Files
swift-mirror/lib/IRGen/GenTuple.cpp

727 lines
28 KiB
C++

//===--- GenTuple.cpp - Swift IR Generation For Tuple Types ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for tuple types in Swift. This
// includes creating the IR type as well as emitting the primitive access
// operations.
//
// It is assumed in several places in IR-generation that the
// explosion schema of a tuple type is always equal to the appended
// explosion schemas of the component types.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Mangler.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "llvm/IR/DerivedTypes.h"
#include "GenHeap.h"
#include "GenRecord.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Explosion.h"
#include "IndirectTypeInfo.h"
#include "NonFixedTypeInfo.h"
#include "ResilientTypeInfo.h"
#include "GenTuple.h"
#pragma clang diagnostic ignored "-Winconsistent-missing-override"
using namespace swift;
using namespace irgen;
namespace {
/// A type implementation for tuple types with a dynamic number of
/// elements, that is, that contain pack expansion types. For now,
/// these are completely abstract.
class DynamicTupleTypeInfo
: public ResilientTypeInfo<DynamicTupleTypeInfo>
{
public:
DynamicTupleTypeInfo(llvm::Type *T,
IsCopyable_t copyable)
: ResilientTypeInfo(T, copyable, IsABIAccessible) {}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
}
};
} // end anonymous namespace
const TypeInfo *
TypeConverter::convertDynamicTupleType(IsCopyable_t copyable) {
llvm::Type *storageType = IGM.OpaqueTy;
return new DynamicTupleTypeInfo(storageType, copyable);
}
namespace {
class TupleFieldInfo : public RecordField<TupleFieldInfo> {
public:
TupleFieldInfo(unsigned index, StringRef name, const TypeInfo &type)
: RecordField(type), Index(index), Name(name)
{}
/// The field index.
const unsigned Index;
const StringRef Name;
StringRef getFieldName() const {
return Name;
}
const TupleTypeElt &getField(SILType T) const {
auto tup = T.castTo<TupleType>();
return tup->getElement(Index);
}
SILType getType(IRGenModule&, SILType t) const {
return t.getTupleElementType(Index);
}
};
/// Project a tuple offset from a tuple metadata structure.
static llvm::Value *loadTupleOffsetFromMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *index) {
auto asTuple = IGF.Builder.CreateBitCast(metadata,
IGF.IGM.TupleTypeMetadataPtrTy);
llvm::Value *indices[] = {
IGF.IGM.getSize(Size(0)), // (*tupleType)
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 3), // .Elements
index, // [index]
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1) // .Offset
};
auto slot = IGF.Builder.CreateInBoundsGEP(IGF.IGM.TupleTypeMetadataTy,
asTuple, indices);
std::string name;
if (auto *constantIndex = dyn_cast<llvm::ConstantInt>(index))
name = (metadata->getName() + "." +
Twine(constantIndex->getValue().getLimitedValue()) + ".offset")
.str();
else
name = (metadata->getName() + ".dynamic.offset").str();
return IGF.Builder.CreateLoad(slot, IGF.IGM.Int32Ty,
IGF.IGM.getPointerAlignment(), name);
}
static llvm::Value *loadTupleOffsetFromMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
unsigned index) {
return loadTupleOffsetFromMetadata(IGF, metadata,
IGF.IGM.getSize(Size(index)));
}
/// Adapter for tuple types.
template <class Impl, class Base>
class TupleTypeInfoBase
: public RecordTypeInfo<Impl, Base, TupleFieldInfo> {
using super = RecordTypeInfo<Impl, Base, TupleFieldInfo>;
protected:
template <class... As>
TupleTypeInfoBase(As &&...args) : super(std::forward<As>(args)...) {}
using super::asImpl;
public:
/// Given a full tuple explosion, project out a single element.
void projectElementFromExplosion(IRGenFunction &IGF,
Explosion &tuple,
unsigned fieldNo,
Explosion &out) const {
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
// If the field requires no storage, there's nothing to do.
if (field.isEmpty())
return IGF.emitFakeExplosion(field.getTypeInfo(), out);
// Otherwise, project from the base.
auto fieldRange = field.getProjectionRange();
ArrayRef<llvm::Value *> element = tuple.getRange(fieldRange.first,
fieldRange.second);
out.add(element);
}
/// Given the address of a tuple, project out the address of a
/// single element.
Address projectFieldAddress(IRGenFunction &IGF,
Address addr,
SILType T,
const TupleFieldInfo &field) const {
return asImpl().projectElementAddress(IGF, addr, T, field.Index);
}
/// Given the address of a tuple, project out the address of a
/// single element.
