mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
* [Runtime] Switch MetadataCache to ConcurrentReadableHashMap. Use StableAddressConcurrentReadableHashMap. MetadataCacheEntry's methods for awaiting a particular state assume a stable address, where it will repeatedly examine `this` in a loop while waiting on a condition variable, so we give it a stable address to accommodate that. Some of these caches may be able to tolerate unstable addresses if this code is changed to perform the necessary table lookup each time through the loop instead. Some of them store metadata inline and we assume metadata never moves, so they'll have to stay this way. * Have StableAddressConcurrentReadableHashMap remember the last found entry and check that before doing a more expensive lookup. * Make a SmallMutex type that stores the mutex data out of line, and use it to get LockingConcurrentMapStorage to fit into the available space on 32-bit. rdar://problem/70220660
868 lines
25 KiB
C++
868 lines
25 KiB
C++
//===--- Mutex.cpp - Mutex and ReadWriteLock Tests ------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Runtime/Mutex.h"
|
|
#include "gtest/gtest.h"
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <map>
|
|
#include <random>
|
|
|
|
#include "ThreadingHelpers.h"
|
|
|
|
using namespace swift;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
template <typename M> void basicLockableThreaded(M &mutex) {
|
|
int count1 = 0;
|
|
int count2 = 0;
|
|
|
|
threadedExecute(10, [&](int) {
|
|
for (int j = 0; j < 50; ++j) {
|
|
mutex.lock();
|
|
auto count = count2;
|
|
count1++;
|
|
count2 = count + 1;
|
|
mutex.unlock();
|
|
}
|
|
});
|
|
|
|
ASSERT_EQ(count1, 500);
|
|
ASSERT_EQ(count2, 500);
|
|
}
|
|
|
|
TEST(MutexTest, BasicLockableThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
basicLockableThreaded(mutex);
|
|
}
|
|
|
|
TEST(StaticMutexTest, BasicLockableThreaded) {
|
|
static StaticMutex mutex;
|
|
basicLockableThreaded(mutex);
|
|
}
|
|
|
|
TEST(StaticUnsafeMutexTest, BasicLockableThreaded) {
|
|
static StaticUnsafeMutex mutex;
|
|
basicLockableThreaded(mutex);
|
|
}
|
|
|
|
TEST(SmallMutex, BasicLockableThreaded) {
|
|
SmallMutex mutex;
|
|
basicLockableThreaded(mutex);
|
|
}
|
|
|
|
template <typename M> void lockableThreaded(M &mutex) {
|
|
mutex.lock();
|
|
threadedExecute(5, [&](int) { ASSERT_FALSE(mutex.try_lock()); });
|
|
mutex.unlock();
|
|
threadedExecute(1, [&](int) {
|
|
ASSERT_TRUE(mutex.try_lock());
|
|
mutex.unlock();
|
|
});
|
|
|
|
int count1 = 0;
|
|
int count2 = 0;
|
|
threadedExecute(10, [&](int) {
|
|
for (int j = 0; j < 50; ++j) {
|
|
if (mutex.try_lock()) {
|
|
auto count = count2;
|
|
count1++;
|
|
count2 = count + 1;
|
|
mutex.unlock();
|
|
} else {
|
|
j--;
|
|
}
|
|
}
|
|
});
|
|
|
|
ASSERT_EQ(count1, 500);
|
|
ASSERT_EQ(count2, 500);
|
|
}
|
|
|
|
TEST(MutexTest, LockableThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
lockableThreaded(mutex);
|
|
}
|
|
|
|
TEST(StaticMutexTest, LockableThreaded) {
|
|
static StaticMutex Mutex;
