Files
swift-mirror/unittests/SILOptimizer/PartitionUtilsTest.cpp
Michael Gottesman 12573d6b52 [region-isolation] Instead of just tracking a single transferring instruction, track all of them.
Previously I avoided doing this since the only problem would be that in a case
where we had two transfer instructions that were in an if-else block, we would
just emit an error for one:

```swift
if boolValue {
  transfer(x)
} else {
  transfer(x) // Only emit error for this transfer!
}

useValue(x)
```

Now that we are tracking at the transfer point if any element in the transfer
was captured in a closure, this becomes an actual semantic issue since if we
track the transfer instruction that isn't reachable from the closure capture, we
will not become more pessimistic:

```swift
if boolValue {
  closure = { useInOut(&x) }
  transfer(x)
} else {
  transfer(x)
}

// Since we grab from the else block, sendableField is allowed to be accessed
// since we do not track that x was captured by reference in a closure.
x.sendableField
useValue(x)
```

To be truly safe, we need to emit both errors.

rdar://119048779
2023-12-01 13:53:57 -08:00

678 lines
26 KiB
C++

//===--- PartitionUtilsTest.cpp -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/PartitionUtils.h"
#include "gtest/gtest.h"
#include <array>
using namespace swift;
using namespace swift::PartitionPrimitives;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
struct Partition::PartitionTester {
const Partition &p;
PartitionTester(const Partition &p) : p(p) {}
unsigned getRegion(unsigned elt) const {
return unsigned(p.elementToRegionMap.at(Element(elt)));
}
};
namespace {
using PartitionTester = Partition::PartitionTester;
} // namespace
//===----------------------------------------------------------------------===//
// Tests
//===----------------------------------------------------------------------===//
// When we transfer we need a specific transfer instruction. We do not ever
// actually dereference the instruction, so just use some invalid ptr values so
// we can compare.
Operand *transferSingletons[5] = {
(Operand *)0xDEAD0000, (Operand *)0xFEAD0000, (Operand *)0xAEDF0000,
(Operand *)0xFEDA0000, (Operand *)0xFBDA0000,
};
SILInstruction *instSingletons[5] = {
(SILInstruction *)0xBEAD0000, (SILInstruction *)0xBEAD0000,
(SILInstruction *)0xBEDF0000, (SILInstruction *)0xBEDA0000,
(SILInstruction *)0xBBDA0000,
};
// This test tests that if a series of merges is split between two partitions
// p1 and p2, but also applied in its entirety to p3, then joining p1 and p2
// yields p3.
TEST(PartitionUtilsTest, TestMergeAndJoin) {
Partition p1;
Partition p2;
Partition p3;
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3))});
}
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::AssignFresh(Element(5)),
PartitionOp::AssignFresh(Element(6)),
PartitionOp::AssignFresh(Element(7)),
PartitionOp::AssignFresh(Element(0))});
}
{
PartitionOpEvaluator eval(p3, factory);
eval.apply({PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3)),
PartitionOp::AssignFresh(Element(4)),
PartitionOp::AssignFresh(Element(5))});
}
EXPECT_FALSE(Partition::equals(p1, p2));
EXPECT_FALSE(Partition::equals(p2, p3));
EXPECT_FALSE(Partition::equals(p1, p3));
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::AssignFresh(Element(4)),
PartitionOp::AssignFresh(Element(5)),
PartitionOp::AssignFresh(Element(6)),
PartitionOp::AssignFresh(Element(7)),
PartitionOp::AssignFresh(Element(8))});
}
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3)),
PartitionOp::AssignFresh(Element(4)),
PartitionOp::AssignFresh(Element(8))});
}
{
PartitionOpEvaluator eval(p3, factory);
eval.apply({PartitionOp::AssignFresh(Element(6)),
PartitionOp::AssignFresh(Element(7)),
PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(8))});
