Files
swift-mirror/lib/IDETool/CompileInstance.cpp
Ryan Mansfield ba0ce8aea6 Add frontend options to write SIL and LLVM IR as additional compilation output.
This commit adds -sil-output-path and -ir-output-path frontend options that
allow generating SIL and LLVM IR files as supplementary outputs during normal
compilation.

These options can be useful for debugging and analysis tools
workflows that need access to intermediate compilation artifacts
without requiring separate compiler invocations.

Expected behaviour:

Primary File mode:
 - SIL: Generates one .sil file per source file
 - IR: Generates one .ll file per source file

Single-threaded WMO mode:
 - SIL: Generates one .sil file for the entire module
 - IR: Generates one .ll file for the entire module

Multi-threaded WMO mode:
 - SIL: Generates one .sil file for the entire module
 - IR: Generates separate .ll files per source file

File Maps with WMO:
 - Both SIL and IR outputs using first entry's naming, which is
   consistent with the behaviour of other supplementary outputs.

rdar://160297898
2025-10-06 15:45:49 -04:00

392 lines
14 KiB
C++

//===--- CompileInstance.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDETool/CompileInstance.h"
#include "DependencyChecking.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/Module.h"
#include "swift/AST/PluginLoader.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Driver/FrontendUtil.h"
#include "swift/Frontend/Frontend.h"
#include "swift/FrontendTool/FrontendTool.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/PersistentParserState.h"
#include "swift/Subsystems.h"
#include "swift/SymbolGraphGen/SymbolGraphOptions.h"
#include "clang/AST/ASTContext.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace swift;
using namespace swift::ide;
// Interface fingerprint check and modified function body collection.
namespace {
/// Information of modified function body.
struct ModInfo {
/// Function decl in the *original* AST.
AbstractFunctionDecl *FD;
/// Range of the body in the *new* source file buffer.
SourceRange NewSourceRange;
ModInfo(AbstractFunctionDecl *FD, const SourceRange &NewSourceRange)
: FD(FD), NewSourceRange(NewSourceRange) {}
};
static bool collectModifiedFunctions(ArrayRef<Decl *> r1, ArrayRef<Decl *> r2,
llvm::SmallVectorImpl<ModInfo> &result) {
assert(r1.size() == r2.size() &&
"interface fingerprint matches but diffrent number of children");
for (auto i1 = r1.begin(), i2 = r2.begin(), e1 = r1.end(), e2 = r2.end();
i1 != e1 && i2 != e2; ++i1, ++i2) {
auto &d1 = *i1, &d2 = *i2;
assert(d1->getKind() == d2->getKind() &&
"interface fingerprint matches but diffrent structure");
/// FIXME: Nested types.
/// func foo() {
/// struct S {
/// func bar() { ... }
/// }
/// }
/// * Could editing a local-type interface lead to the need for
/// retypechecking other functions?
/// * Can we retypecheck only a function in local types? If only 'bar()'
/// body have changed, we want to only retypecheck 'bar()'.
auto *f1 = dyn_cast<AbstractFunctionDecl>(d1);
auto *f2 = dyn_cast<AbstractFunctionDecl>(d2);
if (f1 && f2) {
auto fp1 = f1->getBodyFingerprintIncludingLocalTypeMembers();
auto fp2 = f2->getBodyFingerprintIncludingLocalTypeMembers();
if (fp1 != fp2) {
// The fingerprint of the body has changed. Record it.
result.emplace_back(f1, f2->getBodySourceRange());
}
continue;
}
auto *idc1 = dyn_cast<IterableDeclContext>(d1);
auto *idc2 = dyn_cast<IterableDeclContext>(d2);
if (idc1 && idc2) {
if (idc1->getBodyFingerprint() != idc2->getBodyFingerprint()) {
// The fingerprint of the interface has changed. We can't reuse this.
return true;
}
// Recurse into the child IDC members.
if (collectModifiedFunctions(idc1->getParsedMembers(),
idc2->getParsedMembers(), result)) {
return true;
}
}
}
return false;
}
/// Collect functions in \p SF with modified bodies into \p result .
/// \p tmpSM is used for managing source buffers for new source files. Source
/// range for collected modified function body info is managed by \tmpSM.
/// \p tmpSM must be different from the source manager of \p SF .
static bool
getModifiedFunctionDeclList(const SourceFile &SF, SourceManager &tmpSM,
llvm::SmallVectorImpl<ModInfo> &result) {
auto &ctx = SF.getASTContext();
auto tmpBuffer = tmpSM.getFileSystem()->getBufferForFile(SF.getFilename());
if (!tmpBuffer) {
// The file is deleted?
return true;
}
// Parse the new buffer into temporary SourceFile.