|
|
lockableThreaded(Mutex);
|
|
}
|
|
|
|
TEST(SmallMutexTest, LockableThreaded) {
|
|
SmallMutex Mutex;
|
|
lockableThreaded(Mutex);
|
|
}
|
|
|
|
template <typename SL, typename M> void scopedLockThreaded(M &mutex) {
|
|
int count1 = 0;
|
|
int count2 = 0;
|
|
|
|
threadedExecute(10, [&](int) {
|
|
for (int j = 0; j < 50; ++j) {
|
|
SL guard(mutex);
|
|
auto count = count2;
|
|
count1++;
|
|
count2 = count + 1;
|
|
}
|
|
});
|
|
|
|
ASSERT_EQ(count1, 500);
|
|
ASSERT_EQ(count2, 500);
|
|
}
|
|
|
|
TEST(MutexTest, ScopedLockThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
scopedLockThreaded<ScopedLock>(mutex);
|
|
}
|
|
|
|
TEST(StaticMutexTest, ScopedLockThreaded) {
|
|
static StaticMutex Mutex;
|
|
scopedLockThreaded<StaticScopedLock>(Mutex);
|
|
}
|
|
|
|
TEST(SmallMutexTest, ScopedLockThreaded) {
|
|
SmallMutex mutex(/* checked = */ true);
|
|
scopedLockThreaded<ScopedLockT<SmallMutex, false>>(mutex);
|
|
}
|
|
|
|
template <typename SL, typename SU, typename M>
|
|
void scopedUnlockUnderScopedLockThreaded(M &mutex) {
|
|
int count1 = 0;
|
|
int count2 = 0;
|
|
int badCount = 0;
|
|
|
|
threadedExecute(10, [&](int) {
|
|
for (int j = 0; j < 50; ++j) {
|
|
SL guard(mutex);
|
|
{
|
|
SU unguard(mutex);
|
|
badCount++;
|
|
}
|
|
auto count = count2;
|
|
count1++;
|
|
count2 = count + 1;
|
|
}
|
|
});
|
|
|
|
ASSERT_EQ(count1, 500);
|
|
ASSERT_EQ(count2, 500);
|
|
}
|
|
|
|
TEST(MutexTest, ScopedUnlockUnderScopedLockThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
scopedUnlockUnderScopedLockThreaded<ScopedLock, ScopedUnlock>(mutex);
|
|
}
|
|
|
|
TEST(StaticMutexTest, ScopedUnlockUnderScopedLockThreaded) {
|
|
static StaticMutex Mutex;
|
|
scopedUnlockUnderScopedLockThreaded<StaticScopedLock, StaticScopedUnlock>(
|
|
Mutex);
|
|
}
|
|
|
|
TEST(SmallMutexTest, ScopedUnlockUnderScopedLockThreaded) {
|
|
SmallMutex mutex(/* checked = */ true);
|
|
scopedUnlockUnderScopedLockThreaded<ScopedLockT<SmallMutex, false>,
|
|
ScopedLockT<SmallMutex, true>>(mutex);
|
|
}
|
|
|
|
template <typename M> void criticalSectionThreaded(M &mutex) {
|
|
int count1 = 0;
|
|
int count2 = 0;
|
|
|
|
threadedExecute(10, [&](int) {
|
|
for (int j = 0; j < 50; ++j) {
|
|
mutex.withLock([&] {
|
|
auto count = count2;
|
|
count1++;
|
|
count2 = count + 1;
|
|
});
|
|
}
|
|
});
|
|
|
|
ASSERT_EQ(count1, 500);
|
|
ASSERT_EQ(count2, 500);
|
|
}
|
|
|
|
TEST(MutexTest, CriticalSectionThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
criticalSectionThreaded(mutex);
|
|
}
|
|
|
|
TEST(StaticMutexTest, CriticalSectionThreaded) {
|
|
static StaticMutex Mutex;
|
|
criticalSectionThreaded(Mutex);
|
|
}
|
|
|
|
template <typename SL, typename SU, typename M, typename C>
|
|
void conditionThreaded(M &mutex, C &condition) {
|
|
bool doneCondition = false;
|
|
int count = 200;
|
|
|
|
threadedExecute(
|
|
mutex, condition, doneCondition,
|
|
[&](int index) {
|
|
SL guard(mutex);
|
|
while (true) {
|
|
if (count > 50) {
|
|
count -= 1;
|
|
{
|
|
// To give other consumers a chance.