}
EXPECT_TRUE(Partition::equals(p1, p2));
EXPECT_TRUE(Partition::equals(p2, p3));
EXPECT_TRUE(Partition::equals(p1, p3));
auto expect_join_eq = [&]() {
Partition joined = Partition::join(p1, p2);
EXPECT_TRUE(Partition::equals(p3, joined));
};
auto apply_to_p1_and_p3 = [&](PartitionOp op) {
{
PartitionOpEvaluator eval(p1, factory);
eval.apply(op);
}
{
PartitionOpEvaluator eval(p3, factory);
eval.apply(op);
}
expect_join_eq();
};
auto apply_to_p2_and_p3 = [&](PartitionOp op) {
{
PartitionOpEvaluator eval(p2, factory);
eval.apply(op);
}
{
PartitionOpEvaluator eval(p3, factory);
eval.apply(op);
}
expect_join_eq();
};
apply_to_p1_and_p3(PartitionOp::Merge(Element(1), Element(2)));
apply_to_p2_and_p3(PartitionOp::Merge(Element(7), Element(8)));
apply_to_p1_and_p3(PartitionOp::Merge(Element(2), Element(7)));
apply_to_p2_and_p3(PartitionOp::Merge(Element(1), Element(3)));
apply_to_p1_and_p3(PartitionOp::Merge(Element(3), Element(4)));
EXPECT_FALSE(Partition::equals(p1, p2));
EXPECT_FALSE(Partition::equals(p2, p3));
EXPECT_FALSE(Partition::equals(p1, p3));
apply_to_p2_and_p3(PartitionOp::Merge(Element(2), Element(5)));
apply_to_p1_and_p3(PartitionOp::Merge(Element(5), Element(6)));
apply_to_p2_and_p3(PartitionOp::Merge(Element(1), Element(6)));
apply_to_p1_and_p3(PartitionOp::Merge(Element(2), Element(6)));
apply_to_p2_and_p3(PartitionOp::Merge(Element(3), Element(7)));
apply_to_p1_and_p3(PartitionOp::Merge(Element(7), Element(8)));
}
TEST(PartitionUtilsTest, Join1) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Element data1[] = {Element(0), Element(1), Element(2),
Element(3), Element(4), Element(5)};
Partition p1 = Partition::separateRegions(llvm::makeArrayRef(data1));
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::Assign(Element(0), Element(0)),
PartitionOp::Assign(Element(1), Element(0)),
PartitionOp::Assign(Element(2), Element(2)),
PartitionOp::Assign(Element(3), Element(3)),
PartitionOp::Assign(Element(4), Element(3)),
PartitionOp::Assign(Element(5), Element(2))});
}
Partition p2 = Partition::separateRegions(llvm::makeArrayRef(data1));
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::Assign(Element(0), Element(0)),
PartitionOp::Assign(Element(1), Element(0)),
PartitionOp::Assign(Element(2), Element(2)),
PartitionOp::Assign(Element(3), Element(3)),
PartitionOp::Assign(Element(4), Element(3)),
PartitionOp::Assign(Element(5), Element(5))});
}
auto result = Partition::join(p1, p2);
PartitionTester tester(result);
ASSERT_EQ(tester.getRegion(0), 0);
ASSERT_EQ(tester.getRegion(1), 0);
ASSERT_EQ(tester.getRegion(2), 2);
ASSERT_EQ(tester.getRegion(3), 3);
ASSERT_EQ(tester.getRegion(4), 3);
ASSERT_EQ(tester.getRegion(5), 2);
}
TEST(PartitionUtilsTest, Join2) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Element data1[] = {Element(0), Element(1), Element(2),
Element(3), Element(4), Element(5)};
Partition p1 = Partition::separateRegions(llvm::makeArrayRef(data1));
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::Assign(Element(0), Element(0)),
PartitionOp::Assign(Element(1), Element(0)),
PartitionOp::Assign(Element(2), Element(2)),
PartitionOp::Assign(Element(3), Element(3)),
PartitionOp::Assign(Element(4), Element(3)),
PartitionOp::Assign(Element(5), Element(2))});
}
Element data2[] = {Element(4), Element(5), Element(6),
Element(7), Element(8), Element(9)};
Partition p2 = Partition::separateRegions(llvm::makeArrayRef(data2));
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::Assign(Element(4), Element(4)),
PartitionOp::Assign(Element(5), Element(5)),
PartitionOp::Assign(Element(6), Element(4)),
PartitionOp::Assign(Element(7), Element(7)),
PartitionOp::Assign(Element(8), Element(7)),
PartitionOp::Assign(Element(9), Element(4))});
}
