil reference as a way to avoid allocating memory
|
|
// for boxes of empty type. The address of an empty value is always undefined,
|
|
// so we can just return nil back in this case.
|
|
if (!o)
|
|
return nullptr;
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
return metadata->project(o);
|
|
}
|
|
|
|
namespace { // Begin anonymous namespace.
|
|
|
|
struct _SwiftEmptyBoxStorage {
|
|
HeapObject header;
|
|
};
|
|
|
|
swift::HeapLocalVariableMetadata _emptyBoxStorageMetadata;
|
|
|
|
/// The singleton empty box storage object.
|
|
_SwiftEmptyBoxStorage _EmptyBoxStorage = {
|
|
// HeapObject header;
|
|
{
|
|
&_emptyBoxStorageMetadata,
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
HeapObject *swift::swift_allocEmptyBox() {
|
|
auto heapObject = reinterpret_cast<HeapObject*>(&_EmptyBoxStorage);
|
|
swift_retain(heapObject);
|
|
return heapObject;
|
|
}
|
|
|
|
// Forward-declare this, but define it after swift_release.
|
|
extern "C" SWIFT_LIBRARY_VISIBILITY SWIFT_NOINLINE SWIFT_USED void
|
|
_swift_release_dealloc(HeapObject *object);
|
|
|
|
SWIFT_ALWAYS_INLINE
|
|
static HeapObject *_swift_retain_(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
|
|
if (isValidPointerForNativeRetain(object)) {
|
|
// Return the result of increment() to make the eventual call to
|
|
// incrementSlow a tail call, which avoids pushing a stack frame on the fast
|
|
// path on ARM64.
|
|
return object->refCounts.increment(1);
|
|
}
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_retain(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
return swift_nonatomic_retain(object);
|
|
#else
|
|
CALL_IMPL(swift_retain, (object));
|
|
#endif
|
|
}
|
|
|
|
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_retain)
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain)(HeapObject *object) =
|
|
_swift_retain_;
|
|
|
|
HeapObject *swift::swift_nonatomic_retain(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.incrementNonAtomic(1);
|
|
return object;
|
|
}
|
|
|
|
SWIFT_ALWAYS_INLINE
|
|
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_retain_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.increment(n);
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_retain_n(HeapObject *object, uint32_t n) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
return swift_nonatomic_retain_n(object, n);
|
|
#else
|
|
CALL_IMPL(swift_retain_n, (object, n));
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain_n)(
|
|
HeapObject *object, uint32_t n) = _swift_retain_n_;
|
|
|
|
HeapObject *swift::swift_nonatomic_retain_n(HeapObject *object, uint32_t n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.incrementNonAtomic(n);
|
|
return object;
|
|
}
|
|
|
|
SWIFT_ALWAYS_INLINE
|
|
static void _swift_release_(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_release);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinit(1);
|
|
}
|
|
|
|
void swift::swift_release(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
swift_nonatomic_release(object);
|
|
#else
|
|
CALL_IMPL(swift_release, (object));
|
|
#endif
|
|
}
|
|
|
|
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_release)
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
void (*SWIFT_RT_DECLARE_ENTRY _swift_release)(HeapObject *object) =
|
|
_swift_release_;
|
|
|
|
void swift::swift_nonatomic_release(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinitNonAtomic(1);
|
|
}
|
|
|
|
SWIFT_ALWAYS_INLINE
|
|
static void _swift_release_n_(HeapObject *object, uint32_t n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_release_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinit(n);
|
|
}
|
|
|
|
void swift::swift_release_n(HeapObject *object, uint32_t n) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
swift_nonatomic_release_n(object, n);
|
|
#else
|
|
CALL_IMPL(swift_release_n, (object, n));
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
void (*SWIFT_RT_DECLARE_ENTRY _swift_release_n)(HeapObject *object,
|
|
uint32_t n) = _swift_release_n_;
|
|
|
|
void swift::swift_nonatomic_release_n(HeapObject *object, uint32_t n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinitNonAtomic(n);
|
|
}
|
|
|
|
size_t swift::swift_retainCount(HeapObject *object) {
|
|
if (isValidPointerForNativeRetain(object))
|
|
return object->refCounts.getCount();
|
|
return 0;
|
|
}
|
|
|
|
size_t swift::swift_unownedRetainCount(HeapObject *object) {
|
|
return object->refCounts.getUnownedCount();
|
|
}
|
|
|
|
size_t swift::swift_weakRetainCount(HeapObject *object) {
|
|
return object->refCounts.getWeakCount();
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetain(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
return static_cast<HeapObject *>(swift_nonatomic_unownedRetain(object));
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnowned(1);
|
|
return object;