Address projectElementAddress(IRGenFunction &IGF,
Address tuple,
SILType T,
unsigned fieldNo) const {
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
if (field.isEmpty())
return field.getTypeInfo().getUndefAddress();
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
return field.projectAddress(IGF, tuple, offsets);
}
/// Return the statically-known offset of the given element.
std::optional<Size> getFixedElementOffset(IRGenModule &IGM,
unsigned fieldNo) const {
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
switch (field.getKind()) {
case ElementLayout::Kind::Empty:
case ElementLayout::Kind::EmptyTailAllocatedCType:
case ElementLayout::Kind::Fixed:
return field.getFixedByteOffset();
case ElementLayout::Kind::InitialNonFixedSize:
return Size(0);
case ElementLayout::Kind::NonFixed:
return std::nullopt;
}
llvm_unreachable("bad element layout kind");
}
std::optional<unsigned> getElementStructIndex(IRGenModule &IGM,
unsigned fieldNo) const {
const TupleFieldInfo &field = asImpl().getFields()[fieldNo];
if (field.isEmpty())
return std::nullopt;
return field.getStructIndex();
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address src, SILType T,
bool isOutlined) const override {
llvm_unreachable("unexploded tuple as argument?");
}
void verify(IRGenTypeVerifierFunction &IGF,
llvm::Value *metadata,
SILType tupleType) const override {
auto fields = asImpl().getFields();
for (unsigned i : indices(fields)) {
const TupleFieldInfo &field = fields[i];
switch (field.getKind()) {
case ElementLayout::Kind::Fixed: {
// Check that the fixed layout matches the layout in the tuple
// metadata.
auto fixedOffset = field.getFixedByteOffset();
auto runtimeOffset = loadTupleOffsetFromMetadata(IGF, metadata, i);
IGF.verifyValues(metadata, runtimeOffset,
IGF.IGM.getSize(fixedOffset),
llvm::Twine("offset of tuple element ") + llvm::Twine(i));
break;
}
case ElementLayout::Kind::Empty:
case ElementLayout::Kind::EmptyTailAllocatedCType:
case ElementLayout::Kind::InitialNonFixedSize:
case ElementLayout::Kind::NonFixed:
continue;
}
}
}
};
/// Type implementation for loadable tuples.
class LoadableTupleTypeInfo final :
public TupleTypeInfoBase<LoadableTupleTypeInfo, LoadableTypeInfo> {
public:
// FIXME: Spare bits between tuple elements.
LoadableTupleTypeInfo(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t areFieldsABIAccessible,
unsigned explosionSize,
llvm::Type *ty,
Size size, SpareBitVector &&spareBits,
Alignment align,
IsTriviallyDestroyable_t isTriviallyDestroyable,
IsCopyable_t isCopyable,
IsFixedSize_t alwaysFixedSize,
IsABIAccessible_t isABIAccessible)
: TupleTypeInfoBase(fields, explosionSize, areFieldsABIAccessible,
ty, size, std::move(spareBits), align,
isTriviallyDestroyable,
isCopyable,
alwaysFixedSize, isABIAccessible)
{}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {
for (auto &field : getFields()) {
auto fieldOffset = offset + field.getFixedByteOffset();
cast<LoadableTypeInfo>(field.getTypeInfo())
.addToAggLowering(IGM, lowering, fieldOffset);
}
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
if (getFields().empty()) {
return IGM.typeLayoutCache.getEmptyEntry();
}
std::vector<TypeLayoutEntry *> fields;
for (auto &field : getFields()) {
auto fieldTy = field.getType(IGM, T);
fields.push_back(
field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
}
// if (fields.size() == 1) {
// return fields[0];
// }
return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
fields, T, getBestKnownAlignment().getValue(), *this);
}
std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
return std::nullopt;
}
std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return std::nullopt;
}
};
/// Type implementation for fixed-size but non-loadable tuples.
class FixedTupleTypeInfo final :
public TupleTypeInfoBase<FixedTupleTypeInfo,
IndirectTypeInfo<FixedTupleTypeInfo,
FixedTypeInfo>>
{
public:
// FIXME: Spare bits between tuple elements.