auto result = Partition::join(p1, p2);
PartitionTester tester(result);
ASSERT_EQ(tester.getRegion(0), 0);
ASSERT_EQ(tester.getRegion(1), 0);
ASSERT_EQ(tester.getRegion(2), 2);
ASSERT_EQ(tester.getRegion(3), 3);
ASSERT_EQ(tester.getRegion(4), 3);
ASSERT_EQ(tester.getRegion(5), 2);
ASSERT_EQ(tester.getRegion(6), 3);
ASSERT_EQ(tester.getRegion(7), 7);
ASSERT_EQ(tester.getRegion(8), 7);
ASSERT_EQ(tester.getRegion(9), 3);
}
TEST(PartitionUtilsTest, Join2Reversed) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Element data1[] = {Element(0), Element(1), Element(2),
Element(3), Element(4), Element(5)};
Partition p1 = Partition::separateRegions(llvm::makeArrayRef(data1));
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::Assign(Element(0), Element(0)),
PartitionOp::Assign(Element(1), Element(0)),
PartitionOp::Assign(Element(2), Element(2)),
PartitionOp::Assign(Element(3), Element(3)),
PartitionOp::Assign(Element(4), Element(3)),
PartitionOp::Assign(Element(5), Element(2))});
}
Element data2[] = {Element(4), Element(5), Element(6),
Element(7), Element(8), Element(9)};
Partition p2 = Partition::separateRegions(llvm::makeArrayRef(data2));
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::Assign(Element(4), Element(4)),
PartitionOp::Assign(Element(5), Element(5)),
PartitionOp::Assign(Element(6), Element(4)),
PartitionOp::Assign(Element(7), Element(7)),
PartitionOp::Assign(Element(8), Element(7)),
PartitionOp::Assign(Element(9), Element(4))});
}
auto result = Partition::join(p2, p1);
PartitionTester tester(result);
ASSERT_EQ(tester.getRegion(0), 0);
ASSERT_EQ(tester.getRegion(1), 0);
ASSERT_EQ(tester.getRegion(2), 2);
ASSERT_EQ(tester.getRegion(3), 3);
ASSERT_EQ(tester.getRegion(4), 3);
ASSERT_EQ(tester.getRegion(5), 2);
ASSERT_EQ(tester.getRegion(6), 3);
ASSERT_EQ(tester.getRegion(7), 7);
ASSERT_EQ(tester.getRegion(8), 7);
ASSERT_EQ(tester.getRegion(9), 3);
}
TEST(PartitionUtilsTest, JoinLarge) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Element data1[] = {
Element(0), Element(1), Element(2), Element(3), Element(4),
Element(5), Element(6), Element(7), Element(8), Element(9),
Element(10), Element(11), Element(12), Element(13), Element(14),
Element(15), Element(16), Element(17), Element(18), Element(19),
Element(20), Element(21), Element(22), Element(23), Element(24),
Element(25), Element(26), Element(27), Element(28), Element(29)};
Partition p1 = Partition::separateRegions(llvm::makeArrayRef(data1));
{
PartitionOpEvaluator eval(p1, factory);
eval.apply({PartitionOp::Assign(Element(0), Element(29)),
PartitionOp::Assign(Element(1), Element(17)),
PartitionOp::Assign(Element(2), Element(0)),
PartitionOp::Assign(Element(3), Element(12)),
PartitionOp::Assign(Element(4), Element(13)),
PartitionOp::Assign(Element(5), Element(9)),
PartitionOp::Assign(Element(6), Element(15)),
PartitionOp::Assign(Element(7), Element(27)),
PartitionOp::Assign(Element(8), Element(3)),
PartitionOp::Assign(Element(9), Element(3)),
PartitionOp::Assign(Element(10), Element(3)),
PartitionOp::Assign(Element(11), Element(21)),
PartitionOp::Assign(Element(12), Element(14)),
PartitionOp::Assign(Element(13), Element(25)),
PartitionOp::Assign(Element(14), Element(1)),
PartitionOp::Assign(Element(15), Element(25)),
PartitionOp::Assign(Element(16), Element(12)),
PartitionOp::Assign(Element(17), Element(3)),
PartitionOp::Assign(Element(18), Element(25)),
PartitionOp::Assign(Element(19), Element(13)),
PartitionOp::Assign(Element(20), Element(19)),
PartitionOp::Assign(Element(21), Element(7)),
PartitionOp::Assign(Element(22), Element(19)),
PartitionOp::Assign(Element(23), Element(27)),
PartitionOp::Assign(Element(24), Element(1)),
PartitionOp::Assign(Element(25), Element(9)),
PartitionOp::Assign(Element(26), Element(18)),
PartitionOp::Assign(Element(27), Element(29)),