LangOptions langOpts = ctx.LangOpts;
TypeCheckerOptions typeckOpts = ctx.TypeCheckerOpts;
SearchPathOptions searchPathOpts = ctx.SearchPathOpts;
ClangImporterOptions clangOpts = ctx.ClangImporterOpts;
SILOptions silOpts = ctx.SILOpts;
CASOptions casOpts = ctx.CASOpts;
symbolgraphgen::SymbolGraphOptions symbolOpts = ctx.SymbolGraphOpts;
SerializationOptions serializationOpts = ctx.SerializationOpts;
DiagnosticEngine tmpDiags(tmpSM);
auto &tmpCtx =
*ASTContext::get(langOpts, typeckOpts, silOpts, searchPathOpts, clangOpts,
symbolOpts, casOpts, serializationOpts, tmpSM, tmpDiags);
registerParseRequestFunctions(tmpCtx.evaluator);
registerTypeCheckerRequestFunctions(tmpCtx.evaluator);
ModuleDecl *tmpM = ModuleDecl::createEmpty(Identifier(), tmpCtx);
auto tmpBufferID = tmpSM.addNewSourceBuffer(std::move(*tmpBuffer));
SourceFile *tmpSF = new (tmpCtx)
SourceFile(*tmpM, SF.Kind, tmpBufferID, SF.getParsingOptions());
// If the top-level code has been changed, we can't do anything.
if (SF.getInterfaceHash() != tmpSF->getInterfaceHash())
return true;
return collectModifiedFunctions(SF.getTopLevelDecls(),
tmpSF->getTopLevelDecls(), result);
}
/// Typecheck the body of \p func with the new source text specified with
/// \p newBodyRange managed by \p newSM .
///
/// This copies the source text of \p newBodyRange to the source manger
/// \p func originally parsed.
void retypeCheckFunctionBody(AbstractFunctionDecl *func,
SourceRange newBodyRange, SourceManager &newSM) {
// To save the persistent memory in the source manager, add the sliced range
// of the new function body to the source manager.
// NOTE: Using 'getLocForStartOfLine' is to get the correct column value for
// diagnostics on the first line.
auto tmpBufferID = newSM.findBufferContainingLoc(newBodyRange.Start);
auto bufStartLoc = Lexer::getLocForStartOfLine(newSM, newBodyRange.Start);
auto bufEndLoc = Lexer::getLocForEndOfToken(newSM, newBodyRange.End);
auto bufStartOffset = newSM.getLocOffsetInBuffer(bufStartLoc, tmpBufferID);
auto bufEndOffset = newSM.getLocOffsetInBuffer(bufEndLoc, tmpBufferID);
auto slicedSourceText = newSM.getEntireTextForBuffer(tmpBufferID)
.slice(bufStartOffset, bufEndOffset);
auto &origSM = func->getASTContext().SourceMgr;
auto sliceBufferID = origSM.addMemBufferCopy(
slicedSourceText, newSM.getIdentifierForBuffer(tmpBufferID));
origSM.openVirtualFile(
origSM.getLocForBufferStart(sliceBufferID),
newSM.getDisplayNameForLoc(bufStartLoc),
newSM.getPresumedLineAndColumnForLoc(bufStartLoc).first - 1);
// Calculate the body range in the sliced source buffer.
auto rangeStartOffset =
newSM.getLocOffsetInBuffer(newBodyRange.Start, tmpBufferID);
auto rangeEndOffset =
newSM.getLocOffsetInBuffer(newBodyRange.End, tmpBufferID);
auto rangeStartLoc =
origSM.getLocForOffset(sliceBufferID, rangeStartOffset - bufStartOffset);
auto rangeEndLoc =
origSM.getLocForOffset(sliceBufferID, rangeEndOffset - bufStartOffset);
SourceRange newRange{rangeStartLoc, rangeEndLoc};
// Reset the body range of the function decl, and re-typecheck it.
origSM.setGeneratedSourceInfo(
sliceBufferID,
GeneratedSourceInfo{
GeneratedSourceInfo::ReplacedFunctionBody,
Lexer::getCharSourceRangeFromSourceRange(
origSM, func->getOriginalBodySourceRange()),
Lexer::getCharSourceRangeFromSourceRange(origSM, newRange),
func,
nullptr
}
);
func->setBodyToBeReparsed(newRange);
(void)func->getTypecheckedBody();
}
} // namespace
bool CompileInstance::performCachedSemaIfPossible(DiagnosticConsumer *DiagC) {
// Currently, only '-c' (aka. '-emit-object') action is supported.
assert(CI->getInvocation().getFrontendOptions().RequestedAction ==
FrontendOptions::ActionType::EmitObject &&
"Unsupported action; only 'EmitObject' is supported");
SourceManager &SM = CI->getSourceMgr();
auto FS = SM.getFileSystem();
if (shouldCheckDependencies()) {
if (areAnyDependentFilesInvalidated(
*CI, *FS, /*excludeBufferID=*/std::nullopt,
DependencyCheckedTimestamp, InMemoryDependencyHash)) {
return true;
}
DependencyCheckedTimestamp = std::chrono::system_clock::now();
}
SourceManager tmpSM(FS);
// Collect modified function body.
SmallVector<ModInfo, 2> modifiedFuncDecls;
bool isNotResuable = CI->forEachFileToTypeCheck([&](SourceFile &oldSF) {
return getModifiedFunctionDeclList(oldSF, tmpSM, modifiedFuncDecls);
});
if (isNotResuable)
return true;
// OK, we can reuse the AST.
CI->addDiagnosticConsumer(DiagC);
SWIFT_DEFER { CI->removeDiagnosticConsumer(DiagC); };
