mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
For years, optimizer engineers have been hitting a common bug caused by passes assuming all SILValues have a parent function only to be surprised by SILUndef. Generally we see SILUndef not that often so we see this come up later in testing. This patch eliminates that problem by making SILUndef uniqued at the function level instead of the module level. This ensures that it makes sense for SILUndef to have a parent function, eliminating this possibility since we can define an API to get its parent function. rdar://123484595
316 lines
10 KiB
C++
316 lines
10 KiB
C++
//===--- BasicBlockOptUtils.cpp - SILOptimizer basic block utilities ------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "swift/SIL/LoopInfo.h"
|
|
|
|
using namespace swift;
|
|
|
|
/// Invoke \p visitor for each reachable block in \p f in worklist order (at
|
|
/// least one predecessor has been visited).
|
|
bool ReachableBlocks::visit(function_ref<bool(SILBasicBlock *)> visitor) {
|
|
// Walk over the CFG, starting at the entry block, until all reachable blocks
|
|
// are visited.
|
|
SILBasicBlock *entryBB = visited.getFunction()->getEntryBlock();
|
|
SmallVector<SILBasicBlock *, 8> worklist = {entryBB};
|
|
visited.insert(entryBB);
|
|
while (!worklist.empty()) {
|
|
SILBasicBlock *bb = worklist.pop_back_val();
|
|
if (!visitor(bb))
|
|
return false;
|
|
|
|
for (auto &succ : bb->getSuccessors()) {
|
|
if (visited.insert(succ))
|
|
worklist.push_back(succ);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ReachingReturnBlocks::ReachingReturnBlocks(SILFunction *function)
|
|
: worklist(function) {
|
|
for (SILBasicBlock &block : *function) {
|
|
if (isa<ReturnInst>(block.getTerminator()))
|
|
worklist.push(&block);
|
|
}
|
|
|
|
while (SILBasicBlock *block = worklist.pop()) {
|
|
for (SILBasicBlock *pred : block->getPredecessorBlocks()) {
|
|
worklist.pushIfNotVisited(pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
NonErrorHandlingBlocks::NonErrorHandlingBlocks(SILFunction *function)
|
|
: worklist(function->getEntryBlock()) {
|
|
while (SILBasicBlock *block = worklist.pop()) {
|
|
if (auto ta = dyn_cast<TryApplyInst>(block->getTerminator())) {
|
|
worklist.pushIfNotVisited(ta->getNormalBB());
|
|
} else {
|
|
for (SILBasicBlock *succ : block->getSuccessorBlocks()) {
|
|
worklist.pushIfNotVisited(succ);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove all instructions in the body of \p bb in safe manner by using
|
|
/// undef.
|
|
void swift::clearBlockBody(SILBasicBlock *bb) {
|
|
|
|
for (SILArgument *arg : bb->getArguments()) {
|
|
arg->replaceAllUsesWithUndef();
|
|
// To appease the ownership verifier, just set to None.
|
|
arg->setOwnershipKind(OwnershipKind::None);
|
|
}
|
|
|
|
// Instructions in the dead block may be used by other dead blocks. Replace
|
|
// any uses of them with undef values.
|
|
while (!bb->empty()) {
|
|
// Grab the last instruction in the bb.
|
|
auto *inst = &bb->back();
|
|
|
|
// Replace any still-remaining uses with undef values and erase.
|
|
inst->replaceAllUsesOfAllResultsWithUndef();
|
|
inst->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Handle the mechanical aspects of removing an unreachable block.
|
|
void swift::removeDeadBlock(SILBasicBlock *bb) {
|
|
// Clear the body of bb.
|
|
clearBlockBody(bb);
|
|
|
|
// Now that the bb is empty, eliminate it.
|
|
bb->eraseFromParent();
|
|
}
|
|
|
|
bool swift::removeUnreachableBlocks(SILFunction &f) {
|
|
ReachableBlocks reachable(&f);
|
|
// Visit all the blocks without doing any extra work.
|
|
reachable.visit([](SILBasicBlock *) { return true; });
|
|
|
|
// Remove the blocks we never reached. Assume the entry block is visited.