PartitionOp::Assign(Element(28), Element(28)),
PartitionOp::Assign(Element(29), Element(13))});
}
Element data2[] = {
Element(15), Element(16), Element(17), Element(18), Element(19),
Element(20), Element(21), Element(22), Element(23), Element(24),
Element(25), Element(26), Element(27), Element(28), Element(29),
Element(30), Element(31), Element(32), Element(33), Element(34),
Element(35), Element(36), Element(37), Element(38), Element(39),
Element(40), Element(41), Element(42), Element(43), Element(44)};
Partition p2 = Partition::separateRegions(llvm::makeArrayRef(data2));
{
PartitionOpEvaluator eval(p2, factory);
eval.apply({PartitionOp::Assign(Element(15), Element(31)),
PartitionOp::Assign(Element(16), Element(34)),
PartitionOp::Assign(Element(17), Element(35)),
PartitionOp::Assign(Element(18), Element(41)),
PartitionOp::Assign(Element(19), Element(15)),
PartitionOp::Assign(Element(20), Element(32)),
PartitionOp::Assign(Element(21), Element(17)),
PartitionOp::Assign(Element(22), Element(31)),
PartitionOp::Assign(Element(23), Element(21)),
PartitionOp::Assign(Element(24), Element(33)),
PartitionOp::Assign(Element(25), Element(25)),
PartitionOp::Assign(Element(26), Element(31)),
PartitionOp::Assign(Element(27), Element(16)),
PartitionOp::Assign(Element(28), Element(35)),
PartitionOp::Assign(Element(29), Element(40)),
PartitionOp::Assign(Element(30), Element(33)),
PartitionOp::Assign(Element(31), Element(34)),
PartitionOp::Assign(Element(32), Element(22)),
PartitionOp::Assign(Element(33), Element(42)),
PartitionOp::Assign(Element(34), Element(37)),
PartitionOp::Assign(Element(35), Element(34)),
PartitionOp::Assign(Element(36), Element(18)),
PartitionOp::Assign(Element(37), Element(32)),
PartitionOp::Assign(Element(38), Element(22)),
PartitionOp::Assign(Element(39), Element(44)),
PartitionOp::Assign(Element(40), Element(20)),
PartitionOp::Assign(Element(41), Element(37)),
PartitionOp::Assign(Element(43), Element(29)),
PartitionOp::Assign(Element(44), Element(25))});
}
auto result = Partition::join(p1, p2);
PartitionTester tester(result);
ASSERT_EQ(tester.getRegion(0), 0);
ASSERT_EQ(tester.getRegion(1), 1);
ASSERT_EQ(tester.getRegion(2), 0);
ASSERT_EQ(tester.getRegion(3), 3);
ASSERT_EQ(tester.getRegion(4), 4);
ASSERT_EQ(tester.getRegion(5), 5);
ASSERT_EQ(tester.getRegion(6), 6);
ASSERT_EQ(tester.getRegion(7), 3);
ASSERT_EQ(tester.getRegion(8), 3);
ASSERT_EQ(tester.getRegion(9), 3);
ASSERT_EQ(tester.getRegion(10), 3);
ASSERT_EQ(tester.getRegion(11), 11);
ASSERT_EQ(tester.getRegion(12), 0);
ASSERT_EQ(tester.getRegion(13), 13);
ASSERT_EQ(tester.getRegion(14), 1);
ASSERT_EQ(tester.getRegion(15), 13);
ASSERT_EQ(tester.getRegion(16), 0);
ASSERT_EQ(tester.getRegion(17), 3);
ASSERT_EQ(tester.getRegion(18), 13);
ASSERT_EQ(tester.getRegion(19), 13);
ASSERT_EQ(tester.getRegion(20), 13);
ASSERT_EQ(tester.getRegion(21), 3);
ASSERT_EQ(tester.getRegion(22), 13);
ASSERT_EQ(tester.getRegion(23), 3);
ASSERT_EQ(tester.getRegion(24), 1);
ASSERT_EQ(tester.getRegion(25), 3);
ASSERT_EQ(tester.getRegion(26), 13);
ASSERT_EQ(tester.getRegion(27), 0);
ASSERT_EQ(tester.getRegion(28), 3);
ASSERT_EQ(tester.getRegion(29), 13);
ASSERT_EQ(tester.getRegion(30), 1);
ASSERT_EQ(tester.getRegion(31), 0);
ASSERT_EQ(tester.getRegion(32), 13);
ASSERT_EQ(tester.getRegion(33), 33);
ASSERT_EQ(tester.getRegion(34), 34);
ASSERT_EQ(tester.getRegion(35), 34);
ASSERT_EQ(tester.getRegion(36), 13);
ASSERT_EQ(tester.getRegion(37), 13);
ASSERT_EQ(tester.getRegion(38), 13);
ASSERT_EQ(tester.getRegion(39), 39);
ASSERT_EQ(tester.getRegion(40), 13);
ASSERT_EQ(tester.getRegion(41), 13);
ASSERT_EQ(tester.getRegion(42), 33);
ASSERT_EQ(tester.getRegion(43), 13);
ASSERT_EQ(tester.getRegion(44), 3);
}
// This test tests the semantics of assignment.