|
|
SU unguard(mutex);
|
|
}
|
|
if (trace)
|
|
printf("Consumer[%d] count = %d.\n", index, count);
|
|
continue; // keep trying to consume before waiting again.
|
|
} else if (doneCondition && count == 50) {
|
|
if (trace)
|
|
printf("Consumer[%d] count == %d and done!\n", index, count);
|
|
break;
|
|
}
|
|
mutex.wait(condition);
|
|
}
|
|
},
|
|
[&](int index) {
|
|
for (int j = 0; j < 10; j++) {
|
|
mutex.lock();
|
|
count += index;
|
|
if (trace)
|
|
printf("Producer[%d] count = %d.\n", index, count);
|
|
condition.notifyOne();
|
|
mutex.unlock();
|
|
}
|
|
if (trace)
|
|
printf("Producer[%d] done!\n", index);
|
|
});
|
|
|
|
ASSERT_EQ(count, 50);
|
|
}
|
|
|
|
TEST(MutexTest, ConditionThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
ConditionVariable condition;
|
|
conditionThreaded<ScopedLock, ScopedUnlock>(mutex, condition);
|
|
}
|
|
|
|
TEST(StaticMutexTest, ConditionThreaded) {
|
|
static StaticMutex mutex;
|
|
static StaticConditionVariable condition;
|
|
conditionThreaded<StaticScopedLock, StaticScopedUnlock>(mutex, condition);
|
|
}
|
|
|
|
template <typename SU, typename M, typename C>
|
|
void conditionLockOrWaitLockThenNotifyThreaded(M &mutex, C &condition) {
|
|
bool doneCondition = false;
|
|
int count = 200;
|
|
|
|
threadedExecute(
|
|
mutex, condition, doneCondition,
|
|
[&](int index) {
|
|
mutex.withLockOrWait(condition, [&, index] {
|
|
while (true) {
|
|
if (count > 50) {
|
|
count -= 1;
|
|
{
|
|
// To give other consumers a chance.
|
|
SU unguard(mutex);
|
|
}
|
|
if (trace)
|
|
printf("Consumer[%d] count = %d.\n", index, count);
|
|
continue; // keep trying to consume before waiting again.
|
|
} else if (doneCondition && count == 50) {
|
|
if (trace)
|
|
printf("Consumer[%d] count == %d and done!\n", index, count);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
});
|
|
},
|
|
[&](int index) {
|
|
for (int j = 0; j < 10; j++) {
|
|
mutex.withLockThenNotifyOne(condition, [&, index] {
|
|
count += index;
|
|
if (trace)
|
|
printf("Producer[%d] count = %d.\n", index, count);
|
|
});
|
|
}
|
|
if (trace)
|
|
printf("Producer[%d] done!\n", index);
|
|
});
|
|
|
|
ASSERT_EQ(count, 50);
|
|
}
|
|
|
|
TEST(MutexTest, ConditionLockOrWaitLockThenNotifyThreaded) {
|
|
Mutex mutex(/* checked = */ true);
|
|
ConditionVariable condition;
|
|
conditionLockOrWaitLockThenNotifyThreaded<ScopedUnlock>(mutex, condition);
|
|
}
|
|
|
|
TEST(StaticMutexTest, ConditionLockOrWaitLockThenNotifyThreaded) {
|
|
static StaticMutex mutex;
|
|
static StaticConditionVariable condition;
|
|
conditionLockOrWaitLockThenNotifyThreaded<StaticScopedUnlock>(mutex,
|
|
condition);
|
|
}
|
|
|
|
template <typename SRL, bool Locking, typename RW>
|
|
void scopedReadThreaded(RW &lock) {
|
|
const int threadCount = 10;
|
|
|
|
std::set<int> writerHistory;
|
|
std::vector<std::set<int>> readerHistory;
|
|
readerHistory.assign(threadCount, std::set<int>());
|
|
|
|
int protectedValue = 0;
|
|
writerHistory.insert(protectedValue);
|
|
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
if (Locking) {
|
|
for (int i = 0; i < 50; ++i) {
|
|
{
|
|
SRL guard(lock);
|
|
readerHistory[index].insert(protectedValue);
|
|
}
|
|
std::this_thread::yield();
|
|
}
|
|
} else {
|
|
lock.readLock();
|
|
for (int i = 0; i < 50; ++i) {
|
|
readerHistory[index].insert(protectedValue);
|
|
|
|
{
|
|
SRL unguard(lock);
|
|
std::this_thread::yield();
|
|
}
|
|
}
|
|
lock.readUnlock();
|
|
}
|
|
},
|
|
[&] {
|
|
for (int i = 0; i < 25; ++i) {
|
|
lock.writeLock();
|
|
protectedValue += i;
|
|
writerHistory.insert(protectedValue);
|
|
lock.writeUnlock();
|
|
}
|
|
});
|
|
|
|
for (auto &history : readerHistory) {
|
|
for (auto value : history) {
|
|
ASSERT_EQ(writerHistory.count(value), 1U);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ScopedReadLockThreaded) {
|
|
ReadWriteLock lock;
|
|
scopedReadThreaded<ScopedReadLock, true>(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ScopedReadLockThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
scopedReadThreaded<StaticScopedReadLock, true>(lock);
