Files
swift-mirror/lib/Sema/NameBinding.cpp
Joe Groff b08f06f191 Revert "Accept (and prefer) "import type" as a scoped import for any non-protocol type."
This reverts commit r14488, since we're demoting 'type' back to a plain old identifier.

We could consider reallowing 'type' as a contextual keyword here, but from talking to Jordan he was OK with just reverting this functionality.

Swift SVN r14931
2014-03-11 23:18:30 +00:00

293 lines
10 KiB
C++

//===--- NameBinding.cpp - Name Binding -----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements name binding for Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/Subsystems.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTMutationListener.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/Path.h"
#include <algorithm>
using namespace swift;
//===----------------------------------------------------------------------===//
// NameBinder
//===----------------------------------------------------------------------===//
typedef Module::ImportedModule ImportedModule;
typedef llvm::PointerUnion<const ImportedModule*, EnumType*> BoundScope;
namespace {
class NameBinder {
public:
SourceFile &SF;
ASTContext &Context;
NameBinder(SourceFile &SF) : SF(SF), Context(SF.getASTContext()) {}
template<typename ...ArgTypes>
InFlightDiagnostic diagnose(ArgTypes... Args) {
return Context.Diags.diagnose(Args...);
}
Optional<std::pair<ImportedModule, bool>> addImport(ImportDecl *ID);
/// Load a module referenced by an import statement.
///
/// Returns null if no module can be loaded.
Module *getModule(ArrayRef<std::pair<Identifier,SourceLoc>> ModuleID);
};
}
Module *
NameBinder::getModule(ArrayRef<std::pair<Identifier, SourceLoc>> modulePath) {
assert(!modulePath.empty());
auto moduleID = modulePath[0];
// The Builtin module cannot be explicitly imported unless we're a .sil file
// or in the REPL.
if ((SF.Kind == SourceFileKind::SIL || SF.Kind == SourceFileKind::REPL) &&
moduleID.first.str() == "Builtin")
return Context.TheBuiltinModule;
// If the imported module name is the same as the current module,
// skip the Swift module loader and use the Clang module loader instead.
// This allows a Swift module to extend a Clang module of the same name.
if (moduleID.first == SF.getParentModule()->Name && modulePath.size() == 1) {
if (auto importer = Context.getClangModuleLoader())
return importer->loadModule(moduleID.second, modulePath);
return nullptr;
}
return Context.getModule(modulePath);
}
/// Returns true if a decl with the given \p actual kind can legally be
/// imported via the given \p expected kind.
static bool isCompatibleImportKind(ImportKind expected, ImportKind actual) {
if (expected == actual)
return true;
if (expected != ImportKind::Type)
return false;
switch (actual) {
case ImportKind::Module:
llvm_unreachable("module imports do not bring in decls");
case ImportKind::Type:
llvm_unreachable("individual decls cannot have abstract import kind");
case ImportKind::Struct:
case ImportKind::Class:
case ImportKind::Enum:
return true;
case ImportKind::Protocol:
case ImportKind::Var:
case ImportKind::Func:
return false;
}
}
static const char *getImportKindString(ImportKind kind) {
switch (kind) {
case ImportKind::Module:
llvm_unreachable("module imports do not bring in decls");
case ImportKind::Type:
return "typealias";
case ImportKind::Struct:
return "struct";
case ImportKind::Class:
return "class";
case ImportKind::Enum:
return "enum";
case ImportKind::Protocol:
return "protocol";
case ImportKind::Var:
return "var";
case ImportKind::Func:
return "func";
}
}
Optional<std::pair<ImportedModule, bool>> NameBinder::addImport(ImportDecl *ID) {
Module *M = getModule(ID->getModulePath());
if (M == 0) {
// FIXME: print entire path regardless.
if (ID->getModulePath().size() == 1) {
diagnose(ID->getLoc(), diag::sema_no_import,
ID->getModulePath().front().first.str());
} else {
diagnose(ID->getLoc(), diag::sema_no_import_submodule);
}
if (Context.SearchPathOpts.SDKPath.empty()) {
diagnose(SourceLoc(), diag::sema_no_import_no_sdk);
diagnose(SourceLoc(), diag::sema_no_import_no_sdk_xcrun);
}
return Nothing;
}
auto result = std::make_pair(ImportedModule(ID->getDeclPath(), M),
ID->isExported());
// If we're importing a specific decl, validate the import kind.
if (ID->getImportKind() != ImportKind::Module) {
auto declPath = ID->getDeclPath();
assert(declPath.size() == 1 && "can't handle sub-decl imports");
SmallVector<ValueDecl *, 8> decls;