TEST(PartitionUtilsTest, TestAssign) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Partition p1;
Partition p2;
Partition p3;
PartitionOpEvaluator evalP1(p1, factory);
evalP1.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3))});
PartitionOpEvaluator evalP2(p2, factory);
evalP2.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3))});
PartitionOpEvaluator evalP3(p3, factory);
evalP3.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3))});
// expected: p1: ((Element(0)) (Element(1)) (Element(2)) (Element(3))), p2:
// ((Element(0)) (Element(1)) (Element(2)) (Element(3))), p3: ((Element(0))
// (Element(1)) (Element(2)) (Element(3)))
EXPECT_TRUE(Partition::equals(p1, p2));
EXPECT_TRUE(Partition::equals(p2, p3));
EXPECT_TRUE(Partition::equals(p1, p3));
evalP1.apply(PartitionOp::Assign(Element(0), Element(1)));
evalP2.apply(PartitionOp::Assign(Element(1), Element(0)));
evalP3.apply(PartitionOp::Assign(Element(2), Element(1)));
// expected: p1: ((0 1) (Element(2)) (Element(3))), p2: ((0 1) (Element(2))
// (Element(3))), p3: ((Element(0)) (1 2) (Element(3)))
EXPECT_TRUE(Partition::equals(p1, p2));
EXPECT_FALSE(Partition::equals(p2, p3));
EXPECT_FALSE(Partition::equals(p1, p3));
evalP1.apply(PartitionOp::Assign(Element(2), Element(0)));
evalP2.apply(PartitionOp::Assign(Element(2), Element(1)));
evalP3.apply(PartitionOp::Assign(Element(0), Element(2)));
// expected: p1: ((0 1 2) (Element(3))), p2: ((0 1 2) (Element(3))), p3: ((0 1
// 2) (Element(3)))
EXPECT_TRUE(Partition::equals(p1, p2));
EXPECT_TRUE(Partition::equals(p2, p3));
EXPECT_TRUE(Partition::equals(p1, p3));
evalP1.apply(PartitionOp::Assign(Element(0), Element(3)));
evalP2.apply(PartitionOp::Assign(Element(1), Element(3)));
evalP3.apply(PartitionOp::Assign(Element(2), Element(3)));
// expected: p1: ((1 2) (0 3)), p2: ((0 2) (1 3)), p3: ((0 1) (2 3))
EXPECT_FALSE(Partition::equals(p1, p2));
EXPECT_FALSE(Partition::equals(p2, p3));
EXPECT_FALSE(Partition::equals(p1, p3));
evalP1.apply(PartitionOp::Assign(Element(1), Element(0)));
evalP2.apply(PartitionOp::Assign(Element(2), Element(1)));
evalP3.apply(PartitionOp::Assign(Element(0), Element(2)));
// expected: p1: ((Element(2)) (0 1 3)), p2: ((Element(0)) (1 2 3)), p3:
// ((Element(1)) (0 2 3))
EXPECT_FALSE(Partition::equals(p1, p2));
EXPECT_FALSE(Partition::equals(p2, p3));
EXPECT_FALSE(Partition::equals(p1, p3));
evalP1.apply(PartitionOp::Assign(Element(2), Element(3)));
evalP2.apply(PartitionOp::Assign(Element(0), Element(3)));
evalP3.apply(PartitionOp::Assign(Element(1), Element(3)));
// expected: p1: ((0 1 2 3)), p2: ((0 1 2 3)), p3: ((0 1 2 3))
EXPECT_TRUE(Partition::equals(p1, p2));
EXPECT_TRUE(Partition::equals(p2, p3));
EXPECT_TRUE(Partition::equals(p1, p3));
}
// This test tests that consumption consumes entire regions as expected
TEST(PartitionUtilsTest, TestConsumeAndRequire) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Partition p;
{
PartitionOpEvaluator eval(p, factory);
eval.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::AssignFresh(Element(1)),
PartitionOp::AssignFresh(Element(2)),
PartitionOp::AssignFresh(Element(3)),
PartitionOp::AssignFresh(Element(4)),
PartitionOp::AssignFresh(Element(5)),
PartitionOp::AssignFresh(Element(6)),
PartitionOp::AssignFresh(Element(7)),
PartitionOp::AssignFresh(Element(8)),
PartitionOp::AssignFresh(Element(9)),