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ScopedReadUnlockThreaded) {
|
|
ReadWriteLock lock;
|
|
scopedReadThreaded<ScopedReadUnlock, false>(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ScopedReadUnlockThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
scopedReadThreaded<StaticScopedReadUnlock, false>(lock);
|
|
}
|
|
|
|
template <typename SWL, bool Locking, typename RW>
|
|
void scopedWriteLockThreaded(RW &lock) {
|
|
const int threadCount = 10;
|
|
|
|
std::set<int> readerHistory;
|
|
std::vector<std::set<int>> writerHistory;
|
|
writerHistory.assign(threadCount, std::set<int>());
|
|
|
|
int protectedValue = 0;
|
|
readerHistory.insert(protectedValue);
|
|
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
if (Locking) {
|
|
for (int i = 0; i < 20; ++i) {
|
|
{
|
|
SWL guard(lock);
|
|
protectedValue += index * i;
|
|
writerHistory[index].insert(protectedValue);
|
|
}
|
|
std::this_thread::yield();
|
|
}
|
|
} else {
|
|
lock.writeLock();
|
|
for (int i = 0; i < 20; ++i) {
|
|
protectedValue += index * i;
|
|
writerHistory[index].insert(protectedValue);
|
|
{
|
|
SWL unguard(lock);
|
|
std::this_thread::yield();
|
|
}
|
|
}
|
|
lock.writeUnlock();
|
|
}
|
|
},
|
|
[&] {
|
|
for (int i = 0; i < 100; ++i) {
|
|
lock.readLock();
|
|
readerHistory.insert(protectedValue);
|
|
lock.readUnlock();
|
|
}
|
|
});
|
|
|
|
std::set<int> mergedHistory;
|
|
for (auto &history : writerHistory) {
|
|
mergedHistory.insert(history.begin(), history.end());
|
|
}
|
|
|
|
for (auto value : readerHistory) {
|
|
ASSERT_EQ(mergedHistory.count(value), 1U);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ScopedWriteLockThreaded) {
|
|
ReadWriteLock lock;
|
|
scopedWriteLockThreaded<ScopedWriteLock, true>(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ScopedWriteLockThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
scopedWriteLockThreaded<StaticScopedWriteLock, true>(lock);
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ScopedWriteUnlockThreaded) {
|
|
ReadWriteLock lock;
|
|
scopedWriteLockThreaded<ScopedWriteUnlock, false>(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ScopedWriteUnlockThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
scopedWriteLockThreaded<StaticScopedWriteUnlock, false>(lock);
|
|
}
|
|
|
|
template <typename RW> void readLockWhileReadLockedThreaded(RW &lock) {
|
|
lock.readLock();
|
|
|
|
const int threadCount = 10;
|
|
|
|
std::atomic<bool> results[threadCount] = {};
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
lock.withReadLock([&] {
|
|
results[index] = true;
|
|
std::this_thread::sleep_for(
|
|
std::chrono::milliseconds(5));
|
|
});
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
});
|
|
|
|
lock.readUnlock();
|
|
|
|
for (auto &result : results) {
|
|
ASSERT_TRUE(result);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ReadLockWhileReadLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
readLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ReadLockWhileReadLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
readLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void readLockWhileWriteLockedThreaded(RW &lock) {
|
|
lock.writeLock();
|
|
|
|
const int threadCount = 10;
|
|
|
|
std::atomic<int> results[threadCount] = {};
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
lock.withReadLock([&] {
|
|
results[index] += 1;
|
|
std::this_thread::sleep_for(
|
|
std::chrono::milliseconds(5));
|
|
});
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
lock.writeUnlock();
|
|
});
|
|
|
|
for (auto &result : results) {
|
|
ASSERT_EQ(result, 1);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ReadLockWhileWriteLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
readLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ReadLockWhileWriteLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
readLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void writeLockWhileReadLockedThreaded(RW &lock) {
|
|
lock.readLock();
|
|
|
|