|
|
#endif
|
|
}
|
|
|
|
void swift::swift_unownedRelease(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
swift_nonatomic_unownedRelease(object);
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFree(1)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
|
|
swift_slowDealloc(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void *swift::swift_nonatomic_unownedRetain(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnownedNonAtomic(1);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRelease(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(1)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
|
|
swift_slowDealloc(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetain_n(HeapObject *object, int n) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
return swift_nonatomic_unownedRetain_n(object, n);
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnowned(n);
|
|
return object;
|
|
#endif
|
|
}
|
|
|
|
void swift::swift_unownedRelease_n(HeapObject *object, int n) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
swift_nonatomic_unownedRelease_n(object, n);
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFree(n)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
swift_slowDealloc(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_unownedRetain_n(HeapObject *object, int n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnownedNonAtomic(n);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRelease_n(HeapObject *object, int n) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(n)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
swift_slowDealloc(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
SWIFT_ALWAYS_INLINE
|
|
static HeapObject *_swift_tryRetain_(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_tryRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return nullptr;
|
|
|
|
#ifdef SWIFT_THREADING_NONE
|
|
if (object->refCounts.tryIncrementNonAtomic()) return object;
|
|
else return nullptr;
|
|
#else
|
|
if (object->refCounts.tryIncrement()) return object;
|
|
else return nullptr;
|
|
#endif
|
|
}
|
|
|
|
HeapObject *swift::swift_tryRetain(HeapObject *object) {
|
|
CALL_IMPL(swift_tryRetain, (object));
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_tryRetain)(HeapObject *object) =
|
|
_swift_tryRetain_;
|
|
|
|
bool swift::swift_isDeallocating(HeapObject *object) {
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return false;
|
|
return object->refCounts.isDeiniting();
|
|
}
|
|
|
|
void swift::swift_setDeallocating(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_setDeallocating);
|
|
object->refCounts.decrementFromOneNonAtomic();
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetainStrong(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
return swift_nonatomic_unownedRetainStrong(object);
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrong);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrement())
|
|
swift::swift_abortRetainUnowned(object);
|
|
return object;
|
|
#endif
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_unownedRetainStrong(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrong);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrementNonAtomic())
|
|
swift::swift_abortRetainUnowned(object);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_unownedRetainStrongAndRelease(HeapObject *object) {
|
|
#ifdef SWIFT_THREADING_NONE
|
|
swift_nonatomic_unownedRetainStrongAndRelease(object);
|
|
#else
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrongAndRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrement())
|
|
swift::swift_abortRetainUnowned(object);
|
|
|
|
// This should never cause a deallocation.
|
|
bool dealloc = object->refCounts.decrementUnownedShouldFree(1);
|
|
assert(!dealloc && "retain-strong-and-release caused dealloc?");
|
|
(void) dealloc;
|
|
#endif
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRetainStrongAndRelease(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrongAndRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrementNonAtomic())
|
|
swift::swift_abortRetainUnowned(object);
|
|
|
|
// This should never cause a deallocation.
|
|
bool dealloc = object->refCounts.decrementUnownedShouldFreeNonAtomic(1);
|
|
assert(!dealloc && "retain-strong-and-release caused dealloc?");
|
|
(void) dealloc;
|
|
}
|
|
|
|
void swift::swift_unownedCheck(HeapObject *object) {
|
|
if (!isValidPointerForNativeRetain(object)) return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (object->refCounts.isDeiniting())
|
|
swift::swift_abortRetainUnowned(object);
|
|
}
|
|
|
|
void _swift_release_dealloc(HeapObject *object) {
|
|
asFullMetadata(object->metadata)->destroy(object);
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Perform the root -dealloc operation for a class instance.