|
|
// Reachable's visited set contains dangling pointers during this loop.
|
|
bool changed = false;
|
|
for (auto ii = std::next(f.begin()), end = f.end(); ii != end;) {
|
|
auto *bb = &*ii++;
|
|
if (!reachable.isVisited(bb)) {
|
|
removeDeadBlock(bb);
|
|
changed = true;
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BasicBlock Cloning
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return true if a guaranteed terminator result can be borrowed such that the
|
|
// nested borrow scope covers all its uses.
|
|
static bool canBorrowGuaranteedResult(SILValue guaranteedResult) {
|
|
if (guaranteedResult->getOwnershipKind() != OwnershipKind::Guaranteed) {
|
|
// Either this terminator forwards an owned value, or it is some legal
|
|
// conversion to a non-guaranteed value. Either way, not interesting.
|
|
return true;
|
|
}
|
|
return findInnerTransitiveGuaranteedUses(guaranteedResult);
|
|
}
|
|
|
|
bool swift::canCloneTerminator(TermInst *termInst) {
|
|
// TODO: this is an awkward way to check for guaranteed terminator results.
|
|
for (Operand &oper : termInst->getAllOperands()) {
|
|
if (oper.getOperandOwnership() != OperandOwnership::GuaranteedForwarding)
|
|
continue;
|
|
|
|
if (!ForwardingOperand(&oper).visitForwardedValues(
|
|
[&](SILValue termResult) {
|
|
return canBorrowGuaranteedResult(termResult);
|
|
})) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BasicBlockCloner::updateSSAAfterCloning() {
|
|
SmallVector<SILPhiArgument *, 4> updateSSAPhis;
|
|
// All instructions should have been checked by canCloneInstruction. But we
|
|
// still need to check the arguments.
|
|
for (auto arg : origBB->getArguments()) {
|
|
if ((needsSSAUpdate |= isUsedOutsideOfBlock(arg))) {
|
|
break;
|
|
}
|
|
}
|
|
if (!needsSSAUpdate)
|
|
return;
|
|
|
|
SILSSAUpdater ssaUpdater(&updateSSAPhis);
|
|
for (auto availValPair : availVals) {
|
|
auto inst = availValPair.first;
|
|
if (inst->use_empty())
|
|
continue;
|
|
|
|
SILValue newResult(availValPair.second);
|
|
|
|
SmallVector<UseWrapper, 16> useList;
|
|
// Collect the uses of the value.
|
|
for (auto *use : inst->getUses())
|
|
useList.push_back(UseWrapper(use));
|
|
|
|
ssaUpdater.initialize(inst->getFunction(), inst->getType(),
|
|
inst->getOwnershipKind());
|
|
ssaUpdater.addAvailableValue(origBB, inst);
|
|
ssaUpdater.addAvailableValue(getNewBB(), newResult);
|
|
|
|
if (useList.empty())
|
|
continue;
|
|
|
|
// Update all the uses.
|
|
for (auto useWrapper : useList) {
|
|
Operand *use = useWrapper; // unwrap
|
|
SILInstruction *user = use->getUser();
|
|
assert(user && "Missing user");
|
|
|
|
// Ignore uses in the same basic block.
|
|
if (user->getParent() == origBB)
|
|
continue;
|
|
|
|
ssaUpdater.rewriteUse(*use);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BasicBlockCloner::sinkAddressProjections() {
|
|
// Because the address projections chains will be disjoint (an instruction
|
|
// in one chain cannot use the result of an instruction in another chain),
|
|
// the order they are sunk does not matter.
|
|
InstructionDeleter deleter;
|
|
for (auto ii = origBB->begin(), ie = origBB->end(); ii != ie;) {
|
|
bool canSink = sinkProj.analyzeAddressProjections(&*ii);
|
|
(void)canSink;
|
|
assert(canSink && "canCloneInstruction should catch this.");
|
|
|
|
sinkProj.cloneProjections();
|
|
assert((sinkProj.getInBlockDefs().empty() || needsSSAUpdate)
|
|
&& "canCloneInstruction should catch this.");
|
|
|
|
auto nextII = std::next(ii);
|
|
deleter.trackIfDead(&*ii);
|
|
ii = nextII;
|
|
}
|
|
deleter.cleanupDeadInstructions();
|
|
}
|
|
|
|
// Populate 'projections' with the chain of address projections leading
|
|
// to and including 'inst'.