const int threadCount = 10;
|
|
|
|
std::atomic<int> results[threadCount] = {};
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
lock.withWriteLock([&] {
|
|
results[index] += 1;
|
|
std::this_thread::sleep_for(
|
|
std::chrono::milliseconds(5));
|
|
});
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
lock.readUnlock();
|
|
});
|
|
|
|
for (auto &result : results) {
|
|
ASSERT_EQ(result, 1);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, WriteLockWhileReadLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
writeLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, WriteLockWhileReadLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
writeLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void writeLockWhileWriteLockedThreaded(RW &lock) {
|
|
lock.writeLock();
|
|
|
|
const int threadCount = 10;
|
|
|
|
std::atomic<int> results[threadCount] = {};
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
lock.withWriteLock([&] {
|
|
results[index] += 1;
|
|
std::this_thread::sleep_for(
|
|
std::chrono::milliseconds(5));
|
|
});
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
lock.writeUnlock();
|
|
});
|
|
|
|
for (auto &result : results) {
|
|
ASSERT_EQ(result, 1);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, WriteLockWhileWriteLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
writeLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, WriteLockWhileWriteLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
writeLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void tryReadLockWhileWriteLockedThreaded(RW &lock) {
|
|
lock.writeLock();
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(10,
|
|
[&](int) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
ASSERT_FALSE(lock.try_readLock());
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
});
|
|
|
|
lock.writeUnlock();
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, TryReadLockWhileWriteLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
tryReadLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, TryReadLockWhileWriteLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
tryReadLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void tryReadLockWhileReadLockedThreaded(RW &lock) {
|
|
lock.readLock();
|
|
|
|
const int threadCount = 10;
|
|
|
|
std::atomic<bool> results[threadCount] = {};
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(threadCount,
|
|
[&](int index) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
ASSERT_TRUE(lock.try_readLock());
|
|
results[index] = true;
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
|
lock.readUnlock();
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
});
|
|
|
|
lock.readUnlock();
|
|
|
|
for (auto &result : results) {
|
|
ASSERT_TRUE(result);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, TryReadLockWhileReadLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
tryReadLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, TryReadLockWhileReadLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
tryReadLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void tryWriteLockWhileWriteLockedThreaded(RW &lock) {
|
|
lock.writeLock();
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(10,
|
|
[&](int) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
ASSERT_FALSE(lock.try_writeLock());
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
});
|
|
|
|
lock.writeUnlock();
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, TryWriteLockWhileWriteLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
tryWriteLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, TryWriteLockWhileWriteLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
tryWriteLockWhileWriteLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void tryWriteLockWhileReadLockedThreaded(RW &lock) {
|
|
lock.readLock();
|
|
|
|
std::atomic<bool> done(false);
|
|
threadedExecute(10,
|
|
[&](int) {
|
|
// Always perform at least one iteration of this loop to
|
|
// avoid spurious failures if this thread is slow to run.