|
|
void swift::swift_rootObjCDealloc(HeapObject *self) {
|
|
auto metadata = self->metadata;
|
|
assert(metadata->isClassObject());
|
|
auto classMetadata = static_cast<const ClassMetadata*>(metadata);
|
|
assert(classMetadata->isTypeMetadata());
|
|
swift_deallocClassInstance(self, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
#endif
|
|
|
|
void swift::swift_deallocClassInstance(HeapObject *object,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
size_t retainCount = swift_retainCount(object);
|
|
if (SWIFT_UNLIKELY(retainCount > 1))
|
|
swift::fatalError(0,
|
|
"Object %p deallocated with retain count %zd, reference "
|
|
"may have escaped from deinit.\n",
|
|
object, retainCount);
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// We need to let the ObjC runtime clean up any associated objects or weak
|
|
// references associated with this object.
|
|
#if TARGET_OS_SIMULATOR && (__x86_64__ || __i386__)
|
|
const bool fastDeallocSupported = false;
|
|
#else
|
|
const bool fastDeallocSupported = true;
|
|
#endif
|
|
|
|
if (!fastDeallocSupported || !object->refCounts.getPureSwiftDeallocation()) {
|
|
objc_destructInstance((id)object);
|
|
}
|
|
#endif
|
|
|
|
swift_deallocObject(object, allocatedSize, allocatedAlignMask);
|
|
}
|
|
|
|
/// Variant of the above used in constructor failure paths.
|
|
void swift::swift_deallocPartialClassInstance(HeapObject *object,
|
|
HeapMetadata const *metadata,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
if (!object)
|
|
return;
|
|
|
|
// Destroy ivars
|
|
auto *classMetadata = _swift_getClassOfAllocated(object)->getClassObject();
|
|
assert(classMetadata && "Not a class?");
|
|
while (classMetadata != metadata) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
// If we have hit a pure Objective-C class, we won't see another ivar
|
|
// destroyer.
|
|
if (classMetadata->isPureObjC()) {
|
|
// Set the class to the pure Objective-C superclass, so that when dealloc
|
|
// runs, it starts at that superclass.
|
|
object_setClass((id)object, class_const_cast(classMetadata));
|
|
|
|
// Release the object.
|
|
objc_release((id)object);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (classMetadata->IVarDestroyer)
|
|
classMetadata->IVarDestroyer(object);
|
|
|
|
classMetadata = classMetadata->Superclass->getClassObject();
|
|
assert(classMetadata && "Given metatype not a superclass of object type?");
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// If this class doesn't use Swift-native reference counting, use
|
|
// objc_release instead.
|
|
if (!usesNativeSwiftReferenceCounting(classMetadata)) {
|
|
// Find the pure Objective-C superclass.
|
|
while (!classMetadata->isPureObjC())
|
|
classMetadata = classMetadata->Superclass->getClassObject();
|
|
|
|
// Set the class to the pure Objective-C superclass, so that when dealloc
|
|
// runs, it starts at that superclass.
|
|
object_setClass((id)object, class_const_cast(classMetadata));
|
|
|
|
// Release the object.
