mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
360 lines
13 KiB
C++
360 lines
13 KiB
C++
//===--- ConstantPropagation.cpp - Promote alloc_box to alloc_stack ------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "constant-propagation"
|
|
|
|
#include "swift/AST/Builtins.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/Diagnostics.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/Subsystems.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumInstFolded, "Number of constant folded instructions");
|
|
|
|
template<typename...T, typename...U>
|
|
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
|
|
U &&...args) {
|
|
Context.Diags.diagnose(loc,
|
|
diag, std::forward<U>(args)...);
|
|
}
|
|
|
|
static SILInstruction *constantFoldIntrinsic(ApplyInst *AI,
|
|
llvm::Intrinsic::ID ID,
|
|
SILModule &M) {
|
|
OperandValueArrayRef Args = AI->getArguments();
|
|
|
|
if (Args.size() == 2) {
|
|
// Check if both arguments are literals.
|
|
if (IntegerLiteralInst *Op1 = dyn_cast<IntegerLiteralInst>(Args[0])) {
|
|
if (IntegerLiteralInst *Op2 = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
|
|
switch (ID) {
|
|
default: break;
|
|
case llvm::Intrinsic::sadd_with_overflow:
|
|
case llvm::Intrinsic::uadd_with_overflow:
|
|
case llvm::Intrinsic::ssub_with_overflow:
|
|
case llvm::Intrinsic::usub_with_overflow:
|
|
case llvm::Intrinsic::smul_with_overflow:
|
|
case llvm::Intrinsic::umul_with_overflow: {
|
|
// Handle arithmetic intrinsics with overflow.
|
|
// First, Calculate the result.
|
|
APInt Res;
|
|
bool Overflow;
|
|
switch (ID) {
|
|
default: llvm_unreachable("Invalid case");
|
|
case llvm::Intrinsic::sadd_with_overflow:
|
|
Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
case llvm::Intrinsic::uadd_with_overflow:
|
|
Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
case llvm::Intrinsic::ssub_with_overflow:
|
|
Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
case llvm::Intrinsic::usub_with_overflow:
|
|
Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
case llvm::Intrinsic::smul_with_overflow:
|
|
Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
case llvm::Intrinsic::umul_with_overflow:
|
|
Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
|
|
break;
|
|
}
|
|
|
|
// Get the SIL subtypes of the returned tuple type.
|
|
SILType FuncResType = AI->getFunctionTypeInfo(M)->getResult().getSILType();
|
|
TupleType *T = FuncResType.castTo<TupleType>();
|
|
assert(T->getNumElements() == 2);
|
|
SILType ResTy1 =
|
|
SILType::getPrimitiveType(CanType(T->getElementType(0)),
|
|
SILValueCategory::Object);
|
|
SILType ResTy2 =
|
|
SILType::getPrimitiveType(CanType(T->getElementType(1)),
|
|
SILValueCategory::Object);
|
|
|
|
// Construct the folded instruction - a tuple of two literals, the
|
|
// result and overflow.
|
|
SILBuilder B(AI);
|
|
SILValue Result[] = {
|
|
B.createIntegerLiteral(AI->getLoc(), ResTy1, Res),
|
|
B.createIntegerLiteral(AI->getLoc(), ResTy2, Overflow)
|
|
};
|
|
return B.createTuple(AI->getLoc(), FuncResType, Result);
|
|
}
|
|
} // end of switch(ID)
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static SILInstruction *constantFoldBuiltin(ApplyInst *AI,
|
|
BuiltinFunctionRefInst *FR,
|
|
SILModule &M) {
|
|
const IntrinsicInfo &Intrinsic = FR->getIntrinsicInfo();
|
|
|
|
// If it's an llvm intrinsic, fold the intrinsic.
|
|
if (Intrinsic.ID != llvm::Intrinsic::not_intrinsic) {
|
|
return constantFoldIntrinsic(AI, Intrinsic.ID, M);
|
|
}
|
|
|
|
// Otherwise, it should be one of the builin functions.
|
|
OperandValueArrayRef Args = AI->getArguments();
|
|
const BuiltinInfo &Builtin = M.getBuiltinInfo(FR->getReferencedFunction());
|
|
|
|
switch (Builtin.ID) {
|
|
default: break;
|
|
case BuiltinValueKind::Trunc:
|
|
case BuiltinValueKind::ZExt:
|
|
case BuiltinValueKind::SExt: {
|
|
|
|
// We can fold if the value being cast is a constant.