FixedTupleTypeInfo(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t areFieldsABIAccessible,
llvm::Type *ty,
Size size, SpareBitVector &&spareBits, Alignment align,
IsTriviallyDestroyable_t isTriviallyDestroyable,
IsBitwiseTakable_t isBT,
IsCopyable_t isCopyable,
IsFixedSize_t alwaysFixedSize,
IsABIAccessible_t isABIAccessible)
: TupleTypeInfoBase(fields, areFieldsABIAccessible, ty, size, std::move(spareBits), align,
isTriviallyDestroyable, isBT, isCopyable,
alwaysFixedSize, isABIAccessible)
{}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
if (getFields().empty()) {
return IGM.typeLayoutCache.getEmptyEntry();
}
std::vector<TypeLayoutEntry *> fields;
for (auto &field : getFields()) {
auto fieldTy = field.getType(IGM, T);
fields.push_back(
field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
}
// if (fields.size() == 1) {
// return fields[0];
// }
return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
fields, T, getBestKnownAlignment().getValue(), *this);
}
std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF) const {
return std::nullopt;
}
std::nullopt_t getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return std::nullopt;
}
};
/// An accessor for the non-fixed offsets for a tuple type.
class TupleNonFixedOffsets : public NonFixedOffsetsImpl {
// TODO: Should be a SILType.
SILType TheType;
public:
TupleNonFixedOffsets(SILType type) : TheType(type) {
assert(TheType.is<TupleType>());
}
llvm::Value *getOffsetForIndex(IRGenFunction &IGF, unsigned index) override {
// Fetch the metadata as a tuple type. We cache this because
// we might repeatedly need the bitcast.
auto metadata = IGF.emitTypeMetadataRefForLayout(TheType);
return loadTupleOffsetFromMetadata(IGF, metadata, index);
}
};
/// Type implementation for non-fixed-size tuples.
class NonFixedTupleTypeInfo final :
public TupleTypeInfoBase<NonFixedTupleTypeInfo,
WitnessSizedTypeInfo<NonFixedTupleTypeInfo>>
{
public:
NonFixedTupleTypeInfo(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t fieldsABIAccessible,
llvm::Type *T,
Alignment minAlign, IsTriviallyDestroyable_t isTriviallyDestroyable,
IsBitwiseTakable_t isBT,
IsCopyable_t isCopyable,
IsABIAccessible_t tupleAccessible)
: TupleTypeInfoBase(fields, fieldsABIAccessible,
T, minAlign, isTriviallyDestroyable, isBT, isCopyable,
tupleAccessible) {
}
TupleNonFixedOffsets getNonFixedOffsets(IRGenFunction &IGF,
SILType T) const {
return TupleNonFixedOffsets(T);
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!areFieldsABIAccessible()) {
return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
}
std::vector<TypeLayoutEntry *> fields;
for (auto &field : asImpl().getFields()) {
auto fieldTy = field.getType(IGM, T);
fields.push_back(
field.getTypeInfo().buildTypeLayoutEntry(IGM, fieldTy, useStructLayouts));
}
if (fields.empty()) {
return IGM.typeLayoutCache.getEmptyEntry();
}
// if (fields.size() == 1) {
// return fields[0];
// }
return IGM.typeLayoutCache.getOrCreateAlignedGroupEntry(
fields, T, getBestKnownAlignment().getValue(), *this);
}
llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *numEmptyCases,
Address structAddr,
SILType structType,
bool isOutlined) const override {
// The runtime will overwrite this with a concrete implementation
// in the value witness table.
return emitGetEnumTagSinglePayloadCall(IGF, structType, numEmptyCases,
structAddr);
}
void storeEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *index,
llvm::Value *numEmptyCases,
Address structAddr,
SILType structType,
bool isOutlined) const override {
// The runtime will overwrite this with a concrete implementation
// in the value witness table.
