Files
swift-mirror/include/swift/Subsystems.h
Jordan Rose 15bfc8db2b Don't type-check imported decls unless referenced in the source file.
Instead, pass a LazyResolver down through name lookup, and type-check
things on demand. Most of the churn here is simply passing that extra
LazyResolver parameter through.

This doesn't actually work yet; the later commits will fix this.

Swift SVN r8643
2013-09-25 20:08:14 +00:00

201 lines
7.5 KiB
C++

//===--- Subsystems.h - Swift Compiler Subsystem Entrypoints ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file declares the main entrypoints to the various subsystems.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SUBSYSTEMS_H
#define SWIFT_SUBSYSTEMS_H
#include "swift/Basic/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include <memory>
namespace llvm {
class MemoryBuffer;
class Module;
class FunctionPass;
}
namespace swift {
class TranslationUnit;
class Component;
class Decl;
class SILModule;
struct TypeLoc;
class SILParserTUState;
class Parser;
class Token;
class CodeCompletionCallbacksFactory;
class PersistentParserState;
class DelayedParsingCallbacks;
class SourceManager;
namespace irgen {
class Options;
}
/// SILParserState - This is a context object used to optionally maintain SIL
/// parsing context for the parser.
class SILParserState {
public:
SILModule *M;
SILParserTUState *S;
explicit SILParserState(SILModule *M);
~SILParserState();
};
/// verify - Check that the translation unit is well formed (i.e. following
/// the invariants of the AST, not that the code written by the user makes
/// sense), aborting and spewing errors if not.
void verify(TranslationUnit *TU);
void verify(Decl *D);
/// \brief Parse a single buffer into the given taranslation unit. If the
/// translation unit is the main module, stop parsing after the next
/// stmt-brace-item with side-effects.
///
/// \param Done set to \c true if end of the buffer was reached.
///
/// \param SIL if non-null, we're parsing a SIL file.
///
/// \param PersistentState if non-null the same PersistentState object can
/// be used to resume parsing or parse delayed function bodies.
///
/// \param DelayedParseCB if non-null enables delayed parsing for function
/// bodies.
bool parseIntoTranslationUnit(TranslationUnit *TU, unsigned BufferID,
bool *Done,
SILParserState *SIL = nullptr,
PersistentParserState *PersistentState = nullptr,
DelayedParsingCallbacks *DelayedParseCB = nullptr);
/// \brief Finish the parsing by going over the nodes that were delayed
/// during the first parsing pass.
void
performDelayedParsing(TranslationUnit *TU,
PersistentParserState &PersistentState,
CodeCompletionCallbacksFactory *CodeCompletionFactory);
/// \brief Lex and return a vector of tokens for the given buffer.
std::vector<Token> tokenize(SourceManager &SM, unsigned BufferID,
unsigned Offset = 0, unsigned EndOffset = 0,
bool KeepComments = true,
bool TokenizeInterpolatedString = true);
/// performAutoImport - When a translation unit is first set up, this handles
/// setting up any auto imports of the standard library.
void performAutoImport(TranslationUnit *TU);
/// performNameBinding - Once parsing is complete, this walks the AST to
/// resolve names and do other top-level validation. StartElem indicates
/// where to start for incremental name binding in the main module.
void performNameBinding(TranslationUnit *TU, unsigned StartElem = 0);
/// performTypeChecking - Once parsing and namebinding are complete, this
/// walks the AST to resolve types and diagnose problems therein. StartElem
/// indicates where to start for incremental type checking in the
/// main module.
void performTypeChecking(TranslationUnit *TU, unsigned StartElem = 0);
/// \brief Recursively validate the specified type.
///
/// This is used when dealing with partial translation units (e.g. SIL
/// parsing, code completion).
///
/// \returns false on success, true on error.
bool performTypeLocChecking(TranslationUnit *TU, TypeLoc &T,
bool ProduceDiagnostics = true);
/// performCaptureAnalysis - Analyse the AST and mark local declarations
/// and expressions which can capture them so they can be emitted more
/// efficiently. StartElem indicates where to start for incremental capture
/// analysis in the main module.
void performCaptureAnalysis(TranslationUnit *TU, unsigned StartElem = 0);
/// Turn the given translation unit into SIL IR. The returned SILModule must
/// be deleted by the caller.
SILModule *performSILGeneration(TranslationUnit *TU,
unsigned StartElem = 0);
/// performSILMemoryPromotion - Promote alloc_box uses into SSA registers and
/// perform definitive initialization analysis.
void performSILMemoryPromotion(SILModule *M);
/// performSILAllocBoxToStackPromotion - Promote alloc_box into stack
/// allocations.
void performSILAllocBoxToStackPromotion(SILModule *M);
/// performSILStackToSSAPromotion - Promote alloc_stack instructions into SSA
/// registers.
void performSILStackToSSAPromotion(SILModule *M);
/// \brief Fold instructions with constant operands. Diagnose overflows when
/// possible.
void performSILConstantPropagation(SILModule *M);
/// \brief Detect and remove unreachable code. Diagnose provably unreachable
/// user code.
void performSILDeadCodeElimination(SILModule *M);
/// \brief Link a SILFunction declaration to the actual definition in the
/// serialized modules.
void performSILLinking(SILModule *M);
/// \brief Analyze the SIL module for correcntess and generate user
/// diagnostics if any.
void emitSILDataflowDiagnostics(const SILModule *M);
/// \brief Inline functions marked transparent. Diagnose attempts to
/// circularly inline
void performSILMandatoryInlining(SILModule *M);
/// Serializes a translation unit to the given output file.
///
/// This interface is still prone to change!
void serialize(const TranslationUnit *TU, const SILModule *M,
const char *outputPath,
ArrayRef<unsigned> inputFileBufferIDs = {},
StringRef moduleLinkName = {});
/// Serializes a translation unit to a stream.
void serializeToStream(const TranslationUnit *TU, llvm::raw_ostream &out,
const SILModule *M = nullptr,
ArrayRef<unsigned> inputFileBufferIDs = {},
StringRef moduleLinkName = {});
/// Turn the given translation unit into either LLVM IR or native code.
///
/// \param SILMod A SIL module to translate to LLVM IR. If null, IRGen works
/// directly from the AST.
/// \param StartElem Indicates where to start for incremental IRGen in the
/// main module.
void performIRGeneration(irgen::Options &Opts, llvm::Module *Module,
TranslationUnit *TU, SILModule *SILMod,
unsigned StartElem = 0);
// Optimization passes.
llvm::FunctionPass *createSwiftARCOptPass();
llvm::FunctionPass *createSwiftARCExpandPass();
/// The extension for serialized modules.
static const char * const SERIALIZED_MODULE_EXTENSION = "swiftmodule";
} // end namespace swift
#endif