|
|
objc_release((id)object);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// The strong reference count should be +1 -- tear down the object
|
|
bool shouldDeallocate = object->refCounts.decrementShouldDeinit(1);
|
|
assert(shouldDeallocate);
|
|
(void) shouldDeallocate;
|
|
swift_deallocClassInstance(object, allocatedSize, allocatedAlignMask);
|
|
}
|
|
|
|
#if !defined(__APPLE__) && defined(SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS)
|
|
static inline void memset_pattern8(void *b, const void *pattern8, size_t len) {
|
|
char *ptr = static_cast<char *>(b);
|
|
while (len >= 8) {
|
|
memcpy(ptr, pattern8, 8);
|
|
ptr += 8;
|
|
len -= 8;
|
|
}
|
|
memcpy(ptr, pattern8, len);
|
|
}
|
|
#endif
|
|
|
|
static inline void swift_deallocObjectImpl(HeapObject *object,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask,
|
|
bool isDeiniting) {
|
|
assert(isAlignmentMask(allocatedAlignMask));
|
|
if (!isDeiniting) {
|
|
assert(object->refCounts.isUniquelyReferenced());
|
|
object->refCounts.decrementFromOneNonAtomic();
|
|
}
|
|
assert(object->refCounts.isDeiniting());
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_deallocObject);
|
|
#ifdef SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
|
|
memset_pattern8((uint8_t *)object + sizeof(HeapObject),
|
|
"\xAB\xAD\x1D\xEA\xF4\xEE\xD0\bB9",
|
|
allocatedSize - sizeof(HeapObject));
|
|
#endif
|
|
|
|
// If we are tracking leaks, stop tracking this object.
|
|
SWIFT_LEAKS_STOP_TRACKING_OBJECT(object);
|
|
|
|
|
|
// Drop the initial weak retain of the object.
|
|
//
|
|
// If the outstanding weak retain count is 1 (i.e. only the initial
|
|
// weak retain), we can immediately call swift_slowDealloc. This is
|
|
// useful both as a way to eliminate an unnecessary atomic
|
|
// operation, and as a way to avoid calling swift_unownedRelease on an
|
|
// object that might be a class object, which simplifies the logic
|
|
// required in swift_unownedRelease for determining the size of the
|
|
// object.
|
|
//
|
|
// If we see that there is an outstanding weak retain of the object,
|
|
// we need to fall back on swift_release, because it's possible for
|
|
// us to race against a weak retain or a weak release. But if the
|
|
// outstanding weak retain count is 1, then anyone attempting to
|
|
// increase the weak reference count is inherently racing against
|
|
// deallocation and thus in undefined-behavior territory. And
|
|
// we can even do this with a normal load! Here's why:
|
|
//
|
|
// 1. There is an invariant that, if the strong reference count
|
|
// is > 0, then the weak reference count is > 1.
|
|
//
|
|
// 2. The above lets us say simply that, in the absence of
|
|
// races, once a reference count reaches 0, there are no points
|
|
// which happen-after where the reference count is > 0.
|
|
//
|
|
// 3. To not race, a strong retain must happen-before a point
|
|
// where the strong reference count is > 0, and a weak retain
|
|
// must happen-before a point where the weak reference count
|
|
// is > 0.
|
|
//
|
|
// 4. Changes to either the strong and weak reference counts occur
|
|
// in a total order with respect to each other. This can
|
|
// potentially be done with a weaker memory ordering than
|
|
// sequentially consistent if the architecture provides stronger
|
|
// ordering for memory guaranteed to be co-allocated on a cache
|
|
// line (which the reference count fields are).
|
|
//
|
|
// 5. This function happens-after a point where the strong
|
|
// reference count was 0.
|
|
//
|
|
// 6. Therefore, if a normal load in this function sees a weak
|
|
// reference count of 1, it cannot be racing with a weak retain
|
|
// that is not racing with deallocation:
|
|
//
|
|
// - A weak retain must happen-before a point where the weak
|
|
// reference count is > 0.
|
|
//
|
|
// - This function logically decrements the weak reference
|
|
// count. If it is possible for it to see a weak reference
|
|
// count of 1, then at the end of this function, the
|
|
// weak reference count will logically be 0.
|
|
//
|
|
// - There can be no points after that point where the
|
|
// weak reference count will be > 0.
|
|
//
|
|
// - Therefore either the weak retain must happen-before this
|
|
// function, or this function cannot see a weak reference
|
|
// count of 1, or there is a race.