PartitionOp::AssignFresh(Element(10)),
PartitionOp::AssignFresh(Element(11)),
PartitionOp::Assign(Element(1), Element(0)),
PartitionOp::Assign(Element(2), Element(1)),
PartitionOp::Assign(Element(4), Element(3)),
PartitionOp::Assign(Element(5), Element(4)),
PartitionOp::Assign(Element(7), Element(6)),
PartitionOp::Assign(Element(9), Element(8)),
// expected: p: ((0 1 2) (3 4 5) (6 7) (8 9) (Element(10))
// (Element(11)))
PartitionOp::Transfer(Element(2), transferSingletons[0]),
PartitionOp::Transfer(Element(7), transferSingletons[1]),
PartitionOp::Transfer(Element(10), transferSingletons[2])});
}
// expected: p: ({0 1 2 6 7 10} (3 4 5) (8 9) (Element(11)))
auto never_called = [](const PartitionOp &, unsigned, TransferringOperand) {
EXPECT_TRUE(false);
};
int times_called = 0;
auto increment_times_called = [&](const PartitionOp &, unsigned,
TransferringOperand) { times_called++; };
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = increment_times_called;
eval.apply({PartitionOp::Require(Element(0)),
PartitionOp::Require(Element(1)),
PartitionOp::Require(Element(2))});
}
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = never_called;
eval.apply({PartitionOp::Require(Element(3)),
PartitionOp::Require(Element(4)),
PartitionOp::Require(Element(5))});
}
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = increment_times_called;
eval.apply(
{PartitionOp::Require(Element(6)), PartitionOp::Require(Element(7))});
}
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = never_called;
eval.apply(
{PartitionOp::Require(Element(8)), PartitionOp::Require(Element(9))});
}
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = increment_times_called;
eval.apply(PartitionOp::Require(Element(10)));
}
{
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = never_called;
eval.apply(PartitionOp::Require(Element(11)));
}
EXPECT_TRUE(times_called == 6);
}
// This test tests that the copy constructor is usable to create fresh
// copies of partitions
TEST(PartitionUtilsTest, TestCopyConstructor) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Partition p1;
{
PartitionOpEvaluator eval(p1, factory);
eval.apply(PartitionOp::AssignFresh(Element(0)));
}
// Make copy.
Partition p2 = p1;
// Change p1 again.
{
PartitionOpEvaluator eval(p1, factory);
eval.apply(PartitionOp::Transfer(Element(0), transferSingletons[0]));
}
{
bool failure = false;
PartitionOpEvaluator eval(p1, factory);
eval.failureCallback = [&](const PartitionOp &, unsigned,
TransferringOperand) { failure = true; };
eval.apply(PartitionOp::Require(Element(0)));
EXPECT_TRUE(failure);
}
{
PartitionOpEvaluator eval(p2, factory);
eval.failureCallback = [](const PartitionOp &, unsigned,
TransferringOperand) { EXPECT_TRUE(false); };
eval.apply(PartitionOp::Require(Element(0)));
}
}
TEST(PartitionUtilsTest, TestUndoTransfer) {
llvm::BumpPtrAllocator allocator;
Partition::TransferringOperandSetFactory factory(allocator);
Partition p;
PartitionOpEvaluator eval(p, factory);
eval.failureCallback = [&](const PartitionOp &, unsigned,
TransferringOperand) { EXPECT_TRUE(false); };
// Shouldn't error on this.
eval.apply({PartitionOp::AssignFresh(Element(0)),
PartitionOp::Transfer(Element(0), transferSingletons[0]),
PartitionOp::UndoTransfer(Element(0), instSingletons[0]),
PartitionOp::Require(Element(0), instSingletons[0])});
}