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
// Get the cast result.
|
|
APInt CastResV;
|
|
Type DestTy = Builtin.Types.size() == 2 ? Builtin.Types[1] : Type();
|
|
uint32_t DestBitWidth =
|
|
DestTy->castTo<BuiltinIntegerType>()->getBitWidth();
|
|
switch (Builtin.ID) {
|
|
default : llvm_unreachable("Invalid case.");
|
|
case BuiltinValueKind::Trunc:
|
|
CastResV = V->getValue().trunc(DestBitWidth);
|
|
break;
|
|
case BuiltinValueKind::ZExt:
|
|
CastResV = V->getValue().zext(DestBitWidth);
|
|
break;
|
|
case BuiltinValueKind::SExt:
|
|
CastResV = V->getValue().sext(DestBitWidth);
|
|
break;
|
|
}
|
|
|
|
// Add the literal instruction to represnet the result of the cast.
|
|
SILBuilder B(AI);
|
|
return B.createIntegerLiteral(AI->getLoc(),
|
|
SILType::getPrimitiveType(CanType(DestTy),
|
|
SILValueCategory::Object),
|
|
CastResV);
|
|
}
|
|
|
|
// Deal with special builtins that are designed to check overflows on
|
|
// integer literals.
|
|
case BuiltinValueKind::STruncWithOverflow:
|
|
case BuiltinValueKind::UTruncWithOverflow: {
|
|
// Get the value. It should be a constant in most cases.
|
|
// Note, this will not always be a constant, for example, when analyzing
|
|
// _convertFromBuiltinIntegerLiteral function itself.
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
APInt SrcVal = V->getValue();
|
|
|
|
// Get the signedness of the destination.
|
|
bool Signed = (Builtin.ID == BuiltinValueKind::STruncWithOverflow);
|
|
|
|
// Get the source and destination bit width.
|
|
assert(Builtin.Types.size() == 2);
|
|
uint32_t SrcBitWidth =
|
|
Builtin.Types[0]->castTo<BuiltinIntegerType>()->getBitWidth();
|
|
Type DestTy = Builtin.Types[1];
|
|
uint32_t DestBitWidth =
|
|
DestTy->castTo<BuiltinIntegerType>()->getBitWidth();
|
|
|
|
// Compute the destination:
|
|
// truncVal = trunc_IntFrom_IntTo(val)
|
|
// strunc_IntFrom_IntTo(val) =
|
|
// sext_IntFrom(truncVal) == val ? truncVal : overflow_error
|
|
// utrunc_IntFrom_IntTo(val) =
|
|
// zext_IntFrom(truncVal) == val ? truncVal : overflow_error
|
|
APInt TruncVal = SrcVal.trunc(DestBitWidth);
|
|
APInt T = Signed ? TruncVal.sext(SrcBitWidth):TruncVal.zext(SrcBitWidth);
|
|
|
|
SILLocation Loc = AI->getLoc();
|
|
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
|
|
|
|
// Check for overflow.
|
|
if (SrcVal != T) {
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow,
|
|
CE ? CE->getType() : DestTy);
|
|
}
|
|
|
|
// The call to the builtin should be replaced with the constant value.
|
|
SILBuilder B(AI);
|
|
return B.createIntegerLiteral(Loc,
|
|
SILType::getPrimitiveType(CanType(DestTy),
|
|
SILValueCategory::Object),
|
|
TruncVal);
|
|
}
|
|
|
|
case BuiltinValueKind::IntToFPWithOverflow: {
|
|
// Get the value. It should be a constant in most cases.
|
|
// Note, this will not always be a constant, for example, when analyzing
|
|
// _convertFromBuiltinIntegerLiteral function itself.
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
APInt SrcVal = V->getValue();
|
|
|
|
Type DestTy = Builtin.Types[1];
|
|
|
|
APFloat TruncVal(
|
|
DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics());
|
|
APFloat::opStatus ConversionStatus = TruncVal.convertFromAPInt(
|
|
SrcVal, /*isSigned=*/true, APFloat::rmNearestTiesToEven);
|
|
|
|
SILLocation Loc = AI->getLoc();
|
|
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
|
|
|
|
// Check for overflow.
|
|
if (ConversionStatus & APFloat::opOverflow) {
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow,
|
|
CE ? CE->getType() : DestTy);
|
|
}
|
|
|
|
// The call to the builtin should be replaced with the constant value.