M->lookupQualified(ModuleType::get(M), declPath.front().first,
NL_QualifiedDefault, nullptr, decls);
if (decls.empty()) {
diagnose(ID, diag::no_decl_in_module)
.highlight(SourceRange(declPath.front().second,
declPath.back().second));
return result;
}
Optional<ImportKind> actualKind = ImportDecl::findBestImportKind(decls);
if (!actualKind.hasValue()) {
// FIXME: print entire module name?
diagnose(ID, diag::ambiguous_decl_in_module,
declPath.front().first, M->Name);
for (auto next : decls)
diagnose(next, diag::found_candidate);
} else if (!isCompatibleImportKind(ID->getImportKind(), *actualKind)) {
diagnose(ID, diag::imported_decl_is_wrong_kind,
declPath.front().first,
getImportKindString(ID->getImportKind()),
static_cast<unsigned>(*actualKind))
.fixItReplace(SourceRange(ID->getKindLoc()),
getImportKindString(*actualKind));
if (decls.size() == 1)
diagnose(decls.front(), diag::decl_declared_here,
decls.front()->getName());
}
}
return result;
}
//===----------------------------------------------------------------------===//
// performNameBinding
//===----------------------------------------------------------------------===//
template<typename OP_DECL>
static void insertOperatorDecl(NameBinder &Binder,
SourceFile::OperatorMap<OP_DECL*> &Operators,
OP_DECL *OpDecl) {
auto previousDecl = Operators.find(OpDecl->getName());
if (previousDecl != Operators.end()) {
Binder.diagnose(OpDecl->getLoc(), diag::operator_redeclared);
Binder.diagnose(previousDecl->second.getPointer(),
diag::previous_operator_decl);
return;
}
// FIXME: The second argument indicates whether the given operator is visible
// outside the current file.
Operators[OpDecl->getName()] = { OpDecl, true };
}
/// performNameBinding - Once parsing is complete, this walks the AST to
/// resolve names and do other top-level validation.
///
/// At this parsing has been performed, but we still have UnresolvedDeclRefExpr
/// nodes for unresolved value names, and we may have unresolved type names as
/// well. This handles import directives and forward references.
void swift::performNameBinding(SourceFile &SF, unsigned StartElem) {
// Make sure we skip adding the standard library imports if the
// source file is empty.
if (SF.ASTStage == SourceFile::NameBound || SF.Decls.empty()) {
SF.ASTStage = SourceFile::NameBound;
return;
}
// Reset the name lookup cache so we find new decls.
// FIXME: This is inefficient.
SF.clearLookupCache();
NameBinder Binder(SF);
SmallVector<std::pair<ImportedModule, bool>, 8> ImportedModules;
ImportedModules.append(SF.getImports().begin(), SF.getImports().end());
// Do a prepass over the declarations to find and load the imported modules
// and map operator decls.
for (auto D : llvm::makeArrayRef(SF.Decls).slice(StartElem)) {
if (ImportDecl *ID = dyn_cast<ImportDecl>(D)) {
if (auto import = Binder.addImport(ID))
ImportedModules.push_back(*import);
} else if (auto *OD = dyn_cast<PrefixOperatorDecl>(D)) {
insertOperatorDecl(Binder, SF.PrefixOperators, OD);
} else if (auto *OD = dyn_cast<PostfixOperatorDecl>(D)) {
insertOperatorDecl(Binder, SF.PostfixOperators, OD);
} else if (auto *OD = dyn_cast<InfixOperatorDecl>(D)) {
insertOperatorDecl(Binder, SF.InfixOperators, OD);
}
}
if (ImportedModules.size() > SF.getImports().size())
SF.setImports(SF.getASTContext().AllocateCopy(ImportedModules));
// FIXME: This algorithm has quadratic memory usage. (In practice,
// import statements after the first "chunk" should be rare, though.)
// FIXME: Can we make this more efficient?
llvm::DenseMap<Identifier, ValueDecl*> CheckTypes;
for (unsigned i = 0, e = SF.Decls.size(); i != e; ++i) {
Decl *D = SF.Decls[i];
if (D->isInvalid())
// No need to diagnose redeclarations of invalid declarations, we have
// already complained about them in some other way.
continue;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
// Check for declarations with the same name which aren't overloaded
// vars/funcs.
// FIXME: We don't have enough information to do this properly here,
// because we need resolved types to find duplicates.
if (!VD->hasName())
continue;
ValueDecl *&LookupD = CheckTypes[VD->getName()];
ValueDecl *PrevD = LookupD;
LookupD = VD;
if (i >= StartElem) {
if (PrevD && !((isa<VarDecl>(VD) || isa<FuncDecl>(VD)) &&
(isa<VarDecl>(PrevD) || isa<FuncDecl>(PrevD)))) {
Binder.diagnose(VD->getStartLoc(), diag::invalid_redecl);
Binder.diagnose(PrevD, diag::invalid_redecl_prev,
VD->getName());
}
}
}
}
SF.ASTStage = SourceFile::NameBound;
verify(SF);
}