|
|
//
|
|
// Populate 'inBlockDefs' with all the non-address value definitions in
|
|
// the block that will be used outside this block after projection sinking.
|
|
//
|
|
// Return true on success, even if projections is empty.
|
|
bool SinkAddressProjections::analyzeAddressProjections(SILInstruction *inst) {
|
|
oldProjections.clear();
|
|
inBlockDefs.clear();
|
|
|
|
SILBasicBlock *bb = inst->getParent();
|
|
auto pushOperandVal = [&](SILValue def) {
|
|
if (def->getParentBlock() != bb)
|
|
return true;
|
|
|
|
if (!def->getType().isAddress()) {
|
|
inBlockDefs.insert(def);
|
|
return true;
|
|
}
|
|
if (auto *addressProj = dyn_cast<SingleValueInstruction>(def)) {
|
|
if (addressProj->isPure()) {
|
|
oldProjections.push_back(addressProj);
|
|
return true;
|
|
}
|
|
}
|
|
// Can't handle a multi-value or unclonable address producer.
|
|
return false;
|
|
};
|
|
// Check the given instruction for any address-type results.
|
|
for (auto result : inst->getResults()) {
|
|
if (!isUsedOutsideOfBlock(result))
|
|
continue;
|
|
if (!pushOperandVal(result))
|
|
return false;
|
|
}
|
|
// Recurse upward through address projections.
|
|
for (unsigned idx = 0; idx < oldProjections.size(); ++idx) {
|
|
// Only one address result/operand can be handled per instruction.
|
|
if (oldProjections.size() != idx + 1)
|
|
return false;
|
|
|
|
for (SILValue operandVal : oldProjections[idx]->getOperandValues())
|
|
if (!pushOperandVal(operandVal))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Clone the projections gathered by 'analyzeAddressProjections' at
|
|
// their use site outside this block.
|
|
bool SinkAddressProjections::cloneProjections() {
|
|
if (oldProjections.empty())
|
|
return false;
|
|
|
|
SILBasicBlock *bb = oldProjections.front()->getParent();
|
|
// Clone projections in last-to-first order.
|
|
for (unsigned idx = 0; idx < oldProjections.size(); ++idx) {
|
|
auto *oldProj = oldProjections[idx];
|
|
assert(oldProj->getParent() == bb);
|
|
// Reset transient per-projection sets.
|
|
usesToReplace.clear();
|
|
firstBlockUse.clear();
|
|
// Gather uses.
|
|
for (Operand *use : oldProj->getUses()) {
|
|
auto *useBB = use->getUser()->getParent();
|
|
if (useBB != bb) {
|
|
firstBlockUse.try_emplace(useBB, use);
|
|
usesToReplace.push_back(use);
|
|
}
|
|
}
|
|
// Replace uses. Uses must be handled in the same order they were discovered
|
|
// above.
|
|
//
|
|
// Avoid cloning a projection multiple times per block. This avoids extra
|
|
// projections, but also prevents the removal of DebugValue. If a
|
|
// projection's only remaining is DebugValue, then it is deleted along with
|
|
// the DebugValue.
|
|
for (Operand *use : usesToReplace) {
|
|
auto *useBB = use->getUser()->getParent();
|
|
auto *firstUse = firstBlockUse.lookup(useBB);
|
|
SingleValueInstruction *newProj;
|
|
if (use == firstUse) {
|
|
newProj = cast<SingleValueInstruction>(oldProj->clone(use->getUser()));
|
|
if (newProjections) {
|
|
newProjections->push_back(newProj);
|
|
}
|
|
} else {
|
|
newProj = cast<SingleValueInstruction>(firstUse->get());
|
|
assert(newProj->getParent() == useBB);
|
|
newProj->moveFront(useBB);
|
|
}
|
|
use->set(newProj);
|
|
}
|
|
}
|
|
return true;
|
|
}
|