|
|
//
|
|
// Note that it is okay for there to be a race involving a weak
|
|
// *release* which happens after the strong reference count drops to
|
|
// 0. However, this is harmless: if our load fails to see the
|
|
// release, we will fall back on swift_unownedRelease, which does an
|
|
// atomic decrement (and has the ability to reconstruct
|
|
// allocatedSize and allocatedAlignMask).
|
|
//
|
|
// Note: This shortcut is NOT an optimization.
|
|
// Some allocations passed to swift_deallocObject() are not compatible
|
|
// with swift_unownedRelease() because they do not have ClassMetadata.
|
|
|
|
if (object->refCounts.canBeFreedNow()) {
|
|
// object state DEINITING -> DEAD
|
|
swift_slowDealloc(object, allocatedSize, allocatedAlignMask);
|
|
} else {
|
|
// object state DEINITING -> DEINITED
|
|
swift_unownedRelease(object);
|
|
}
|
|
}
|
|
|
|
void swift::swift_deallocObject(HeapObject *object, size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, true);
|
|
}
|
|
|
|
void swift::swift_deallocUninitializedObject(HeapObject *object,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, false);
|
|
}
|
|
|
|
WeakReference *swift::swift_weakInit(WeakReference *ref, HeapObject *value) {
|
|
ref->nativeInit(value);
|
|
return ref;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakAssign(WeakReference *ref, HeapObject *value) {
|
|
ref->nativeAssign(value);
|
|
return ref;
|
|
}
|
|
|
|
HeapObject *swift::swift_weakLoadStrong(WeakReference *ref) {
|
|
return ref->nativeLoadStrong();
|
|
}
|
|
|
|
HeapObject *swift::swift_weakTakeStrong(WeakReference *ref) {
|
|
return ref->nativeTakeStrong();
|
|
}
|
|
|
|
void swift::swift_weakDestroy(WeakReference *ref) {
|
|
ref->nativeDestroy();
|
|
}
|
|
|
|
WeakReference *swift::swift_weakCopyInit(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeCopyInit(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakTakeInit(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeTakeInit(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakCopyAssign(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeCopyAssign(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakTakeAssign(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeTakeAssign(src);
|
|
return dest;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
|
|
/// Returns true if the "immutable" flag is set on \p object.
|
|
///
|
|
/// Used for runtime consistency checking of COW buffers.
|
|
SWIFT_RUNTIME_EXPORT
|
|
bool _swift_isImmutableCOWBuffer(HeapObject *object) {
|
|
return object->refCounts.isImmutableCOWBuffer();
|
|
}
|
|
|
|
/// Sets the "immutable" flag on \p object to \p immutable and returns the old
|
|
/// value of the flag.
|
|
///
|
|
/// Used for runtime consistency checking of COW buffers.
|
|
SWIFT_RUNTIME_EXPORT
|
|
bool _swift_setImmutableCOWBuffer(HeapObject *object, bool immutable) {
|
|
return object->refCounts.setIsImmutableCOWBuffer(immutable);
|
|
}
|
|
|
|
void HeapObject::dump() const {
|
|
auto *Self = const_cast<HeapObject *>(this);
|
|
printf("HeapObject: %p\n", Self);
|
|
printf("HeapMetadata Pointer: %p.\n", Self->metadata);
|
|
printf("Strong Ref Count: %d.\n", Self->refCounts.getCount());
|
|
printf("Unowned Ref Count: %d.\n", Self->refCounts.getUnownedCount());
|
|
printf("Weak Ref Count: %d.\n", Self->refCounts.getWeakCount());
|
|
if (Self->metadata->getKind() == MetadataKind::Class) {
|
|
printf("Uses Native Retain: %s.\n",
|
|
(objectUsesNativeSwiftReferenceCounting(Self) ? "true" : "false"));
|
|
} else {
|
|
printf("Uses Native Retain: Not a class. N/A.\n");
|
|
}
|
|
printf("RefCount Side Table: %p.\n", Self->refCounts.getSideTable());
|
|
printf("Is Deiniting: %s.\n",
|
|
(Self->refCounts.isDeiniting() ? "true" : "false"));
|
|
}
|
|
|
|
#endif
|