for (const auto &info : modifiedFuncDecls) {
retypeCheckFunctionBody(info.FD, info.NewSourceRange, tmpSM);
}
return false;
}
bool CompileInstance::setupCI(
llvm::ArrayRef<const char *> origArgs,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem,
DiagnosticConsumer *diagC) {
auto &Diags = CI->getDiags();
SmallVector<const char *, 16> args;
// Put '-resource-dir' at the top to allow overriding them with the passed in
// arguments.
args.append({"-resource-dir", RuntimeResourcePath.c_str()});
args.append(origArgs.begin(), origArgs.end());
SmallString<256> driverPath(SwiftExecutablePath);
llvm::sys::path::remove_filename(driverPath);
llvm::sys::path::append(driverPath, "swiftc");
CompilerInvocation invocation;
bool invocationCreationFailed =
driver::getSingleFrontendInvocationFromDriverArguments(
driverPath, args, Diags,
[&](ArrayRef<const char *> FrontendArgs) {
return invocation.parseArgs(FrontendArgs, Diags);
},
/*ForceNoOutputs=*/false);
if (invocationCreationFailed) {
assert(Diags.hadAnyError());
return false;
}
if (invocation.getFrontendOptions().RequestedAction !=
FrontendOptions::ActionType::EmitObject) {
Diags.diagnose(SourceLoc(), diag::not_implemented,
"only -c (aka. -emit-object) action is supported");
return false;
}
// Since LLVM arguments are parsed into a global state, LLVM can't handle
// multiple argument sets in a process simultaneously. So let's ignore them.
// FIXME: Remove this if possible.
invocation.getFrontendOptions().LLVMArgs.clear();
/// Declare the frontend to be used for multiple compilations.
invocation.getFrontendOptions().ReuseFrontendForMultipleCompilations = true;
// Enable dependency trakcing (excluding system modules) to invalidate the
// compiler instance if any dependent files are modified.
invocation.getFrontendOptions().IntermoduleDependencyTracking =
IntermoduleDepTrackingMode::ExcludeSystem;
std::string InstanceSetupError;
if (CI->setup(invocation, InstanceSetupError)) {
assert(Diags.hadAnyError());
return false;
}
CI->getASTContext().getPluginLoader().setRegistry(Plugins.get());
return true;
}
bool CompileInstance::performSema(
llvm::ArrayRef<const char *> Args,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem,
DiagnosticConsumer *DiagC,
std::shared_ptr<std::atomic<bool>> CancellationFlag) {
// Compute the signature of the invocation.
llvm::hash_code ArgsHash(0);
for (auto arg : Args)
ArgsHash = llvm::hash_combine(ArgsHash, StringRef(arg));
if (CI && ArgsHash == CachedArgHash &&
CachedReuseCount < Opts.MaxASTReuseCount) {
CI->getASTContext().CancellationFlag = CancellationFlag;
if (!performCachedSemaIfPossible(DiagC)) {
// If we compileted cacehd Sema operation. We're done.
++CachedReuseCount;
return CI->getDiags().hadAnyError();
}
}
// Performing a new operation. Reset the compiler instance.
CI = std::make_unique<CompilerInstance>();
CI->addDiagnosticConsumer(DiagC);
if (!setupCI(Args, fileSystem, DiagC)) {
// Failed to setup the CI.
CI.reset();
return true;
}
// Remember cache related information.
DependencyCheckedTimestamp = std::chrono::system_clock::now();
CachedArgHash = ArgsHash;
CachedReuseCount = 0;
InMemoryDependencyHash.clear();
cacheDependencyHashIfNeeded(*CI, /*excludeBufferID=*/std::nullopt,
InMemoryDependencyHash);
// Perform!
CI->getASTContext().CancellationFlag = CancellationFlag;
CI->performSema();
CI->removeDiagnosticConsumer(DiagC);
return CI->getDiags().hadAnyError();
}
bool CompileInstance::performCompile(
llvm::ArrayRef<const char *> Args,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem,
DiagnosticConsumer *DiagC,
std::shared_ptr<std::atomic<bool>> CancellationFlag) {
// Cancellation check. This gives a chance to cancel queued up requests before
// processing anything.
if (CancellationFlag && CancellationFlag->load(std::memory_order_relaxed))
return true;
if (performSema(Args, fileSystem, DiagC, CancellationFlag))
return true;
// Cancellation check after Sema.
if (CI->isCancellationRequested())
return true;
CI->addDiagnosticConsumer(DiagC);
SWIFT_DEFER { CI->removeDiagnosticConsumer(DiagC); };
int ReturnValue = 0;
return performCompileStepsPostSema(*CI, ReturnValue, /*observer=*/nullptr,
Args);
}
bool CompileInstance::shouldCheckDependencies() const {
assert(CI);
using namespace std::chrono;
auto now = system_clock::now();
auto threshold =
DependencyCheckedTimestamp + seconds(Opts.DependencyCheckIntervalSecond);
return threshold <= now;
}