emitStoreEnumTagSinglePayloadCall(IGF, structType, index,
numEmptyCases, structAddr);
}
};
class TupleTypeBuilder :
public RecordTypeBuilder<TupleTypeBuilder, TupleFieldInfo,
TupleTypeElt> {
SILType TheTuple;
public:
TupleTypeBuilder(IRGenModule &IGM, SILType theTuple)
: RecordTypeBuilder(IGM), TheTuple(theTuple) {}
FixedTupleTypeInfo *createFixed(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t areFieldsABIAccessible,
StructLayout &&layout) {
IsABIAccessible_t isABIAccessible = IsABIAccessible_t(areFieldsABIAccessible);
return FixedTupleTypeInfo::create(fields, areFieldsABIAccessible,
layout.getType(),
layout.getSize(),
std::move(layout.getSpareBits()),
layout.getAlignment(),
layout.isTriviallyDestroyable(),
layout.isBitwiseTakable(),
layout.isCopyable(),
layout.isAlwaysFixedSize(),
isABIAccessible);
}
LoadableTupleTypeInfo *createLoadable(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t areFieldsABIAccessible,
StructLayout &&layout,
unsigned explosionSize) {
IsABIAccessible_t isABIAccessible = IsABIAccessible_t(areFieldsABIAccessible);
return LoadableTupleTypeInfo::create(fields, areFieldsABIAccessible,
explosionSize,
layout.getType(), layout.getSize(),
std::move(layout.getSpareBits()),
layout.getAlignment(),
layout.isTriviallyDestroyable(),
layout.isCopyable(),
layout.isAlwaysFixedSize(),
isABIAccessible);
}
NonFixedTupleTypeInfo *createNonFixed(ArrayRef<TupleFieldInfo> fields,
FieldsAreABIAccessible_t fieldsAccessible,
StructLayout &&layout) {
auto tupleAccessible = IsABIAccessible_t(
IGM.isTypeABIAccessible(TheTuple));
return NonFixedTupleTypeInfo::create(fields, fieldsAccessible,
layout.getType(),
layout.getAlignment(),
layout.isTriviallyDestroyable(),
layout.isBitwiseTakable(),
layout.isCopyable(),
tupleAccessible);
}
TupleFieldInfo getFieldInfo(unsigned index,
const TupleTypeElt &field,
const TypeInfo &fieldTI) {
StringRef name = field.hasName() ? field.getName().str() : "elt";
return TupleFieldInfo(index, name, fieldTI);
}
SILType getType(const TupleTypeElt &field) {
// We know we're working with a lowered type here.
return SILType::getPrimitiveObjectType(CanType(field.getType()));
}
StructLayout performLayout(ArrayRef<const TypeInfo *> fieldTypes) {
return StructLayout(IGM, /*type=*/std::nullopt, LayoutKind::NonHeapObject,
LayoutStrategy::Universal, fieldTypes);
}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::convertTupleType(TupleType *tuple) {
if (tuple->containsPackExpansionType()) {
auto *bitwiseCopyableProtocol =
IGM.getSwiftModule()->getASTContext().getProtocol(
KnownProtocolKind::BitwiseCopyable);
if (bitwiseCopyableProtocol && checkConformance(
tuple, bitwiseCopyableProtocol)) {
return BitwiseCopyableTypeInfo::create(IGM.OpaqueTy, IsABIAccessible);
}
// FIXME: Figure out if its copyable at least
return &getDynamicTupleTypeInfo(IsCopyable);
}
TupleTypeBuilder builder(IGM, SILType::getPrimitiveAddressType(CanType(tuple)));
return builder.layout(tuple->getElements());
}
/// A convenient macro for delegating an operation to all of the
/// various tuple implementations.
#define FOR_TUPLE_IMPL(IGF, type, op, ...) do { \
auto &tupleTI = IGF.getTypeInfo(type); \
if (isa<LoadableTypeInfo>(tupleTI)) { \
return tupleTI.as<LoadableTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} else if (isa<FixedTypeInfo>(tupleTI)) { \
return tupleTI.as<FixedTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} else { \
return tupleTI.as<NonFixedTupleTypeInfo>().op(IGF, __VA_ARGS__); \
} \
} while (0)
void irgen::projectTupleElementFromExplosion(IRGenFunction &IGF,
SILType tupleType,
Explosion &tuple,
unsigned fieldNo,
Explosion &out) {
FOR_TUPLE_IMPL(IGF, tupleType, projectElementFromExplosion,
tuple, fieldNo, out);
}
Address irgen::projectTupleElementAddress(IRGenFunction &IGF,
Address tuple,
SILType tupleType,
unsigned fieldNo) {
FOR_TUPLE_IMPL(IGF, tupleType, projectElementAddress, tuple,
tupleType, fieldNo);
}
Address irgen::projectTupleElementAddressByDynamicIndex(IRGenFunction &IGF,
Address tuple,
SILType tupleType,
llvm::Value *index,
SILType elementType) {
auto *metadata = IGF.emitTypeMetadataRefForLayout(tupleType);
llvm::BasicBlock *trueBB = nullptr, *falseBB = nullptr, *restBB = nullptr;
llvm::BasicBlock *unwrappedBB = nullptr;
llvm::Value *unwrappedOffset = nullptr;
auto loweredTupleType = tupleType.castTo<TupleType>();
if (loweredTupleType->getNumScalarElements() <= 1) {
ConditionalDominanceScope scope(IGF);
// Test if the runtime length of the pack type is exactly 1.