|
|
do {
|
|
ASSERT_FALSE(lock.try_writeLock());
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
} while (!done);
|
|
},
|
|
[&] {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
done = true;
|
|
});
|
|
|
|
lock.readUnlock();
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, TryWriteLockWhileReadLockedThreaded) {
|
|
ReadWriteLock lock;
|
|
tryWriteLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, TryWriteLockWhileReadLockedThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
tryWriteLockWhileReadLockedThreaded(lock);
|
|
}
|
|
|
|
template <typename RW> void readWriteLockCacheExampleThreaded(RW &lock) {
|
|
std::map<uint8_t, uint32_t> cache;
|
|
std::vector<std::thread> workers;
|
|
std::vector<std::set<uint8_t>> workerHistory;
|
|
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
std::uniform_int_distribution<> dis(0, UINT8_MAX);
|
|
|
|
workerHistory.push_back(std::set<uint8_t>());
|
|
for (int i = 0; i < 16; i++) {
|
|
uint8_t key = dis(gen);
|
|
cache[key] = 0;
|
|
workerHistory[0].insert(key);
|
|
|
|
if (trace)
|
|
printf("WarmUp create for key = %d, value = %d.\n", key, 0);
|
|
}
|
|
|
|
// Block the threads we are about to create.
|
|
const int threadCount = 20;
|
|
std::atomic<bool> spinWait(true);
|
|
std::atomic<int> readyCount(0);
|
|
|
|
for (int i = 1; i <= threadCount; ++i) {
|
|
workerHistory.push_back(std::set<uint8_t>());
|
|
workers.push_back(std::thread([&, i] {
|
|
readyCount++;
|
|
|
|
// Block ourself until we are released to start working.
|
|
while (spinWait) {
|
|
std::this_thread::sleep_for(std::chrono::microseconds(10));
|
|
}
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
|
|
for (int j = 0; j < 50; j++) {
|
|
uint8_t key = dis(gen);
|
|
bool found = false;
|
|
|
|
auto cacheLookupSection = [&] {
|
|
auto value = cache.find(key);
|
|
if (value == cache.end()) {
|
|
if (trace)
|
|
printf("Worker[%d] miss for key = %d.\n", i, key);
|
|
found = false; // cache miss, need to grab write lock
|
|
}
|
|
if (trace)
|
|
printf("Worker[%d] HIT for key = %d, value = %d.\n", i, key,
|
|
value->second);
|
|
found = true; // cache hit, no need to grab write lock
|
|
};
|
|
|
|
lock.withReadLock(cacheLookupSection);
|
|
if (found) {
|
|
continue;
|
|
}
|
|
|
|
lock.withWriteLock([&] {
|
|
cacheLookupSection();
|
|
if (!found) {
|
|
if (trace)
|
|
printf("Worker[%d] create for key = %d, value = %d.\n", i, key,
|
|
i);
|
|
cache[key] = i;
|
|
workerHistory[i].insert(key);
|
|
}
|
|
});
|
|
}
|
|
|
|
if (trace)
|
|
printf("### Worker[%d] thread exiting.\n", i);
|
|
}));
|
|
}
|
|
|
|
while (readyCount < threadCount) {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
}
|
|
|
|
// Allow our threads to fight for the lock.
|
|
spinWait = false;
|
|
|
|
// Wait until all of our workers threads have finished.
|
|
for (auto &thread : workers) {
|
|
thread.join();
|
|
}
|
|
|
|
for (auto &entry : cache) {
|
|
if (trace)
|
|
printf("### Cache dump key = %d, value = %d.\n", entry.first,
|
|
entry.second);
|
|
ASSERT_EQ(workerHistory[entry.second].count(entry.first), 1U);
|
|
}
|
|
}
|
|
|
|
TEST(ReadWriteLockTest, ReadWriteLockCacheExampleThreaded) {
|
|
ReadWriteLock lock;
|
|
readWriteLockCacheExampleThreaded(lock);
|
|
}
|
|
|
|
TEST(StaticReadWriteLockTest, ReadWriteLockCacheExampleThreaded) {
|
|
static StaticReadWriteLock lock;
|
|
readWriteLockCacheExampleThreaded(lock);
|
|
}
|