|
|
SILBuilder B(AI);
|
|
return B.createFloatLiteral(Loc,
|
|
SILType::getPrimitiveType(CanType(DestTy),
|
|
SILValueCategory::Object),
|
|
TruncVal);
|
|
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static SILInstruction *constantFoldInstruction(SILInstruction &I,
|
|
SILModule &M) {
|
|
// Constant fold function calls.
|
|
if (ApplyInst *AI = dyn_cast<ApplyInst>(&I)) {
|
|
// Constant fold calls to builtins.
|
|
if (BuiltinFunctionRefInst *FR =
|
|
dyn_cast<BuiltinFunctionRefInst>(AI->getCallee().getDef())) {
|
|
return constantFoldBuiltin(AI, FR, M);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Constant fold extraction of a constant element.
|
|
if (TupleExtractInst *TEI = dyn_cast<TupleExtractInst>(&I)) {
|
|
if (TupleInst *TheTuple = dyn_cast<TupleInst>(TEI->getOperand().getDef())) {
|
|
unsigned FieldNo = TEI->getFieldNo();
|
|
ValueBase *Elem = TheTuple->getElements()[FieldNo].getDef();
|
|
if (SILInstruction *SILInstElem = dyn_cast<SILInstruction>(Elem)) {
|
|
return SILInstElem;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constant fold extraction of a constant element.
|
|
if (StructExtractInst *SEI = dyn_cast<StructExtractInst>(&I)) {
|
|
if (StructInst *Struct = dyn_cast<StructInst>(SEI->getOperand().getDef())) {
|
|
// Find the Field number corresponding to the FieldDecl.
|
|
unsigned FieldNo = 0;
|
|
StructDecl *SD =
|
|
cast<StructDecl>(Struct->getType().getSwiftType()->getAnyNominal());
|
|
|
|
for (auto MD : SD->getStoredProperties()) {
|
|
if (MD == SEI->getField()) {
|
|
ValueBase *E = Struct->getElements()[FieldNo].getDef();
|
|
// If the element the struct_extract is extracting is const, fold it.
|
|
if (SILInstruction *SILInstElem = dyn_cast<SILInstruction>(E)) {
|
|
return SILInstElem;
|
|
}
|
|
break;
|
|
}
|
|
++FieldNo;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool CCPFunctionBody(SILFunction &F, SILModule &M) {
|
|
DEBUG(llvm::errs() << "*** ConstPropagation processing: " << F.getName()
|
|
<< "\n");
|
|
|
|
// Initialize the worklist to all of the instructions ready to process...
|
|
llvm::SetVector<SILInstruction*> WorkList;
|
|
for (auto &BB : F) {
|
|
for(auto &I : BB) {
|
|
WorkList.insert(&I);
|
|
}
|
|
}
|
|
|
|
// Try to fold instructions in the list one by one.
|
|
bool Folded = false;
|
|
while (!WorkList.empty()) {
|
|
SILInstruction *I = *WorkList.begin();
|
|
WorkList.remove(I);
|
|
|
|
if (!I->use_empty())
|
|
|
|
// Try to fold the instruction.
|
|
if (SILInstruction *C = constantFoldInstruction(*I, M)) {
|
|
// The users could be constant propagatable now.
|
|
for (auto UseI = I->use_begin(),
|
|
UseE = I->use_end(); UseI != UseE; ++UseI) {
|
|
SILInstruction *User = cast<SILInstruction>(UseI.getUser());
|
|
WorkList.insert(User);
|
|
|
|
// Some constant users may indirectly cause folding of their users.
|
|
if (isa<StructInst>(User) || isa<TupleInst>(User)) {
|
|
for (auto UseUseI = User->use_begin(),
|
|
UseUseE = User->use_end(); UseUseI != UseUseE; ++UseUseI) {
|
|
WorkList.insert(cast<SILInstruction>(UseUseI.getUser()));
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// We were able to fold, so all users should use the new folded value.
|
|
assert(I->getTypes().size() == 1 &&
|
|
"Currently, we only support single result instructions.");
|
|
SILValue(I).replaceAllUsesWith(C);
|
|
|
|
// Remove the unused instruction.
|
|
WorkList.remove(I);
|
|
|
|
// Eagerly DCE.
|
|
recursivelyDeleteTriviallyDeadInstructions(I);
|
|
|
|
Folded = true;
|
|
++NumInstFolded;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Driver
|
|
//===----------------------------------------------------------------------===//
|
|
void swift::performSILConstantPropagation(SILModule *M) {
|
|
for (auto &Fn : *M) {
|
|
CCPFunctionBody(Fn, *M);
|
|
}
|
|
}
|