CanPackType packType = loweredTupleType.getInducedPackType();
auto *shapeExpression = IGF.emitPackShapeExpression(packType);
auto *one = llvm::ConstantInt::get(IGF.IGM.SizeTy, 1);
auto *isOne = IGF.Builder.CreateICmpEQ(shapeExpression, one);
trueBB = IGF.createBasicBlock("vanishing-tuple");
falseBB = IGF.createBasicBlock("actual-tuple");
IGF.Builder.CreateCondBr(isOne, trueBB, falseBB);
IGF.Builder.emitBlock(trueBB);
// If the length is 1, the offset is just zero.
unwrappedBB = IGF.Builder.GetInsertBlock();
unwrappedOffset = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
restBB = IGF.createBasicBlock("tuple-rest");
IGF.Builder.CreateBr(restBB);
IGF.Builder.emitBlock(falseBB);
}
llvm::Value *tupleOffset = nullptr;
llvm::BasicBlock *tupleBB = nullptr;
{
ConditionalDominanceScope scope(IGF);
tupleOffset = loadTupleOffsetFromMetadata(IGF, metadata, index);
tupleBB = IGF.Builder.GetInsertBlock();
}
// Control flow join with the one-element case.
llvm::Value *result = nullptr;
if (unwrappedOffset != nullptr) {
IGF.Builder.CreateBr(restBB);
IGF.Builder.emitBlock(restBB);
auto *phi = IGF.Builder.CreatePHI(IGF.IGM.Int32Ty, 2);
phi->addIncoming(unwrappedOffset, unwrappedBB);
phi->addIncoming(tupleOffset, tupleBB);
result = phi;
} else {
result = tupleOffset;
}
auto *gep = IGF.emitByteOffsetGEP(tuple.getAddress(), result);
auto elementAddress = Address(gep, IGF.IGM.OpaqueTy,
IGF.IGM.getPointerAlignment());
return IGF.Builder.CreateElementBitCast(elementAddress,
IGF.IGM.getStorageType(elementType));
}
std::optional<Size> irgen::getFixedTupleElementOffset(IRGenModule &IGM,
SILType tupleType,
unsigned fieldNo) {
// Macro happens to work with IGM, too.
FOR_TUPLE_IMPL(IGM, tupleType, getFixedElementOffset, fieldNo);
}
std::optional<unsigned>
irgen::getPhysicalTupleElementStructIndex(IRGenModule &IGM, SILType tupleType,
unsigned fieldNo) {
FOR_TUPLE_IMPL(IGM, tupleType, getElementStructIndex, fieldNo);
}
/// Emit a string encoding the labels in the given tuple type.
llvm::Constant *irgen::getTupleLabelsString(IRGenModule &IGM,
CanTupleType type) {
bool hasLabels = false;
llvm::SmallString<128> buffer;
for (auto &elt : type->getElements()) {
if (elt.hasName()) {
hasLabels = true;
Identifier name = elt.getName();
if (name.mustAlwaysBeEscaped()) {
Mangle::Mangler::appendRawIdentifierForRuntime(name.str(), buffer);
} else {
buffer.append(name.str());
}
}
// Each label is space-terminated.
buffer += ' ';
}
// If there are no labels, use a null pointer.
if (!hasLabels) {
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
}
// Otherwise, create a new string literal.
// This method implicitly adds a null terminator.
return IGM.getAddrOfGlobalString(buffer);
}
llvm::Value *irgen::emitTupleTypeMetadataLength(IRGenFunction &IGF,
llvm::Value *metadata) {
llvm::Value *indices[] = {
IGF.IGM.getSize(Size(0)), // (*tupleType)
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1) // .NumElements
};
auto slot = IGF.Builder.CreateInBoundsGEP(IGF.IGM.TupleTypeMetadataTy,
metadata, indices);
return IGF.Builder.CreateLoad(slot, IGF.IGM.SizeTy,
IGF.IGM.getPointerAlignment());
}
llvm::Value *irgen::emitTupleTypeMetadataElementType(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *index) {
llvm::Value *indices[] = {
IGF.IGM.getSize(Size(0)), // (*tupleType)
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 3), // .Elements
index, // [index]
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0) // .Metadata
};
auto slot = IGF.Builder.CreateInBoundsGEP(IGF.IGM.TupleTypeMetadataTy,
metadata, indices);
return IGF.Builder.CreateLoad(slot, IGF.IGM.SizeTy,
IGF.IGM.getPointerAlignment());
}